Токовая защита электродвигателя своими руками

Добавил пользователь Morpheus
Обновлено: 18.09.2024

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.

Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.

Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ (рис.1)

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким образом, что и постоянная нагревания электродвигателя. То есть проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы, ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле.

Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус, двигатель обязательно должен быть заземлен или занулен.

Недостаток этого способа в том, что тепловые реле достаточно дороги (примерно столько же, сколько и пускатель) и для надежной защиты его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

Второй способ (рис. 2).

В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки "Пуск" через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Третий способ (рис 3).


Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1'), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0' включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0' равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0' появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.

Четвертый способ (рис. 4).


Схема защитного устройства аналогична схеме, рассмотренной во втором способе. При нажатии кнопки "Пуск" включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.

Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.

В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.

По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.

Защита электродвигателя (ЭД) — это предотвращение его выхода из строя при воздействии неблагоприятных эксплуатационных факторов.

Указанная задача решается путем заблаговременного отключения ЭД при возникновении опасных режимов работы. Это во многих случаях позволяет сохранить как сам ЭД, так и не допустить повреждения приводимых им механизмов при возникновении каких-либо неисправностей в работе.

Отключение ЭД обеспечивается применением совместно с ним различных защитных устройств которые мы и рассмотрим в данной статье.

Типовые неисправности электродвигателей и причины их возникновения

Во время эксплуатации ЭД могут возникать различные аварийные режимы работы, которые могут быть вызваны как неисправностью самого двигателя так и неисправностями в его пускорегулирующей аппаратуре или в приводимых им в движение механизмов.

В свою очередь аварийный режим работы может привести к повреждению и выходу из строя не только самого ЭД но и другого взаимосвязанного с ним оборудования, поэтому очень важно заранее предусмотреть возможность сбоя и его причины и подобрать соответствующую защиту.

Основной причиной выхода из строя ЭД является перегрев обмоток, который приводит к разрушению их изоляционного слоя и как следствие к повреждению самих обмоток:

перегрев обмоток статора двигателя

Рис. 1 – Статор ЭД с поврежденными в результате перегрева обмотками

Возможны следующие причины перегрева:

  • ненормальный режим работы;
  • нарушение питания;
  • внутренние повреждения ЭД.

Ненормальный режим работы:

  1. Перегрузка – если потребляемая мощность больше номинальной (в случае чрезмерной механической нагрузки на валу двигателя), то в ЭД возникает ток перегрузки, и увеличиваются потери, что приводит к повышению температуры.
  2. Затянутый и частый пуск вызывает значительный ток перегрузки (который при нормальных условиях допустим только в течение короткого промежутка времени) приводящий к недопустимому нагреву.
  3. Блокировка (заклинивание) – резкая остановка вращения, приводящая к потреблению ЭД пускового тока и отсутствию вентиляции, что вызывает быстрый перегрев ЭД.

Нарушение питания:

  1. Прекращение подачи питания приводит к тому, что ЭД работает в режиме генератора, поскольку инерция нагрузки привода велика.
  2. Снижение напряжения приводит к уменьшению вращающего момента и скорости: замедление ЭД вызывает увеличение тока и потерь. Таким образом, происходит перегрев ЭД.
  3. Повышение напряжения увеличивает намагничивающий ток ЭД, что ведет к перегреву магнитопровода статора, который в свою очередь перегревает обмотки статора.
  4. Изменение частоты
  5. Несбалансированность системы трехфазного питания:
  • источник энергии не производит симметричное трехфазное напряжение;
  • другие потребители представляют собой несимметричную нагрузку, и возникает несбалансированное питание сети;
  • обрыв фазы (неполнофазный режим), в результате чего ЭД получает питание по двум фазам.

Внутренние повреждения ЭД:

  1. Межфазное короткое замыкание
  2. Замыкание на корпус статора
  3. Замыкание на корпус ротора (для ЭД с фазным ротором)

Нарушение изоляции обмоток может быть причиной короткого замыкания между ее витками, когда возникает ток, создающий перегрев в месте повреждения.

d. Перегрев подшипников вследствие их износа или недостатка смазки.

Основные виды защит электродвигателей

Защита электродвигателя имеет несколько уровней (см. рис. 2):

уровни защит электродвигателя

Рис. 2 – Пример реализации защиты электродвигателя

В зависимости от режима работы и условий эксплуатации, применяются, в различном сочетании, следующие виды защит ЭД:

  • внешняя защита от короткого замыкания выполняется плавкими предохранителями (см. рис. 3), автоматическими выключателями, автоматами защиты двигателей (см. рис. 4), токовыми реле (см. рис. 5);
  • внешняя защита от перегрузок выполняется плавкими предохранителями, автоматическими выключателями, автоматами защиты двигателей, так же применяются токовые и тепловые реле (см. рис. 6);
  • внешняя защита от нарушения питания выполняется реле контроля напряжения (см. рис. 7, а), реле контроля фаз (см. рис. 7, б);
  • контроль изоляции обмоток выполняется реле контроля изоляции (см. рис. 8);
  • встроенная защита двигателя выполняется тепловыми автоматическими выключателями (термостатами) (см. рис. 9), термисторными реле (см. рис. 10).

Рассмотрим основные устройства защиты электродвигателей:

Плавкий предохранитель

Плавкий предохранитель является простейшим устройством, выполняющим как защиту от короткого замыкания, так и защиту от перегрузки.

Плавкие предохранители быстрого срабатывания обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать срабатывание плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов.

Плавкие предохранители с задержкой срабатывания обеспечивают защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают многократное увеличение номинального тока на короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не сработал.

типы плавких предохранителей

Рис. 3 – Плавкие предохранители

Достоинства:

  • плавкие предохранители позволяют осуществить наиболее простую и дешевую защиту;
  • плавкие предохранители не требуют проведения наладочных работ.

Недостатки:

  • меньшая чувствительность к перегрузкам и удаленным коротким замыканиям по сравнению с иными устройствами защиты;
  • возможность возникновения неполнофазного режима, например, при самопроизвольном срабатывании предохранителя одной из фаз из-за старения плавкой вставки;
  • невозможность автоматического повторного включения;
  • длительное время замены и невозможность телемеханизировать эту операцию.

Автомат защиты двигателя

Автомат защиты двигателя является устройством токовой защиты электродвигателя, обладающий расцепителем перегрузки и расцепителем короткого замыкания. Его устройство аналогично устройству обычного автоматического выключателя, однако в отличие от последнего, он имеет регулировку расцепителя перегрузки.

автомат защиты электродвигателя

Рис. 4 – Автомат защиты двигателя

Достоинства:

  • совмещает функции коммутации и защиты;
  • совмещает функции защиты от короткого замыкания и перегрузки;
  • регулировка расцепителя перегрузки;
  • защита электродвигателя без использования дополнительных устройств;
  • чувствительность к обрыву фазы;
  • возможность применения вспомогательных и сигнальных контактов;
  • возможность применения вспомогательных расцепителей.

Недостатки:

  • недостаточная скорость срабатывания расцепителя перегрузки при резком повышении тока вследствие других аварийных режимов работы.

Токовое реле

Призвано следить за величиной тока на определенном участке сети. В случае превышения установленного значения токовое реле переключается, подавая сигнал на исполнительный механизм, который обесточит участок схемы или включит сигнализацию.

токовое реле

Рис. 5 – Токовое реле

Токовые реле подразделяются на первичные и вторичные.

Первичное токовое реле подключается в цепь защиты ЭД непосредственно своими выводами.

Вторичное реле подключается через трансформатор тока, устанавливаемый непосредственно на шину питания или жилу питающего кабеля ЭД.

Реле тока обладает преимуществом перед автоматическим выключателем и предохранителем за счет быстродействия.

Тепловое реле

Тепловое реле – это устройство защиты электродвигателя от перегрузок, исполнительным элементом которого является расцепитель перегрузки, аналогичный расцепителю перегрузки автоматического выключателя, т.е. имеющий в своей основе биметаллическую пластину. Обычно входит в состав магнитного пускателя и устанавливается между контактором и двигателем.

тепловое реле в составе пускателя

Рис. 6 – Тепловое реле

Тепловое реле является простым, надежным и недорогим устройством токовой защиты электродвигателя.

К его недостаткам можно отнести недостаточную скорость срабатывания при резком повышении тока вследствие других аварийных режимов работы.

Реле контроля напряжения, реле контроля фаз

Если параметры питающего напряжения ЭД в пределах нормы, то контакты реле замкнуты, и на катушку контактора ЭД подается управляющее напряжение. В случае аварийной ситуации контакты реле размыкаются, отключая контактор.

реле контроля фаз и напряжения

Рис. 7 – Реле контроля: а) напряжения; б) фаз

Реле защищают ЭД от следующих отклонений параметров питающего напряжения:

  • отсутствия напряжения хотя бы в одной из фаз;
  • снижения напряжения меньше установленной величины;
  • повышения напряжения больше установленной величины;
  • асимметрии напряжения;
  • нарушения порядка чередования фаз;
  • слипания фаз.

Реле контроля напряжения и фаз обеспечивают эффективную защиту от аварийных режимов, вызванных нарушением питания. В то время как устройства токовой защиты могут не среагировать на повышение тока в результате отклонения параметров питающего напряжения.

Реле контроля изоляции

Реле контролирует предпусковое состояние сопротивления изоляции ЭД по определённым нормативным параметрам, заданным при помощи регулируемого потенциометра. Если параметры изоляции в норме, контакты реле контроля изоляции замкнуты, включение ЭД разрешено. При нарушении сопротивления изоляции ниже контролируемого значения, контакты реле размыкаются, включение ЭД не производится.

Реле контроля изоляции

Рис. 8 – Реле контроля изоляции

Достоинством реле контроля изоляции является предотвращение возникновения межвитковых коротких замыканий, которые в дальнейшем могут привести к серьезным аварийным ситуациям. Тогда как устройства токовой защиты сработают только при уже возникшем межвитковом коротком замыкании.

Термостат, термисторное реле

Термостат и термисторное реле относятся к устройствам встроенной защиты ЭД. Для этой цели термостат и датчик термисторного реле (термистор) встраиваются в статор ЭД.

Для чего нужна встроенная защита ЭД, если ЭД уже оснащён внешними устройствами токовой защиты? В некоторых случаях устройства токовой защиты не регистрирует перегрузку ЭД.

В термостатах используется биметаллический автоматический выключатель мгновенного действия для размыкания и замыкания цепи управления ЭД при достижении статором определённой температуры.

Термостат защиты электродвигателя

Рис. 9 – Термостат

Термисторное реле. При нормальной температуре статора контакты реле замкнуты, питание ЭД включено. С ростом температуры статора растет и сопротивление цепи термисторов. При достижении сопротивления определенной величины контакты реле размыкаются, питание ЭД отключается.

Термисторное реле с термистором

Рис. 10 – Термисторное реле с термистором

Преимущество устройств встроенной защиты перед внешними устройствами токовой защиты в том, что встроенная защита эффективнее защищает ЭД от перегрева, т.к. непосредственно контролирует температуру обмоток, в то время как другие устройства защиты от перегрева контролируют протекающий в них ток.

В заключение отметим, что в данный момент существуют многофункциональные устройства защиты ЭД, совмещающие функции описанных выше устройств, например УБЗ-302:

УБЗ-302

Технические характеристики УБЗ-302

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Март 19th, 2012 Рубрика: Релейная защита и автоматика, Электролаборатория

zashhita_elektrodvigatelej_защита_электродвигателей

Сегодня Вашему вниманию я представляю статью на тему защита электродвигателей.

Данной теме хочу уделить особое внимание, т.к. начинаю серию статей о защите электродвигателей разного назначения и класса напряжений.

Релейная защита различного электрооборудования, такого как, трансформаторов, синхронных и асинхронных двигателей, генераторов и других, должна мгновенно реагировать на любые внутренние повреждения и ненормальные опасные режимы работы. Об этом Вы можете подробнее прочитать в моих статьях про назначение релейной защиты и повреждения в электроустановках.

Требования к защите электродвигателей

1. Ложные отключения

Самый важный пункт я считаю — это неправильные или ложные отключения электродвигателей при неопасных ненормальных режимах.

Такие отключения могут возникнуть при некорректном расчете уставок релейной защиты электрических двигателей, что приводит к большому ущербу и затратам производства.

2. Простота и надежность

Этот пункт может многим показаться спорным, но я выскажу свое мнение на этот повод. Я считаю, что защиту электродвигателей необходимо выполнять простой и надежной, т.к. в последнее время столкнулся с проблемами лишнего усложнения схем релейной защиты электродвигателей.

3. Самозапуск

Огромное значение для надежного и бесперебойного электроснабжения предприятия имеет самозапуск электродвигателей.

Кратковременные снижения напряжения сети могут быть по причине:

В этом пункте хочу добавить, что защита электродвигателей должна предусматривать возможность самозапуска, т.е. не отключать электродвигатели от сети при снижении напряжения, а также и при его восстановлении.

Но остались еще старые исполнения схем, где самозапуск электродвигателей ликвидировался защитой минимального напряжения, что наносило ущерб предприятию. Об этом мы тоже поговорим, но чуть позже.

Содержание

zashhita_elektrodvigatelej_защита_электродвигателей

На этом я не заканчиваю, а только начинаю Вас знакомить более подробно с большой темой под названием защита электродвигателей. В данном разделе мы рассмотрим следующие темы:

Защита электродвигателя от перегрузок

Электродвигатель, как любое электротехническое устройство, не застрахован от аварийных ситуаций. Если меры вовремя не приняты, т.е. не установлена защита электродвигателя от перегрузок, то поломка его может привести к выходу из строя других элементов.

Защита электродвигателя от перегрузок

Проблема, связанная с надежной защитой электродвигателей, как и устройств, в которые их устанавливают, продолжает оставаться актуальной и в наше время. Касается это в первую очередь предприятий, где частенько нарушаются правила эксплуатации механизмов, что приводит к перегрузкам изношенных механизмов и авариям.

Чтобы избежать перегрузок, необходима установка защиты, т.е. устройств, которые могут вовремя среагировать и предотвратить аварию.

Защита асинхронного двигателя от перегрузок

Защита электродвигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Типы защиты от перегрузок

Их несколько:

  • тепловая;
  • токовая;
  • температурная;
  • фазочувствительная и пр.

К первой, т.е. тепловой защите электродвигателя относят установку теплового реле, которое разомкнет контакт, в случае перегрева.

Защита электродвигателя от перегрузок

Температурная защита от перегрузок, реагирующая на повышение температуры. Для ее установки нужны температурные датчики, которые разомкнут цепь в случае сильного нагрева частей мотора.

Токовая защита, которая бывает минимальной и максимальной. Осуществить защиту от перегрузки можно, применив токовое реле. В первом варианте реле срабатывает, размыкает цепь, если в статорной обмотке превышено допустимое значение тока.

Во втором, реле реагируют на исчезнувший ток, вызванный, к примеру, обрывом цепи.

Эффективную защиту электродвигателя от повышения тока в обмотке статора, следовательно, перегрева осуществляют при помощи автоматического выключателя.

Электродвигатель может выходить из строя из-за перегрева.

Отчего он случается? Вспоминая школьные уроки физики, все понимают, что, протекая по проводнику, ток его нагревает. Электродвигатель не перегреется при номинальном токе, значение которого указывается на корпусе.

Если же в обмотке ток по разным причинам начинает увеличиваться, двигателю грозит перегрев. Если мер не предпринять, он выйдет из строя из-за короткого замыкания между проводниками, у которых расплавилась изоляция.

Рекомендуем:

  • Классификация электродвигателей переменного тока и его работа
  • Как называется электродоска без руля

Поэтому, нужно не допустить роста тока, т.е. установить тепловое реле — эффективную защиту двигателя от перегрева. Конструктивно оно является тепловым расцепителем, биметаллические пластины которого изгибаются под воздействием тепла, размыкая цепь. Для компенсации тепловой зависимости у реле есть компенсатор, благодаря которому происходит обратный прогиб.

Защита электродвигателя от перегрузок

У реле шкала прокалибрована в амперах и соответствует значению номинального тока, а не величине тока срабатывания. В зависимости от конструкции монтируют реле на щиты, на магнитные пускатели или в корпус.

Грамотно подобранные, они не просто не допустят перегрузки электродвигателя, но предотвратят перекос фаз и заклинивание ротора.

Защита автомобильного двигателя

Защита электродвигателя от перегрузок

Перегрев электродвигателя грозит и водителям автомобилей с наступлением жары, да еще с последствиями разной сложности – от поездки, которую придется отменить, до капитального ремонта мотора, у которого от перегрева прихватить может поршень в цилиндре или деформироваться головка.

Во время езды охлаждается электродвигатель воздушным потоком, а когда авто попадает в пробки этого не происходит, что и вызывает перегрев. Чтобы его распознать вовремя, периодически следует посматривать на датчик (при наличии такового) температуры. Как только стрелка окажется в красной зоне, необходимо немедленно остановиться для выявления причины.

Нельзя пренебрегать сигналом аварийной лампочки, потому что за ним почувствуется запах выкипевшей охлаждающей жидкости. Затем, из-под капота появится пар, свидетельствующий о критической ситуации.

Как быть в подобной ситуации? Остановиться, заглушив электродвигатель и подождать, пока прекратится кипение, открыть капот. На это уходит обычно до 15 минут. При отсутствии признаков протекания, доливают жидкость в радиатор, и пробуют завести мотор. Если же температура начнет резко расти, осторожно движутся для выяснения причины в сервис для диагностики.

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Решением будет замена этого элемента.

Затем следуют:

  • Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
  • Неисправный термостат или краник. Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
  • Помпа, работающая неэффективно или вовсе неработающая. Это приводит к слабой циркуляции по охлаждающей системе;
  • Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
  • Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Может стать причиной перегрева неправильно выбранный режим эксплуатации, т.е. пониженная передача и высокие обороты.

Защита от перегрева мотор-колеса

Далее, наступит очередь короткого замыкания и остановка двигателя, для восстановления работоспособности которого, нужна перемотка. Чтобы его не допустить, существуют контроллеры большой мощности, увеличивающие крутящий момент. Ремонт мотор-колеса, вышедшего из строя, дорогостоящая операция, соизмеримая по финансовым затратам с покупкой нового.

Защита электродвигателя от перегрузок

Можно было бы теоретически установить термодатчик, который не допустит перегрева, но производители этого не делают по ряду причин. Одной из них является усложнение конструкции контроллера и удорожания мотор-колеса в целом. Остается одно – тщательно подбирать контроллер в соответствии с мощностью мотор-колеса.

Защита электродвигателя от перегрузки с помощью теплового реле

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты – ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

терловое реле купить в Житомире 067 4111567

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле смотрите здесь

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.

магнитный пускатель и тепловое реле купить в Житомире 067 4111567

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

Читайте также: