Панель акустического сопротивления своими руками

Обновлено: 05.07.2024

Магнитное экранирование. Магнитная система динамиков фронтальных и центральных колонок должна быть экранирована, поскольку сильное магнитное поле может привести к деформации изображения и появлению цветных разводов на мониторе. Поэтому владельцы акустических систем с неэкранированными динамиками вынуждены решать проблему расположения колонок относительно него. Это прежде всего касается тех пользователей, которые применяют в качестве компьютерных колонки от музыкального центра, старую советскую аппаратуру и другие некомпьютерные акустические системы, хотя и некоторые компьютерные экземпляры не имеют магнитной экранировки (например, первые партии популярных Microlab Solo 2). Выход из подобной ситуации очень простой. Экраном может служить любой магнитопроводящий материал (железо, сталь), которым нужно закрыть магнит через зазор в 5—10 мм. Для этой цели лучше всего подойдет почти любая жестяная консервная банка (пригодность можно проверить обычным магнитом). Зазор легко сделать с помощью изоленты, намотав ее в несколько слоев на вырезанную из консервной банки полоску. Чтобы полученная конструкция не дребезжала, не забудьте хорошенько ее закрепить. Теперь колонки можно ставить вплотную к монитору без каких-либо последствий для последнего.

Внешнее магнитное поле устранимо и другим способом. Если соединить магнитную систему динамика и еще один магнит (такой же или близкий по габаритам и магнитной индукции) одинаковыми полюсами (а не разными, что очень важно!), тем самым создав силы отталкивания, то поля скомпенсируются. Подойдет магнит из любого нерабочего динамика. А примерно оценить индукцию магнитов можно, например, измерив усилие отрыва железного предмета пружинными весами (безменом). Для достижения лучшего результата магниты желательно дополнительно экранировать первым способом. В этом случае разницей в индукциях магнитов позволительно пренебречь.

Я бы не стал описывать такой сложный и менее результативный способ, если бы не один маленький нюанс. Дело в том, что помимо ослабления магнитного поля метод магнитной компенсации положительно влияет на звук. У средне- и высокочастотных динамиков на 1—2 дБ повышается чувствительность, т. е. при той же мощности сигнала они начинают играть громче (соседи будут довольны ). А у низкочастотных динамиков магнитная компенсация вызывает небольшое (на пару герц) повышение основного резонанса подвижной системы (Fs) и незначительное уменьшение эквивалентного объема (Vas).

Но в этой бочке меда не обошлось без ложки дегтя. Чувствительность у высокочастотных динамиков повышается обычно сильнее, чем у низкочастотных. Для многополосных акустических систем это чревато изменением тембральной окраски звучания. Решается проблема на удивление легко: АЧХ можно выровнять обычным эквалайзером, который присутствует почти во всех программах воспроизведения звука. У однополосных колонок такой проблемы не существует в принципе, и они будут радовать вас чистым звуком на более высокой громкости.

Среднечастотные и широкополосные динамики. Сразу скажу, что их либо не дорабатывают вообще, либо переделывают полностью, оставляя от первоначальной конфигурации только магнитную цепь и корзину. И нужно испортить не одну пару динамиков, прежде чем это начнет получаться. Но сделать средние частоты более приятными на слух все же можно.

Динамики с тяжелыми литыми корзинами звучат значительно лучше аналогов с хлипкими штампованными корзинами (в этом можно убедиться на примере старых широкополосных моделей 4а28 и 4а32 производства объединения КИНАП), поэтому последние необходимо укреплять. Для этого нужно залить клеем (лучше всего подходит БФ, разбавленный 96%-ным спиртом) все щели, места стыков и спайки железа магнитной системы. Предвижу ваши сомнения в способности подобной процедуры повысить качество звучания. Но согласитесь, что даже достаточно крепкие стыки теряют жесткость с ростом частоты. А к чему ведут паразитные вибрации, хорошо известно.

Для любого динамика характерен основной резонанс подвижной системы в районе нижней границы воспроизводимого диапазона частот. Самое неприятное, что там же у большинства устройств наблюдается резкий пик АЧХ, достигающий 6—7 дБ. Для динамиков, у которых частоты резонанса располагаются в районе 30—60 Гц, ничего страшного в этом нет (просто будет больше басов). А вот в среднечастотном звене трехполосных акустических систем и у широкополосных динамиков небольших компьютерных колонок с частотой основного резонанса в районе 120—200 Гц это может вызвать негативные эффекты, например неестественно низкий и гудящий голос. Для лечения подобной болезни достаточно использовать панель акустического сопротивления (ПАС), что приведет к акустическому демпфированию основного резонанса подвижной системы и понижению уровня звукового давления на резонансной частоте. Просто заклейте окна диффузодержателя кусочками войлока или поролона (без единой щелочки!).

Как всегда, метод не без недостатка. Он проявляется у однополосных акустических систем: если раньше они воспроизводили хоть какие-то басы, то после описанной процедуры их не будет вовсе. Но сателлитам многоканальных наборов, где басы воспроизводятся сабвуфером, ПАС поможет наверняка.

Разделительные фильтры

Очень часто разделительный фильтр двухполосных акустических систем представляет собой подключенный последовательно с высокочастотной головкой конденсатор, причем в большинстве случаев полярный электролитический. Вероятно, разработчиков привлекает чрезвычайно низкая цена данных элементов (20—30 коп. за штуку), хотя для звуковой техники они совершенно непригодны. При их применении в разделительных фильтрах высокочастотного звена неминуемы такие последствия, как резкость и неестественность верхов и полное отсутствие детальности звучания. Естественно, эти конденсаторы следует немедленно вырвать (а лучше аккуратно выпаять) и выбросить, а вместо них установить более качественные такого же или близкого номинала (рис. 2).

После этого все емкости шунтируют конденсаторами более качественного типа (если замена электролитических конденсаторов по каким-либо причинам невозможна, то ставить шунтирующие нужно обязательно). Как показывает практика, включение в параллель конденсаторов типа ФТ3, СГМ или к71 емкостью порядка 0,05—0,1 мкФ значительно уменьшает негативное влияние разделительных фильтров, что существенно улучшает качество и детальность звучания.

Во-первых, установить резистор, включенный последовательно с динамиком. Но затухание звуковых колебаний напрямую зависит от сопротивления динамика, которое, в свою очередь, может варьироваться в широких пределах (например, от 1 до 8 Ом при импедансе 4 Ом) на разных частотах. А это ведет к усилению неравномерности АЧХ.

Поэтому несколько предпочтительнее второй способ: применение Г-образных аттенюаторов (L-pad), которые представляют собой два резистора. Один подключается параллельно динамику и таким образом делит с ним нагрузку. Второй резистор подсоединяется последовательно и компенсирует падение сопротивления при параллельном подключении нагрузок (в данном случае — динамика и резистора). Но скорее всего в любых компьютерных акустических системах разница между одним резистором и аттенюатором заметна не будет.

Самое ужасное, что может сделать производитель, — установить резистор после фильтра (аттенюаторов этот абзац не касается, они всегда так располагаются). Этим пытаются убить сразу двух зайцев. Получается, что сопротивление нагрузки после фильтра возрастает на величину сопротивления этого резистора. При этом падает требуемая емкость конденсатора, что позволяет сэкономить еще несколько копеек. При моделировании фильтров для своих динамиков я дважды ставил резистор после конденсатора (для ВЧ- и СЧ-звена) и оба раза получал очень невнятное звучание с потерей всех деталей. Поэтому такой просчет нужно ликвидировать, просто поменяв местами резистор и конденсатор, а для сохранения частоты среза емкость последнего увеличив примерно (допустима погрешность в 15—20%) во столько раз, во сколько упадет сопротивление нагрузки.

Провода

Качество и длина проводов, соединяющих усилитель с колонками, оказывают заметное влияние на звучание акустической системы. Какие-то три-четыре метра могут настолько ухудшить его, что разница будет заметна невооруженным гла. ухом. Измерения, проведенные с помощью осциллографа, показали: сигналы на выходе усилителя и после прохождения нескольких метров стандартного колоночного провода сечением 0,75 мм 2 (более толстые в компьютерных акустических системах встречаются редко) начинают различаться уже при мощности выше 5 Вт. Отсюда можно сделать два вывода. Во-первых, если ваша акустическая система рассчитана на мощность больше 5—10 Вт, то кабели нужно менять, ведь очень часто производители используют тонюсенькие проводки вроде тех, что предназначены для наушников. Во-вторых, сечение 0,75 мм 2 является достаточным минимумом для любых колонок мощностью до 5 Вт на канал.

Межблочный кабель

Можно просто заменить стандартный коаксиальный кабель на более качественный. Очень хорошо для данной цели подходят те, что применяются в системах приема спутникового телевидения (желательно использовать кабель с двойным экранированием). Простота изготовления, низкая цена и очень неплохое качество делают такой вариант просто идеальным.

Несмотря на все преимущества косички из витой пары, отпугивает сложность ее изготовления. У меня на плетение полуметрового межблочного кабеля ушло шесть часов. Представьте, какого огромного труда и времени стоит изготовление двухметровых косичек для набора 5.1. Поэтому для акустических систем среднего уровня вполне можно обойтись и хорошим коаксиальным кабелем.

Усилитель

Применив несколько нехитрых приемов, можно заставить не слишком качественный усилитель компьютерных акустических систем петь совсем по-другому. Итак, приступим.

Немаловажную роль играет питание усилителя. Помимо огромного количества внешних сетевых помех, ситуацию усугубляют некачественные выпрямители. Рассмотрим усилитель колонок A4-Tech (рис. 4).

Если в акустической системе присутствуют регуляторы тембров, то желательно отключить их и пустить сигнал в обход тембр-блока. Поверьте, после этой операции разницу не заметит разве что глухой, а возможностей любой звуковой платы с лихвой хватит, чтобы компенсировать потерю. Правда, такая модернизация требует определенных навыков, тем более что она зависит от устройства усилителя и тембр-блока.

Звуковая плата

Остался последний штрих — экранирование звуковой платы. Для начала ее нужно поставить подальше от других, а потом обернуть полиэтиленовым пакетом, закрепив его изолентой. Пакет лучше взять потолще, чтобы он не порвался об острые выступающие части устройства. Сверху следует проложить слой пищевой алюминиевой фольги, затем опять полиэтилен. Фольга должна иметь контакт с корпусом компьютера, иначе толку от такого экрана не будет (рис. 5).

Внимание! Ни в коем случае нельзя допускать, чтобы фольга касалась системной и/или звуковой платы (роль диэлектрика играет полиэтилен). Внимательно проверьте пакет на отсутствие повреждений (уже после установки), иначе экран может послужить причиной безвременной кончины какого-либо из устройств.

Результат такой операции — существенное уменьшение количества шумов и улучшение некоторых характеристик платы (в чем вы можете убедиться с помощью известной программы для тестирования звуковых плат RMAA 4.3). Помимо прочего моя Sound Blaster Live! перестала время от времени противно щелкать.

Вместо заключения

Окончание. Начало см. в № 6/03.

Конденсаторы

Типов конденсаторов — великое множество, но для звуковой аппаратуры подходят всего несколько. Все они характеризуются такими параметрами, как ток утечки, тангенс угла потерь и количество заряда, выдаваемого в единицу времени.

Электролитические. Они имеют форму цилиндров с усиками с одной стороны. Единственное преимущество таких конденсаторов — огромная по сравнению с другими типами емкость и чрезвычайно низкая стоимость. По остальным параметрам они не выдерживают критики, и применять их можно только в выпрямителе питания. Хотя производители уверяют, что электролитические конденсаторы можно использовать и на пути сигнала, позволю себе в этом усомниться.

Необходимо заметить, что электролитические конденсаторы — полярные. И если вы не хотите стать свидетелем того, как они летят через всю комнату, разбрызгивая электролит, внимательно проверяйте полярность до, во время и после установки. Если при пробном десятисекундном включении конденсаторы нагрелись, значит, полярность не соблюдена. До взрыва еще двадцать секунд, но лучше выключить питание до того, как он произойдет .

МБГО, МБГЧ, к73. Данные конденсаторы обладают достаточно хорошими параметрами: емкостью до 20—40 мкФ при небольших размерах и невысокой цене. Идеальное решение для применения в разделительных фильтрах и усилителях (когда требуется емкость более 0,5 мкФ). Данные конденсаторы обеспечивают немного разное звучание. Так, пленочные к73 дают яркое и резковатое звучание, а масляно-бумажные МБГО и МБГЧ, наоборот, смягчают высокие частоты.

К78 и импортные МКР. Это весьма качественные пленочные конденсаторы, передающие звук очень достоверно, но и цена их соответственно высокая. Применять их в компьютерных акустических системах нецелесообразно.

ФТ3, СГМ, к71. Фторопластовые, слюдяные и еще один вид пленочных конденсаторов. Имеют существенно лучшие характеристики, но очень маленькие номиналы: первые два — до 0,01 мкФ, а последний — 0,2 мкФ (во всяком случае те, что были мной протестированы). Идеальны для шунтирования (включения в параллель) других видов конденсаторов.

Следует обратить внимание на то, что каждый конденсатор выдерживает свое максимальное напряжение. При замене нужно ставить устройства, рассчитанные на равное или большее напряжение. В разделительных фильтрах лучше применять 250—600-Вт конденсаторы. А вот в выпрямитель имеет смысл устанавливать электролитические конденсаторы с таким же (но не меньшим) напряжением, потому что с повышением напряжения, на которое они рассчитаны, их цена растет в геометрической прогрессии.

Разделительные фильтры

Эти фильтры применяются в многополосных акустических системах для разделения частотного диапазона на части, каждая из которых подается на свой динамик (низкие частоты — на бас-динамик, высокие — на пищаль). Простейший фильтр первого порядка состоит из одного элемента и обеспечивает затухание, равное 6 дБ на октаву (изменение частоты в 2 раза). Если нужно срезать высокие частоты, то последовательно ставится катушка индуктивности, если низкие — конденсатор. Фильтр второго порядка позволяет получить затухание в 12 дБ на октаву. После элемента, включенного последовательно, в нем устанавливается противоположный элемент (для конденсатора это катушка индуктивности), но параллельно. Существуют фильтры и более высоких порядков с более резким затуханием, однако каждый пассивный элемент вносит дополнительные искажения.

Еще раз о мощности

Чтобы фантастические цифры, обозначающие мощность акустической системы, не вводили в заблуждение, предлагаю следующее. На всех электрических приборах (а компьютерные колонки к ним относятся) в паспорте или на задней стенке должно быть указано значение потребляемой от сети мощности. Вспомнив закон сохранения энергии и то, что КПД усилителей составляет 40—50%, можно получить реальную цифру.


В предыдущем путеводителе для начинающих меломанов, посвященном акустике помещения мы выяснили, что любая комната — своего рода резонатор, драматически влияющий на характер звучания системы. Теперь пришла пора поговорить непосредственно об источниках этого самого звучания, то есть об акустических системах.

Чтобы как следует разобраться в процессах, происходящих в ящике, на стенке которого смонтирован один или несколько динамиков, нужно вдумчиво прочитать пару-тройку книжек, в каждой из которых формул больше, чем во всем школьном курсе физики. Я забираться в такие дебри не буду, так что не стоит данный материал как исчерпывающий анализ или руководство по постройке аудиофильских колонок. Однако очень надеюсь, что он поможет начинающим меломанам (да и некоторым хроническим тоже) как следует сориентироваться в разнообразии акустических решений, каждое из которых его разработчики, разумеется, называют единственно правильным.

Некоторое время после изобретения в 1924 году электродинамического излучателя с коническим диффузором (окей, просто динамика), его деревянное обрамление исполняло в первую очередь декоративные и защитные функции. Оно и понятно — после долгих лет прослушивания пластинок через слюдяные мембраны и раструбы граммофонов, саунд нового устройства и безо всякой акустической доработки казался просто апофеозом благозвучия.


Мембраны граммофонов изготавливались чаще всего из алюминия или слюды

Однако технологии записи быстро совершенствовались и стало понятно, что более-менее правдоподобно воспроизвести слышимый диапазон динамиком, просто закрепленном на некой подставке, крайне проблематично. Дело в том, что предоставленная сама себе динамическая головка находится в состоянии акустического короткого замыкания. То есть волны от фронтальной и тыловой поверхностей диффузора, излучаемые, понятное дело, в противофазе, беспрепятственно накладываются друг на друга, что самым печальным образом отражается на эффективности работы, и в первую очередь на передаче басов.

Кстати, в процессе данного рассказа я буду чаще всего рассуждать именно о низких частотах, так как их воспроизведение — ключевой момент в работе любого корпуса АС. ВЧ-драйверы в силу малой длины излучаемых волн во взаимодействии с внутренним объемом колонки вообще не нуждаются, и чаще всего полностью от него изолированы.

Душа нараспашку

Самый простой способ отделить фронтальное излучения динамика от тылового — смонтировать его на щите как можно большего размера. Из этой простой идеи и родились, собственно, первые акустические системы, представлявшие собой ящик с открытой задней стенкой, поскольку для компактности края щита просто взяли, да и загнули под прямым углом. Однако в плане воспроизведения басов успехи подобных конструкций впечатляли не слишком. Помимо несовершенства корпуса проблема была еще и в очень небольшом по современным понятиям ходе подвески диффузоров. Чтобы хоть как-то выйти из положения, использовались динамики как можно большего размера, способные развивать приемлемое звуковое давление при небольшой амплитуде колебаний.


PureAudioProject Trio 15TB с 15-дюймовыми НЧ-драйверами на трехслойных бамбуковых панелях

Несмотря на кажущуюся примитивность подобных конструкций, у них имелись и кое-какие достоинства, причем настолько специфические и интересные, что адепты открытых АС не перевелись до сих пор.

Начать с того, что отсутствие каких-либо препятствий на пути звуковых волн – лучший путь к повышению чувствительности. Момент этот особенно ценен для аудиофильских ламповых усилителей, в особенности однотактных или лишенных обратной связи. Бумажные диффузоры большого диаметра даже на мощности порядка четырех-пяти ватт способны создать довольно-таки внушительный, и при этом на удивление открытый и свободный саунд.


При высоте 1,2 м в мире открытой акустики Jamo R907 считаются практически компактами

Кстати, частный случай открытых систем — акустика, построенная на электростатических излучателях. Только за счет почти невесомой диафрагмы большой площади, ко всем вышеописанным преимуществам, у электростатов добавляется способность филигранно передавать даже самые резкие динамические контрасты, а благодаря отсутствию разделения сигнала в зонах СЧ и ВЧ, еще и завидная тембральная точность.

Открытое оформление

Плюсы: Высококлассные открытые колонки — отличный способ получить реальный кайф от прослушивания пуристских ламповых однотактников.

Минусы: Про жирные компрессионные басы лучше забыть сразу. Весь звуковой тракт должен быть подчинен идее открытой акустики, а сами колонки придется выбирать из крайне ограниченного числа предложений.

Запертый в ящике

С ростом мощности и улучшением параметров усилителей сверхвысокая чувствительность акустики перестала быть главным камнем преткновения, а вот проблемы неравномерности АЧХ, и в особенности правильного воспроизведения басов, стали еще более актуальными.

Гигантский шаг к прогрессу в данном направлении сделал в 1954 году американский инженер Эдгар Вильчур. Он запатентовал акустическую систему закрытого типа, и это был отнюдь не трюк в стиле нынешних патентных троллей.


Патентная заявка Эдгара Вильчура на АС в закрытом оформлении

К тому моменту уже был изобретен фазоинвертор и, понятное дело, к ящику с дном динамик тоже примеряли неоднократно, только вот ничего хорошего из этого не получалось. Из-за упругости замкнутого объема воздуха приходилось или терять существенную часть энергии диффузора, или делать корпус непомерно большим, чтобы снизить градиент давления. Вильчур же решил обратить зло во благо. Он сильно понизил упругость подвеса, переложив таким образом контроль за движением диффузора на объем воздуха — пружину куда более линейную и стабильную, чем гофр или резиновое кольцо.


В закрытом ящике движения диффузора контролируются воздухом — в отличие от бумаги или резины он не стареет и не изнашивается


Сабвуфер SVS SB13-Ultra с закрытым акустическим оформлением

Закрытый ящик

Плюсы: Образцовая скорость атаки и разрешение в низкочастотном диапазоне. Относительная компактность конструкции.

Минусы: Требуется достаточно мощный усилитель. Сверхглубоких басов на грани инфразвука добиться весьма затруднительно.

Дело — труба


Амплитуда и фаза движения воздуха в фазоинверторе меняются в зависимости от частоты колебаний диффузора

По сути труба с воздухом является самостоятельной колебательной системой, получающей импульс от движения воздуха внутри корпуса. Обладая совершенно определенной частотой резонанса, фазоинвертор работает тем эффективнее, чем ближе колебания диффузора к частоте его настройки. Звуковые волны более высоких частот сдвинуть с места воздух в трубе просто не успевают, а более низкие хотя и успевают, но чем они ниже, тем сильнее смещается фаза излучения фазоинвертора, и, соответственно, его эффективность. Когда поворот фазы достигает 180 градусов, тоннель начинает откровенно и весьма эффективно глушить звук басового драйвера. Именно этим объясняется очень крутое падение звукового давления АС ниже частоты настройки фазоинвертора — 24 дБ/окт.


В борьбе с турбулентными призвуками конструкторы фазоинверторов постоянно экспериментируют

У закрытого ящика, между прочим, на частотах ниже резонансной спад АЧХ куда более плавный — 12 дБ/окт. Однако в отличие от глухой коробки, коробка с трубой в боковой стенке не заставляет конструкторов идти на любые хитрости ради максимального снижения резонансной частоты самого динамика, что довольно хлопотно и дорого. Тоннель фазоинвертора настроить куда проще — достаточно подобрать ее внутренний объем. Это, правда, в теории. На практике, как всегда, начинаются непредвиденные сложности, например, на больших уровнях громкости воздух на выходе из отверстия может шуметь почти как ветер в печном дымоходе. К тому же инертность системы частенько становится причиной падения скорости атаки и ухудшения артикуляции на басах. Одним словом, простор для экспериментов и оптимизации перед конструкторами фазоинверторных систем открывается просто невероятный.

Фазоинвертор

Плюсы: Энергичная отдача на НЧ, возможность воспроизведения самых глубоких басов, относительная простота и дешевизна изготовления (при изрядной сложности расчета).

Минусы: В большинстве реализаций проигрывает закрытому ящику в скорости атаки и четкости артикуляции.

Обойдемся без катушки

Попытки избавиться от генетических проблем фазоинвертора, а заодно и сэкономить на объеме корпуса без ущерба для глубины баса, натолкнули разработчиков на идею заменить полую трубу на мембрану, приводимую в движение колебаниями все того же рабочего объема воздуха. Проще говоря, в закрытом ящике установили еще один низкочастотный драйвер, только без магнита и звуковой катушки.


Пассивный излучатель может увеличить эффективную поверхность диффузора вдвое, или даже в трое, если в одной колонке они установлены парой


Пассивный излучатель сабвуфера REL S/5. Основной драйвер направлен в пол

Еще один плюс — с увеличением площади излучающей поверхности для достижения нужного звукового давления требуется меньшая амплитуда колебаний, а значит, снижаются последствия нелинейной работы подвеса. Колеблются оба диффузора синфазно, а резонансная частота свободной мембраны настраивается точной регулировкой массы — к ней попросту подклеивают грузик.

Пассивный излучатель

Плюсы: Компактность корпуса при впечатляющей глубине басов. Отсутствие фазоинверторных призвуков.

Минусы: Увеличение массы излучающих элементов приводит к росту переходных искажений и замедлению импульсного отклика.

Выход из лабиринта

Акустика, вооруженная фазоинверторами и пассивными излучателями, воспроизводит глубокие басы благодаря резонаторам, работающим при посредничестве воздуха внутри АС. Однако кто сказал, что объем колонки не может играть роль низкочастотного излучателя сам по себе? Конечно может, и соответствующая конструкция называется акустический лабиринт. По сути, она представляет собой волновод, протяженностью в половину или четверть длины волны, на которой планируется добиться резонанса системы. Иными словами конструкция настраивается по нижней границе частотного диапазона АС. Конечно использовать волновод полной длины волны было бы еще эффективнее, но тогда для частоты, скажем, 30 Гц, его пришлось бы делать 11-метровым.


Акустический лабиринт — любимая конструкция акустиков-самодельщиков. Но при желании корпуса самой хитрой формы можно заказать и в готовом виде

Чтобы в колонке разумных размеров уместить даже вдвое более компактную конструкцию, в корпусе устанавливают перегородки, формирующие максимально компактный изогнутый волновод, поперечным сечением примерно равным площади диффузора.

Бытует мнение, что акустические лабиринты создают меньше проблем со стоячими волнами в комнате. Однако при малейших просчетах в разработке или изготовлении, стоячие волны могут возникнуть в самом волноводе, который, в отличие от фазоинвертора, имеет куда более сложную структуру резонансов.

Вообще надо сказать, что грамотный расчет и точная настройка акустического лабиринта — процессы весьма непростые и трудоемкие. Именно по этой причине данный тип корпуса встречается нечасто, и только в АС очень серьезного ценового уровня.

Акустический лабиринт

Плюсы: Не только хорошая отдача, но и высокая тональная точность басов.

Минусы: Нешуточные размеры, очень высокая сложность (читай - стоимость) создания правильно работающей конструкции.

Эй, на пароме!

Рупор — самый древний и, пожалуй, самый провокационный тип акустического оформления. Выглядит круто, если не сказать эпатажно, звучит ярко, а временами… В старых фильмах герои иногда кричат друг другу что-то в рупор, и характерная окраска такого звука давно стала мемом и в музыкальном, и в киношном мире.


Avantgarde Acoustics Trio с низкочастотным рупорным массивом Basshorn XD высотой 2,25 м

Конечно от жестяной воронки с ручкой теперешняя акустика ушла очень далеко, но принцип работы все тот же — рупор повышает сопротивление воздушной среды для лучшего согласования с относительно высоким механическим сопротивлением подвижной системы динамика. Таким образом, повышается его КПД, а заодно и формируется четкая направленность излучения. В отличие от всех описанных ранее конструкций, рупор чаще всего используется в высокочастотных звеньях АС. Причина проста — его сечение увеличивается по экспоненте, и чем ниже воспроизводимая частота, тем большим должен быть размер выходного отверстия — уже на 60 Гц потребуется раструб диаметром 1,8 м. Понятно, что такие монструозные конструкции больше подходят для стадионных концертов, где их действительно периодически можно встретить.

Главный козырь адептов рупорного воспроизведения заключается в том, что акустическое усиление позволяет при заданной звуковой отдаче уменьшить ход мембраны, а значит, поднять чувствительность и улучшить музыкальное разрешение. Да-да, снова кивок обладателям ламповых однотактников. К тому же при грамотном расчете раструбы могут играть роль акустических фильтров, круто отсекая звук за пределами своей полосы и позволяя ограничиться самыми простыми, а потому вносящими минимальные искажения электрическими кросоверами, а иногда и вообще обойтись без них.


Системы Realhorns — особая акустика для особых случаев

Скептики же не устают напоминать о характерной рупорной окраске, особенно заметной на вокале, и придающей ему характерную гнусавость. Побороть данную неприятность действительно нелегко, хотя судя по тому, как играют лучшие образцы High-End-рупоров, вполне реально.

Плюсы: Высокий акустический КПД, а значит, отличная чувствительность и неплохое музыкальное разрешение системы.

Минусы: Характерная трудноустранимая окраска звука, недетские размеры средне- и тем более низкочастотных конструкций.

Круги на воде

Именно такой аналогией проще всего описать характер излучения контрапертурных акустических систем, впервые разработанных в Советском Союзе в 80-х годах прошлого века. Принцип работы нетривиален: пара одинаковых динамиков смонтирована так, что их диффузоры расположены друг напротив друга в горизонтальной плоскости и двигаются симметрично, то сжимая, то разжимая воздушную прослойку. В результате создаются кольцевые воздушные волны, равномерно расходящиеся во все стороны. Причем характеристики этих волн в процессе их распространения искажаются минимально, а их энергия затухает медленно — пропорционально расстоянию, а не его квадрату, как в случае обычных АС.


Duevel Sirius сочетает элементы рупорной и контрапертурной конструкций

Помимо дальнобойности и круговой направленности, контрапертурные системы интересны на удивление широкой вертикальной дисперсией (порядка 30 градусов против стандартных 4-8 гр.), а также отсутствием доплеровского эффекта. Для динамиков он проявляется в биениях сигнала, вызванных постоянным изменением расстояния от источника звука до слушателя из-за колебаний диффузора. Правда, реальная слышимость данных искажений до сих пор вызывает много споров.

Взаимное проникновение концентрических звуковых полей правой и левой колонок создают весьма обширную и равномерную зону объемного восприятия, то есть по сути вопрос точного позиционирования АС относительно слушателя становится не актуален.


Итальяно-российская контрапертурная акустика Bolzano Villetri

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта — трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы.


Nautilus от Bowers & Wilkins — одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления — нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Несмотря на то, что многие уверены в возможности аналитического либо машинного расчета трансмиссионной линии (существует даже специальная программа TLBOXMOD), на деле проектирование ее - сплошная эмпирика. Впервые подобные конструкции упоминаются в изданиях 30-х годов, известны эксперименты Бэйли (A. R Bailey) с различными демпфирующими материалами. Так, например, Бэйли выяснил, что лучшими звукопоглощающими материалами являются стопроцентная длинноволокнистая шерсть плотностью около 10 кг/м3, декрон или стекловолокно. Понятно что сейчас, с появлением сверхновых материвлов этот список может быть расширен. Ряд критериев введен Бредбери (А. Т. Bradbury) в 1976 г. Эмпирикой пропитаны и измышления по поводу формы трубы. Замечено, что чистота и плотность баса и слушательское ощущение его натуральности в большой степени зависят от этой самой формы. Обычно площадь сечения трубы, несколько превышающая площадь диффузора, уменьшается очень постепенно и лишь за метр до выходного отверстия уменьшается более резко, до 40-75% от начальной. Этот метр, кстати, часто оставляют свободным от заполнения. Если сужать трубу в небольшой степени, подчеркивание басов увеличивается, но с окраской средних регистров бороться становится труднее. Доводка трансмиссионной линии всегда осуществляется на слух и, как показывает наш опыт прослушиваний, далеко не всегда удачно.

Рис. 1. Измерение модуля полного сопротивления громкоговорителя
Дело дошло до измерения параметров Смолла — Тиле. Тем более что в описаниях импортных головок ничего, кроме "The Besl Quality and High Resolution", не вычитать, а в отечественных паспортах частенько можно прочитать Qts = 0.5±0.2" (?!). Подобная характеристика подойдет любой головке.
Проще всего измерить fs и Qts. Для этого собираем схему рис. 1.
Понятно, что в такой схеме реализуется режим генератора тока, и кривая V(f) с большой точностью повторит кривую |Zполн(f)| (рис. 2).
Рис. 2. |Zполн(f)| НЧ-головки. На постоянном токе значение модуля полного сопротивления минимально, имеет чисто активный характер и равно омическому сопротивлению звуковой катушки. По мере приближения к резонансной частоте fs |Zполн(f)| заметно возрастает, приближаясь к чисто активному Это означает, что ЭДС самоиндукции, наведенная в звуковой катушке, колеблющейся в магнитном поле, противодеиствует приложенному к ее выводам напряжению. Поэтому не следует удивляться, что протекающий в звуковой катушке ток на fs минимален: мы имеем дело со структурой, эквивалентной параллельному колебательному контуру.
Особенно, если головка не дребезжит, ничего не касается (подвешена) или хотя бы устойчиво укреплена вдали от отражающих поверхностей. А уж где резонансная кривая, там и резонансная частота fs и добротность Оts=f1Uo/(f2-f1)VUm причем значения f1, f2, Uo, Um легко определить из рис. 2.
Чуть сложнее дело обстоит с Vas. Тут понадобится ящичек, желательно прочный и не очень маленький, объемом V.
Приладив (просто плотно прислонив) к нему головку (рис. 3), вновь измеряем fрез = fс.
Тогда Vas = Vс((fс/fs)^2 - 1). однако при условии, что ящик не очень большой и fс > 2fs, то есть Vas > Vc. Хотя, кстати, это условие не кажется мне столь уж принципиальным.
История исследования и разработок всего того, о чем мы еще не написали — VarioVent, лабиринт, полосовой резонатор, трансмиссионная линия и т.д.,— это история борьбы с недостатками фазоинвертора. Я видела и слышала плохие и хорошие фаэоинверторы, плохие и хорошие устройства, представленные в других оформлениях. Невероятно трудно решить комплексную задачу оптимального выбора акустического оформления (с технической, экономической, конъюнктурной точек зрения). Но иметь представление о научных подходах к решению этой задачи необходимо.
Рис. 3. Измерение эквивалентного объема
VarioVent (по-русски — корпус с панелью акустического сопротивления, ПАС) — первая серьезная попытка избавиться от проблем закрытого ящика, не прибегая к трубе фазоинвертора.
У закрытого ящика есть одна большая проблема. Частота резонанса головки в нем fс заметно выше, чем fs, так как fс = fs(Vas/Vc + 1)0,5 - что легко видеть из предыдущей формулы, связываюшей эти параметры. И иа этой частоте головка может повести себя весьма недостойно — раскачаться в резонансе так, что потом проволоку от звуковой катушки будете с ушей сматывать.
Бороться с ушами . можно, только снижая добротность колебательной системы на частоте резонанса. Наиболее целесообразно это делать, внося потери в упругую среду — скажем, плотно заполняя внутренность акустической системы волокнистым материалом.
Однако существует еще одни путь, аналогичным образом отражающийся на эквивалентной схеме устройства. Это панель акустического сопротивления. Она представляет собой плотный "сэндвич" из волокнистого материала толщиной в несколько сантиметров. Он закрывает отверстие в корпусе, которое теперь уже и не является фазоинверсным.
Рис. 4. Корпус с панелью акустического сопротивления
Грубо говоря, у воздуха есть возможность просачиваться через войлок ПАС, правда, с большим "напрягом". Этот процесс и обеспечивает внесение в систему столь необходимых потерь (рнс. 4).
Корпус, как и в случае закрытого ящика, заполняется волокнистым материалом, но путь от головки до ПАС остается свободным.
Как правило, ПАС не рассчитывают, так как не имеют достоверной модели войлочного сэндвича. Объем акустической системы выбирается тот же, что был рассчитан для закрытого ящика.
Звучание при хорошо выполненной ПАС упругое, сочное, хотя бас далеко не так увесист, как при использовании фазоинвертора того же объема.
Лабиринт - еще один представитель устройств, созданных в порыве борьбы с резонансным характером закрытого ящика и фазоинвертора. Но с этим "зверем" нам придется познакомиться подробнее. Лабиринт и трансмиссионная линия — это такие акустические устройства, которые не могут быть описаны эквивалентной схемой с сосредоточенными параметрами, как описывается, например, фазоинвертор. Здесь становятся важными не только объем, но и линейные размеры устройства.
Рис. 5. Излучающая "четвертьволновая" труба
Для начала рассмотрим трубу, для которой L >> d (рис. 5). С левой стороны у трубы есть поршень, правая сторона открыта.
Если, начиная с нулевой частоты, поршень колеблется все быстрее и быстрее, то отыщется частота f = Со/4L, на которой открытый конец трубы начнет активно излучать; здесь Со — скорость звука.
Действительно. Поршень двигается, создавая рядом с собой зону максимума звукового давления. У открытого конца трубы в любом случае давление равно нулю, но при L = Со/4f ("четвертьволновая труба") на открытом конце трубы образуется максимум колебательной скорости воздуха. Этот максимум позволяет устройству успешно отдавать энергию с открытого конца, что на языке акустиков будет означать следующее: диффузор на частоте резонанса (f= Со/4L) будет задемпфирован, задняя его стенка, обращенная к трубе, будет испытывать то же, что и задняя стенка диффузора головки, оформленной в фазоинвертор. Частота f должна настраиваться на резонанс головки (то есть длина L выбирается в зависимости от резонансной частоты головки), что, впрочем, характерно и для фазоинвертора.
Рис. 6. Акустический лабиринт. В отличие от традиционных акустических систем вся масса воздуха в лабиринте оказывается соколеблющейся с диффузором. Это эквивалентно снижению резонансной частоты головки
Итак, читатель уже, наверное, понял, что корпус с лабиринтом (рис. 6) на резонансной частоте добивается того же результата, что и фазоинвертор, но другим путем.
Кстати, на подобном принципе основаны не только акустические системы. Кларнет, например, типичный представитель семейства четвертьволновых резонаторов. Тот конец, в который дуют, можно считать закрытым. Тот воздух, который продувают в кларнет, нужен для возбуждения колебаний "язычка", играющего роль поршня. Дальше все ясно. Полная противоположность кларнету — орган. Там есть трубы, где дуют наискосок в открытый конец. А противоположный конец — закрыт.
Что характерно, повелением на частоте резонанса сходство лабиринта и фазоинвертора ограничивается. Выше резонанса фазоинверторное отверстие оказывает на процессы все более и более ограниченное действие, труба же благополучно звучит на частотах 3Cо/4L, 5Cо/4L, 7Cо/4L и т. д.
Не знаю, как в кларнете, но в акустической системе типа "лабиринт" эти резонансы считаются побочными, и с ними борются традиционными методами, то есть демпфированием с помощью звукопоглощающих материалов.
Сравним лабиринт и фазоинвертор.
Во-первых. На частоте резонанса они схожи. Заранее трудно сказать, чей объем окажется меньше, фазоинвертора Vв = 15Vas * Qts2,87 или лабиринта VL = ndL. где d — диаметр диффузора, L=Cо/4f. Все зависит от параметров головки.
Во-вторых. Ниже резонанса оба "раздемнфируются". Причем фазоинвертор ведет себя явно хуже, это легко объяснить.
В-третьих. Выше резонанса фазоинвертор ведет себя все более похоже на закрытый ящик, а лабиринт — на задемпфированную на побочных резонансах трубу.
Неполное демпфирование (гашение) резонаисов на нечетных гармониках частоты настройки нередко приводит к окрашиванию звучания, кстати, крайне неприятному. Окончательное решение технологического и коммерческого вопроса в пользу фазоинвертора или лабиринта базируется на многих привходящих параметрах. Важными из них могут быть либо одни, либо другие, в зависимости от ситуации. Следует учитывать и тот факт, что сушестиуюг пристрастия: хочет, например, клиент лабиринт.
Если лабиринт еще поддается какому-то анализу и расчету, то в большинстве источников описания трансмиссионной линии содержат фразу типа: "Принцип действия трансмиссионной линии схож с таковым у лабиринта, хотя основные процессы не поддаются аналитическим методам анализа. ".
Не буду это оспаривать. Есть разные методы. Но об одном сказать надо: большинство посвященных как лабиринту, так и трансмиссионной линии литературных нсточников,попавшихся нам при работе над статьей, друг другу противоречили.
Итак, отличия трансмиссионной линии от лабиринта следующие.
1. Площадь сечения трубы у трансмиссионной линии оказывается переменной - она максимальна в районе диффузора и постепенно спадает к порту (отверстию на противоположном конце трубы).
2.Внутренний объем трубы трансмиссионной линии довольно плотно заполняется волокнистым материалом. Помимо функции звукопоглощения на побочных резонансах заполнение позволяет укоротить трубу, так как резко снижает эффективную скорость звука. Многие считают, что трансмиссионная линия скорее эффективно борется с излучением задней стороны диффузора, нежели пытается использовать его, как это делает фазоинвертор.
Отличие трансмиссионной линии от лабиринта во многом условное, терминологическое. Оба устройства - представители одного и того же типа оформления. Субъективно звучание трансмиссионной линии может оказаться очень симпатичным. Эффективная борьба с резонансными явлениями при отсутствии (если повезет) среднечастотного окрашиватгая способствует созданию достоверного, не бубнящего звучания. Многие ассоциируют звучание трансмиссионной линии с "английским звуком". Действительно, именно в Англии популярность подобного рода акустических оформлений весьма велика. В отличие от Штатов, например. Лично мне хорошо выполненные трансмиссионные линии нравятся на симфонической музыке, особенно при наличии литавр и контрабасов пиццикато.
Далее - корпус типа "полосовой резонатор" и рупорные излучатели. И с басами будет покончено. По крайней мере с тем, где они живут.

Ирина АЛДОШИНА, Константин НИКИТИН, АудиоМагазин, апрель 1999, с сокращениями


Содержание / Contents

↑ Состав набора

• двухсторонняя печатная плата размером 65×40 мм,
• микросхема 7812CT стабилизатора на напряжение 12 В,
• шесть транзисторов SS8050,
• выпрямительный диодный мост DB107,
• диод 1N4148,
• светодиод LED красный d=3 мм,
• два электромагнитных реле SRU-12VDC-SL-C,
• четыре оксидных конденсатора 100 мкФ х 35 В,
• пять резисторов мощностью 0,25 Вт (6,8 кОм, 100 кОм, 15 кОм — 3 шт.),
• пять двухконтактных клеммников 2 pin с расстоянием между выводами 5 мм.
К набору прилагается недоинструкция, содержащая рисунок с размещением деталей и текст на простом и понятном китайском языке. ?

Устанавливаемые на печатной плате детали подписаны методом шелкографии, поэтому надписей на плате и прилагаемой инструкции вполне достаточно для того, чтобы произвести пайку элементов (рис. 2).


Однако сборка устройства без принципиальной схемы не дает понимания принципа его работы и не приносит удовлетворения от полученного результата.

↑ Описание принципиальной схемы устройства


Питание устройства осуществляется от источника переменного напряжения 12…16 В, подаваемого на клеммы J5. С помощью диодного моста D1 переменное напряжение выпрямляется, фильтруется оксидным конденсатором С2 и поступает на вход интегрального стабилизатора 1812CT, обеспечивающего на выходе стабилизированное напряжение +12 В.

Основу устройства защиты образует ключ на составных транзисторах VT1, VT2, в коллекторную цепь которого включены обмотки электромагнитных реле J1, J2, а в базовую — RC-цепь R2C1, определяющую время задержки после включения.

Для защиты от обратной ЭДС при выключении электромагнитных реле параллельно обмоткам установлен диод D1; цепь R1, HL1 индицирует отключение обмоток реле, указывающее на срабатывание защиты.

Для управления электронным ключом в каждом канале использованы отдельные сенсоры на транзисторах VT3, VT5 и VT4, VT6.

Напряжение с соответствующего выхода УМЗЧ (клеммники JP3, JP4) подается через фильтр нижних частот R4, C3 и R5, C4 на входы сенсоров каждого канала. Нижняя граница полосы пропускания фильтра fн=1/(2πR4C3)=1/(2πR5C4)=0,11 Гц.

Фильтр верхних частот на входе УМЗЧ обычно имеет частоту среза 1,5…4 Гц, поэтому оптимальная частота среза фильтра нижних частот устройства защиты может быть примерно на порядок ниже, т. е. 0,15…0,4 Гц.

При появлении на выходе УМЗЧ напряжения положительной полярности, вызванного неисправностью, открываются транзисторы VT5, VT6 сенсоров, что приводит к уменьшению напряжения на базе составного ключа VT1, VT2, который закрывается, отключая электромагнитные реле J1, J2.

При этом контакты реле J1, J2 (имеют одноименное обозначение с обмотками реле) отключают УМЗЧ от акустических систем, загорается светодиод HL1, указывая на аварийный режим работы усилителя.

Аналогичным образом происходит работа устройства при появлении отрицательного напряжения на выходе УМЗЧ, с той разницей, что срабатывают транзисторы VT3, VT4 сенсоров, включенные по схеме с общей базой.

↑ Доработки схемы

Имеется пара недостатков принципиальной схемы, которые следует устранить.

↑ Избавляемся от полярных конденсаторов в ФНЧ

Полярные конденсаторы С3, С4 в фильтрах нижних частот. При возникновении неисправностей в УМЗЧ напряжение на них составляет ±0,6…0,7 В, поэтому конденсаторы С3, С4 должны быть неполярные.

Емкость конденсаторов может находиться в пределах 47…100 мкФ, а рабочее напряжение составлять 6,3 В и более. Кстати, на печатной плате предусмотрены SMD — площадки под керамические конденсаторы, например ЧИП 1210 100 мкФ 6,3 В X5R.

Но устройство работоспособно и с полярными конденсаторами. Почему?
Рассмотрим Вольт -амперную характеристику (ВАХ) алюминиевого оксидного конденсатора (рис. 4).

Сборка и доработка китайского модуля защиты акустических систем

ВАХ конденсатора подобна характеристике полупроводникового диода. Имеются два участка, в которых токи утечки резко возрастают. Для положительного напряжения эта величина примерно в 1,6…1,8 раз больше рабочего напряжения конденсатора, а для отрицательного — в диапазоне от — 2 до — 4 В.

Последствия работы вблизи резкого возрастания токов утечки известны — деградация конденсатора. Резко увеличивается ESR, конденсатор превращается в резистор.

Разработчики кита считают, что ничего страшного в том, что на полярный конденсатор может подаваться отрицательное напряжение, нет, это же редкий случай, возникающий при неисправности УМЗЧ.

Мое мнение — надо ставить неполярный или керамический конденсатор.

↑ Шунтируем выход стабилизатора

Отсутствует конденсатор, шунтирующий выход стабилизатора напряжения IC1. Вполне достаточно установить керамический конденсатор емкость 0,1…1 мкФ.

Посмотрите осциллографом, что творится на выходе стабилизатора, не зашунтированного конденсатором, и всякие сомнения в его необязательности отпадут.
Хотя справедливости ради нужно отметить, что устройство без конденсатора вполне работоспособно.

↑ Итоговая схема защиты



Рис. 5. Схема модернизированного кита.
Конденсатор С5 размещен в непосредственной близости от выводов микросхемы стабилизатора IC1.

Таким образом, кит должен быть дополнен следующими элементами.

Дополнительные детали кита:

C3, C4 — 47 мкФ х 16 В NPL или ЧИП 1210 100 мк 6,3 В X5R (вместо 100 мкФ х 35 В) — 2 шт.,
C5 — ЧИП 1206 0,1 мк 50 В X7R — 1 шт.,
Стойки DA3M05-5,5 с шайбой и винтом — 4 шт.

При исправных деталях и правильном монтаже устройство начинает работать сразу и не требует налаживания.
Резисторы я проверил тестером PM18C, конденсаторы — измерителем ESR-MICRO V4.0s. Все параметры в норме: резисторы имеют точность 5%, емкость оксидных конденсаторов близка к номиналу, а ERS равен 3,8 Ом.

Транзисторы серии SS8050 разделены на несколько групп по коэффициенту усиления. В наборе применены транзисторы SS8050 группы D с самым высоким коэффициентом усиления (h21э=160…300).

По результатам измерения два транзистора с h21э=290 поставлены в качестве ключа VT1, VT2; остальные четыре с h21э=440 — запаяны в сенсорах VT3…VT6.

Сопротивление обмоток электромагнитных реле составляет около 400 Ом.

Любители для входного контроля элементов зачастую применяют простые универсальные измерители с AliExpress, например, Универсальный тестер LCR-T4, измеритель ESR (рис. 6).


Рис. 6. Проверка транзисторов с помощью универсального тестера LCR-T4

Перечень основных возможностей устройства:
Измерение сопротивлений в широком диапазоне;
Измерение ёмкостей конденсаторов в широком диапазоне;
Определение эквивалентного последовательного сопротивления конденсаторов (ESR*);
Измерение индуктивностей в широком диапазоне;
Определение основных параметров диодов (прямое падение напряжения, проходная ёмкость);
Определение основных параметров транзисторов любых типов;
Определение цоколевки тиристоров и триаков (симисторов);
Определение назначения выводов всех поддерживаемых полупроводниковых компонентов с числом выводов 2 или 3.

Тестируемые элементы:
Резисторы;
Полярные и неполярные конденсаторы;
Катушки индуктивности;
N-P-N и P-N-P биполярные транзисторы;
MOSFET транзисторы P- и N-канальные;
JFET транзисторы;
Диоды;
Двойные диоды;
Тиристоры;
Симисторы.

Спецификация:
диапазон:
резисторы: 0.1 Ω-50МОМ
конденсаторы: 25pF-100000uF
индуктивности: 0,01 mH-20 H
рабочее напряжение: DС-9В
ток в режиме ожидания: 0,02uA

Примечание:
*ESR — Equivalent Series Resistance — один из важных параметров конденсатора, характеризующий его активные потери в цепи переменного тока.

↑ Сборка платы

Мощность паяльника должна быть не более 25…30 Вт. Пайку легче произвести припоем с канифолью ПОС61М. Также приветствуется жидкий флюс для радиомонтажных работ. Важно не переусердствовать и не допускать его затекания под корпуса элементов.

Следует помнить о недопустимости перегрева элементов. Время пайки одного контакта не должно превышать 3 с.

Отформуйте выводы резисторов и установите их на печатную плату. Выполните пайку электролитических конденсаторов, соблюдая полярность.
Установите полупроводниковые элементы (транзисторы, диод, диодный мост, микросхему стабилизатора напряжения).
При расположении надписей на плате к себе порядковые номера транзисторов VT1…VT6 следующие: VT2, VT1; VT4, VT3 и VT6, VT5.

После завершения пайки проведите проверку монтажа, обращая особое внимание на правильность установки полярных электролитических конденсаторов, транзисторов, микросхемы стабилизатора, диода и выпрямительного моста.
Проконтролируйте качество паек и исправьте огрехи, если имеются. Внешний вид собранной платы показан в начале статьи.

↑ Проверка функционирования защиты

может быть проведена автономно (рис. 7). Устройство подключают к вторичной обмотке трансформатора с напряжением 12…16 В, измеряют время задержки срабатывания реле после включения.


Также проверяют отключение реле путем подачи на сенсоры напряжения различной полярности (и в различных сочетаниях).
Для испытания удобно взять две бывшие в употреблении батарейки АА или ААА напряжением чуть более 1,2 В.
Для проверки факта срабатывания реле достаточно тестера в режиме прозвонки цепей.

↑ Режимы работы устройства по постоянному току


В качестве трансформатора Т1 я удачно применил ТПП242-127/220-50, шесть вторичных обмоток которого позволили легко получить напряжения в диапазоне от 12 В до 16 В.

При напряжении на клеммной колодке J5, равном 12 В, температура корпуса микросхемы IC1 находилась в диапазоне 30-32°С при температуре в помещении 24,5°С.
Измерения температуры проведены с помощью инфракрасного термометра (рис. 8).


↑ Проблемы в комплектухой

Поначалу собранное из деталей набора устройство не заработало. Оказалась бракованной микросхема IC1 стабилизатора напряжения. Вместо положенных 12 В на выходе было 8,5 В, не отличающихся стабильностью.
Микросхема вызвала недоверие еще до пайки, так как имела тонкую теплопроводящую пластину (0,6 мм) вместо стандартной 1,2 мм.
После замены микросхемы устройство заработало, как положено.

↑ Итоговые характеристики блока защиты АС

Размеры ПП 65×40×25 мм.
Задержка срабатывания при включении питания УМЗЧ 3…5 с.
Порог срабатывания защиты ±1,2 В.
Переменное напряжение, подаваемое на вход J5 12…16 В.
Потребляемый ток 56…60 мА.

↑ Подключение устройства к УМЗЧ


Для питания платы защиты акустики я использовал отдельный малогабаритный силовой трансформатор ТП132-7 (12V/0,6A).

При монтаже провод (кабель) очищают от изоляции примерно на 7 мм и залуживают.
Зачищенный участок провода должен быть ровным, без изгибов.
Провод вставляют в контактный разъем клеммника без перекосов, таким образом, чтобы в зажим не попал участок провода с изоляцией, и чтобы оголенный участок провода не выступал за колодку клеммника.
Затягивают винты клеммника и легким подергиванием убеждаются, что провод надёжно зажат.
Примерно через 10…15 минут подтягивают соединения еще раз.

↑ Выводы

Считаю доработку схемы обязательным условием надежной и длительной работы.
Плата защиты АС вполне подходит для простых УМЗЧ небольшой мощности, в которых не столь критично отсутствие таких функций, как, например, быстрое отключение АС при пропадании питания [3].

Читайте также: