Колебательный контур на 50гц своими руками схема

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Отклонение частоты на 1% критично для колебательного контура и при этом в пределах нормы для сети.

Индуктивность не будет большой в практическом устройстве. Ток в индуктивности или ёмкости, при таких отклонениях, практически не изменится.

Здравствуйте! Ньюансов до фига!
Условие резонанса колебательного контура, это уравнивание реактивных сопротивлений катушки и конденсатора на резонансной частоте, в данном случаи 50Гц. По этому контур является именно избирательной системой, а не фильтрующей. Избирательность колебательных контуров растет с понижением частоты, поэтому при отклонении частоты питающего входного напряжения (50Гц) хотя бы на 1 Гц, плюс-минус, на выходе мощность энергосистемы будет минимальной и стремящееся к нулю под нагрузкой, т.к. резко возрастет косинус фи из-за дисбаланса реактивных сопротивлений контура уже на другой частоте. Проще говоря, у вас будет выполнятся условие, есть по частоте 50Гц,напряжение на выходе есть, отклонилась частота входного напряжения на входе, влевл-вправо, напряжения на выходе (под нагрузкой) нет при недостаточной энергомощности системы на входе. При достаточной мощности питающей сети на входе, и при вариациях частоты, просто возрастет не эффективное энергопотребления, опять таки из за коэф.мощности (кос фи), и будет очень плохо самому колебательному контуру.
Другой вопрос, какая нагрузка будет на выходе этого контура, ибо эта конструкция может получится 3 кг весом при питании, ну допустим холодильника, или 100 кг при питании всего жилого помещения, да и еще не габарит, иными словами нужна тележка для этого контура.

Задача требует точного подхода, и гемморойна!

Ну как бы весь этот мир построен на резонансах. Только зачем в домашней сети можно использовать колебательный контур, тем более на частоту сети, я не очень понимаю. Обычно актуальна фильтрация импульсных помех, она легко реализуется на ферритовых кольцах и трубках одетых на провод потребителя производящий помехи.
Ну а частота сети обычно ниже 50гц, хотя и в пределах допуска, это за бугром сеть кварцована.

Скажите пожалуйста, у нас в магазинах можно купить фильтр на 220? В сети нашёл единственный сайт с фильтрами, но к сожалению нет характеристики реактивное сопротивление - функция частоты.

Может сначала учебник ТОЭ почитать? Я вобще не понимаю на фига лепить контур на 50 гц. И какой контур последовательный или параллельный?

6434_original (700x345, 19Kb)


Группа разработчиков на Смоленщине. Они использовали принцип описанной выше конденсаторной установки. Примерная схема устройства приведена на рис.5. Здесь также от источника колебательной энергии подаётся ток на три последовательно соединённые конденсатора С1, С2, С3. Заряд их пластин колеблется в такт источника раскачки колебаний, но С2 включён схемой в цепь высоковольтной обмотки бытового трансформатора в виде колебательного контура. Естественно, колебательный контур С2 с обмоткой трансформатора воспринимает "маленькие порции" раскачки, и уже сам собой, в результате резонанса с эфиром, начинает выдавать необходимую мощность во вторичную обмотку на полезную нагрузку ~ 220 V. Схема предельно простая, это надо отдать должное "сообразительности" смоленских "парней". Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5). А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса.

Поскольку формула реактивной мощности для любой обмотки Q = I^2*2П*F* L,

где I -величина тока, F - частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина - частота F может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности. Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,-волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит "тесловка", волновое сопротивление определяется величиной которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки).

Zв = КОРЕНЬ ( L / С ),

Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L - индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для "тесловки" вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.

Колебательный LC контур: принцип действия, расчет, определение

Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.

За полезной информацией по другим темам переходите на наш телеграм-канал.

Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

Первое, что приходит на ум - это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C. Соединены эти два элемента могут быть лишь двумя способами - последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.


Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.


Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонанс LC-контура

Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).

Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:

Применение колебательного контура

Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

Если Вы хотите узнать о том, что такое сварочный осциллятор и для чего он нужен или вы хотите его самостоятельно сделать в домашних условиях, то все это вы найдете в нашей статье. Для Вас мы подробно описали принцип работы устройства, подобрали рабочие схемы и видео для сборки, а также способы откуда можно взять детали чтобы не тратить лишних денег.

Осциллятор представляет собой генератор электрического тока высокой частоты. Ток позволяет связать катод и анод без прямого контакта. Устройство создаётся в модульном исполнении и включается в электрическую цепь между держателем вольфрамового электрода и источником питания.

Oscillator svar1 result

  • создание краткосрочного импульса, вследствие действия которого между анодом и катодом возникает сварочная дуга – это смотрится практически как молния, проскакивающая между электродом и поверхностью металла;
  • поддержание требуемого значения номинального напряжения сварочного тока – вследствие этого дуга становится стабильной, что гарантирует непрерывность сварки.

Активная мощность доходит до 200-250 Вт, при этом длительность выдачи импульсов не превышает 30-40 микросекунд. При замыкании на человека ток не представляет опасности – но только в безопасном режиме.

При появлении неисправности или ошибки в подключении электросварщик легко оказывается под угрозой получения электротравмы.

Основные виды

На непрерывной подаче тока

Сварочный осциллятор, выдающий рабочее напряжение постоянно, сравнительно безопасен для сварщика.

Он генерирует импульсы с напряжением до 6 кВ и частотой до 200-250 кГц. Его главное достоинство – в зажигании дуги вне зависимости от расстояния между электродом и свариваемым металлом. Стабильность в работе обеспечивается как раз постоянством наложения высокочастотной составляющей на сварочный ток.

Как разрядник эта деталь подключается параллельно или последовательно. При последнем варианте он нуждается в средствах защиты источника питания – высокочастотные колебания способны вывести его из строя.

Импульсный осциллятор

Такой сварочный осциллятор оптимален для аппаратов на токе переменного рода.

Его главное достоинство – в удерживании разряда при смене полярности электрического тока (что происходит до 50 раз в секунду). Он генерирует сжатый во времени импульс – он и удерживает уже имеющуюся дугу.

Если сравнить с изделием постоянного действия, данный вариант имеет повышенную эффективность.

С дополнительными конденсаторами

Данный осциллятор для сварки менее распространён в силу относительной сложности: основную роль в нём играет пара-тройка дополнительных накопительных конденсаторов. Их заряжание производится силами отдельного блока питания, функционирующего ступенчато (разряд – заряд – разряд).

Суть работы устройства: в первую очередь накопленную энергию получает сварочная дуга, после чего выполняется отключение конденсаторов от основной схемы и их заряжание, но при разрыве дуги синхронизирующее устройство включает конденсаторы обратно в цепь, в результате чего успевшая накопиться энергия выбрасывается в воздушный зазор.

Устройство и принцип работы осциллятора

Осциллятор для сварки состоит из следующих основных компонентов:

  • трансформатор: обязательная характеристика – повышающий (для образования необходимого напряжения);
  • стандартный колебательный модуль: аппарат из катушек и конденсатора (одного или нескольких), нужен для генерирования колебаний высокой частоты;
  • разрядник с вольфрамовыми электродами: для получения искры при пробое;
  • стабилизатор питания: для выпрямления входного напряжения;
  • блок контроля;
  • линия обратной связи по току;
  • предохранитель для разрыва электроцепи при чрезмерно резком повышении силы тока.

Также конструкция может включать в себя клапан газового типа (для защиты от повышения собственной температуры изделия), трансформатор выходной и датчики для механизации работы.

Для полной автоматизации устанавливается микропроцессор и элементы системы безопасности – они выдерживают корректную работу.

Функционирует этот механизм примерно следующим образом. Рабочее напряжение подаётся на повышающий трансформатор – на первичную обмотку. В результате электротехнического процесса на его вторичной обмотке возникает электродвижущая сила величиной в несколько киловольт. Текущая частота тока соответствует входной частоте (50 Гц).

Oscillator svar2 result

Для полного представления невысокой сложности рекомендуем взглянуть на схему сварочного осциллятора.

Как использовать

Независимо от того, изготовлен осциллятор своими руками или куплен как готовое изделие, важно помнить про ряд основополагающих правил при его применении для ТИГ-сварки своими руками (впрочем, и для других способов тоже).

Сварочный осциллятор допускается применять только совершеннолетним лицам.

Для инвертора

Осциллятор для инвертора нуждается в дополнительных мерах безопасности:

  • регулировка производится исключительно в состоянии полного отключения от питающей энергосети;
  • общая очистка механизма и зачистка контактов производится в том же режиме;
  • при работе важно проверять исправность блокировки на постоянной основе, важность этого сложно переоценить – выход из строя чреват электрической травмой сварщика или другого специалиста;
  • частота импульсов также подлежит контролю – не допускается превышения 40 мкс.

Для плазмореза

Сварочный осциллятор, созданный своими руками или купленный, для плазмореза требуется подстроить под фактически применяемый плазменный резак. С целью получения устойчивого процесса для этого кропотливо подбираются тиристоры.

Главная особенность энергоцепи плазмореза – постоянное наличие импульсов, поэтому при выключении из сети контакты будут под напряжением. Технику безопасности забывать не стоит.

Схемы для осциллятора

Схема сварочного осциллятора – техническое решение, основывающееся на том, какие планируются частота применения и условия эксплуатации.

Совместно с аргонодуговой сваркой

Oscillator svar3 result

Хотя возможно сработать и без тиристоров – схема осциллятора такой конструкции проще.

Для инверторного устройства

Схема осциллятора состоит из таких элементов:

  • общий блок питания;
  • источник питания для конденсаторов;
  • выпрямитель входного тока;
  • блок, генерирующий целевой импульс;
  • трансформатор для создания повышенного напряжения;
  • управляющий блок.

Монтируется готовое изделие между выпрямителем и держателем для электрода.

Подробнее о том что такое tig сварка можете узнать перейдя по ссылке.

Осциллятор для сварки алюминия

Oscillator svar5 result

Главная задача при этом – постоянное превращение низкой частоты переменного тока в высокую.

С плазморезом

Осциллятор для инвертора создаётся искрового типа – ввиду необходимого напряжения порядка 20 кВт для генерирования плазмы. По нажатии его кнопки включения заряд начинает накапливаться в конденсаторе (конденсаторах), по готовности или необходимости сбрасываясь на воздушный промежуток.

Такие продаются готовые, но и сделать самостоятельно тоже возможно, главное – знать радиотехнику.

Oscillator svar6 result

При изготовлении своими руками осциллятора для плазмореза важно не забыть такие элементы:

  • кнопка для запуска источника питания всего плазмореза, вместе с который запитывается также и конденсатор;
  • конденсатор (обращаем внимание на необходимые тип и мощность) – этот компонент напрямую влияет на продолжительность импульса;
  • тиристоры (тоже – тип и мощность) – при закрытии тиристоров появляется устойчивость сварочной дуги.

Пошаговое изготовление

Собрать осциллятор своими руками лучше всего с помощью опытного сварщика. При этом экономика тут проста: если варить придётся регулярно, оптимально купить сертифицированное изделие, а если буквально раз-два в год – дешевле сделать самому.

Осциллятор для инвертора

Ввиду универсальности и широкого спектра возможностей инверторной и плазменной техники следует учесть особенности будущего применения сварочного осциллятора:

  • целевое назначение: тип свариваемых сплавов и их толщина (поверьте, это имеет значение);
  • требуемые параметры номинального тока и мощности – если они эксклюзивные (к примеру, достаточно высокие), электротехнические компоненты нужны будут недешёвые.

Oscillator svar7 result

Для сборки прибора под инвертор своими руками следует не забыть следующее:

  • обмотки трансформатора доводятся под требуемый ток – изменяется количество витков, сердечник дополнительно обматывается;
  • устанавливается разрядник;
  • цепь усиливается колебательным контуром, снабжённым одним или парой конденсаторов;
  • после сборки выполняется проверка: кнопкой пуска активируется разрядник, который генерирует сварочную дугу.

Если прибор собран корректно, дугу будет легко зажечь, она будет отличаться высокой устойчивостью. Подробнее о том что такое дуговая сварка можете узнать перейдя по ссылке.

Осциллятор для плазмореза

Осциллятор для плазмореза своими руками собирается по известной схеме, но важно обратить внимание на конденсаторы. Наибольшим ресурсом и рабочей гибкостью считаются компоненты от люминесцентных ламп.

Oscillator svar8 result

Как вариант можно включить в цепь не трансформатор, а умножитель напряжения – сняв его с телевизора, жидкокристаллического монитора или копировального аппарата.

Из микроволновки

Осциллятор своими руками можно собрать с помощью деталей из микроволновки. Основной компонент – трансформатор от СВЧ-печи, который станет силовым блоком. Он хорош возможностью создания целых 2,2 кВ – в безопасном режиме, в считанных десятках сантиметров от пользователей.

Нарастить с 2 кВ до 5-6 кВ можно с помощью добавляемых конденсаторов. Сердечник под высокочастотный трансформатор сгодится от устаревшего монитора.

Под первичную обмотку подходит медный кабель с толщиной 15 мм, под вторичную – с сечением до 50 мм2. Закрытие обмоток производится винилом и специальной трансформаторной бумагой.

Разрядники качественно получаются из обычных болтов и медных патрубков.

Клапан пуска аргона покупается готовым. Также в список покупок можно внести кнопку пуска вместе с её источником питания.

Как вариант применения подручных материалов можно взять части уже не микроволновки – а ненужного телевизора. Так, трансформатор ТДКС почти гарантированно будет в рабочем состоянии – он популярен для создания самодельной сварочной техники, поэтому его легко купить.

Схема которую автор демонстрирует на видео, вы можете скачать кликнув на картинку, и в открывшемся окне нажать правой кнопкой мыши и выбрать в пункт сохранить как.

Oscillator svar9 result

Из катушки зажигания

Распространённость автомобильных катушек зажигания привела техническую мысль и к этой конструкции. Однако ввиду неполного сходства выходных характеристик с оптимальным уровнем всё же применять этот вариант не рекомендуется.

Катушка дополняется высоковольтным диодом и тиристорными сборками – для этого нужно владеть электротехникой. В ином случае дуга не будет гореть, а электробезопасность окажется под угрозой.

Основные ошибки

Чтобы не испытывать неудобств и не получать травм при эксплуатации данного прибора рекомендуется применять его исключительно по назначению – для соответствующего конструкции процесса. Теоретическую схему и готовую конструкцию лучше перед включением продемонстрировать опытному специалисту.

Для получения требуемой стабильности в работе иногда мало задействовать штатный источник питания. При постоянно меняющихся частоте и напряжении рекомендуется ввести в электроцепь так называемый автотрансформатор – он сгладит недопустимые колебания.

Планирование конструкции агрегата следует вести с запасом на погрешности и внешние влияния. Так, дроссель окажет неоценимую поддержку при сглаживании колебаний при их напряжении до 1 кВ и не позволит сгореть вторичной обмотке трансформатора, а конденсатор для блокировки будет защищать колебательный контур.

При прокладывании обмоток важно не допустить коротких замыканий – их легко предотвратить с помощью изолирующих материалов и пропитывания готовых жил специальными лаками (к примеру, бакелитовым).

Организация заземления – один из ключевых шагов в плане безопасности. Заземление позволяет избежать поражения электрическим током. Причём если основной вред от электричества наносится внутренним органам и крови, то оптимально планировать номинальную частоту тока до 300 кГц – так будут вызваны лишь ожоги кожи и верхних тканей.

Правила эксплуатации осцилляторов

Самодельный осциллятор следует защищать от осадков и образования конденсата. При работе вне помещения обязательно накрывать при дожде или снеге. Рекомендуется следить за влажностью воздуха: если она выше 95…98%, процесс следует отложить.

Агрегат должен располагаться в чистой атмосфере (без излишней загазованности и запылённости), на него не должны оказывать влияние химически агрессивные вещества;

Допускаемая температура окружающего воздуха должна быть в интервале от -15…-10 до +40…+50°С (в соответствии с инструкцией производителя, если она имеется).

Работать с ним можно не только сваркой – резка тоже возможна. В любом случае проверяется надёжность смонтированного заземления и всех остальных соединений.

Перед включением необходимо проверить корпус и соединения на отсутствие коррозии, пыли и грязи, смазочных материалов и жидкостей.

Расскажите в комментариях собрали ли вы осциллятор или купили готовый, а также почему приняли такое решение.

Читайте также: