Как сделать тест стьюдента в гретл

Обновлено: 02.07.2024


Начать, пожалуй, стоит с математических допущений, на которых основан критерий Стьюдента. Основных таких допущений, как известно, два:

  • Сравниваемые выборки должны происходить из нормально распределенных совокупностей;
  • Дисперсии сравниваемых генеральных совокупностей должны быть равны.

Одновыборочный t-критерий

Этот вариант критерия Стьюдента служит для проверки нулевой гипотезы о равенстве среднего значения (\(mu_1\)) генеральной совокупности, из которой была взята выборка, некоторому известному значению (\(mu_0\)):

В общем виде проверка (= тест) этой гипотезы выполняется при помощи t-критерия, который рассчитывается как отношение разницы между выборочным средним и известным значением к стандартной ошибке выборочного среднего:

Рассчитанное значение критерия мы можем далее интерпретировать следующим образом, исходя из свойств t-распределения: если это значение попадает в т.н. область отклонения нулевой гипотезы (см. рисунок ниже), то мы вправе отклонить проверяемую нулевую гипотезу. Область отклонения нулевой гипотезы для критерия Стьюдента определяется заранее принятым уровнем значимости (например, \(\alpha=0.05\)) и числом степеней свободы.

Эквивалентным подходом к интерпретации результатов теста будет следующий: допустив, что нулевая гипотеза верна, мы можем рассчитать, насколько велика вероятность получить t-критерий, равный или превышающий то реальное значение, которое мы рассчитали по имеющимся выборочным данным. Если эта вероятность оказывается меньше, чем заранее принятый уровень значимости (например, \(P t.test() :

Видим, что для имеющихся выборочных данных t-критерий составляет -2.821 при 10 степенях свободы ( df ). Вероятность получить такое (либо большее) значение t при условии, что проверяемая нулевая гипотеза верна, оказалась весьма мала: p-value = 0.01814 (во всяком случае, это меньше 5%). Следовательно (см. выше), мы можем отклонить проверяемую нулевую гипотезу о равенстве выборочного среднего значения нормативу и принять альтернативную гипотезу ( alternative hypothesis: true mean is not equal to 7725 ). Делая это, мы рискуем ошибиться с вероятностью менее 5%.

Помимо t-критерия, количества степеней свободы, Р-значения и выборочного среднего ( sample estimates: mean of x ), программа рассчитала также 95%-ный доверительный интервал ( 95 percent confidence interval ) для истинной разницы между выборочным средним значением суточного потребления энергии и нормативом. Если бы мы повторили аналогичный тест много раз для разных групп из 11 женщин, то в 95% случаев эта разница оказалась бы в диапазоне от 5986.3 до 7520.9 кДж/сутки.

Сравнение двух независимых выборок

При сравнении двух выборок проверяемая нулевая гипотеза состоит в том, что обе эти выборки происходят из нормально распределенных генеральных совокупностей с одинаковыми средними значениями:

Поскольку эти генеральные средние мы оцениваем при помощи выборочных средних значений, формула t-критерия приобретает вид

В знаменателе приведенной формулы находится стандартная ошибка разницы между выборочными средними, которая в общем виде рассчитывается как

где \(s_<1>^\) и \(s_^\) - выборочные оценки дисперсии. При соблюдении условия о равенстве групповых дисперсий приведенная формула приобретает более простой вид (подробнее см. здесь). Интерпретация t-критерия, рассчитанного для двух выборок, выполняется точно так же, как и в случае с одной выборкой (см. выше).

Рассмотрим пример о суточном расходе энергии ( expend ) у худощавых женщин ( lean ) и женщин с избыточным весом ( obese ), приведенный в книге Питера Дальгаарда (Dalgaard P (2008) Introductory statistics with R. Springer). Данные из этого примера (подробнее см. ?energy ) входят в состав пакета ISwR , сопровождающего книгу (если он у Вас не установлен, выполните команду install.packages("ISwR") ):

Соответствующие средние значения потребления энергии в рассматриваемых группах пациенток составляют (подробнее о примененной ниже функции tapply() см. здесь):

Различаются ли эти средние значения статистически? Проверим гипотезу об отсутствии разницы при помощи t-теста:

Обратите внимание на использование знака ~ в вызове функции t.test() . Это стандартный для R способ записи формул, описывающих связь между переменными. В нашем случае выражение expend ~ stature можно расшифровать как "зависимость суточного потребления энергии ( expend ) от статуса пациентки ( stature )".

Согласно полученному значению P ( p-value = 0.001411 ), средние значения потребления энергии у женщин из рассматриваемых весовых групп статистически значимо различаются. Отвергая нулевую гипотезу о равенстве этих средних значений, мы рискуем ошибиться с вероятностью лишь около 0.1%. При этом истинная разница между средними значениями с вероятностью 95% находится в диапазоне от -3.5 до -1.0 (см. 95 percent confidence interval ).

Следует подчеркнуть, что при выполнении двухвыборочного t-теста R по умолчанию принимает, что дисперсии сравниваемых совокупностей не равны, и, как следствие, выполняет t-тест в модификации Уэлча (подробнее см. здесь). Мы можем изменить такое поведение программы, воспользовавшись аргументом var.equal = TRUE : (от variance - дисперсия, и equal - равный):

Р-значение стало еще меньше, и мы так же, как и после теста в модификации Уэлча, можем сделать вывод о наличии существенной разницы между средними. Однако такое совпадение выводов будет иметь место не всегда и, следовательно, на разницу между групповыми дисперсиями (или ее отсутствие) следует обращать серьезное внимание при выборе и интерпретации того или иного варианта t-теста.

Сравнение двух зависимых (= парных) выборок

Но как в таких случаях оценить наличие эффекта от воздействия статистически? В общем виде критерий Стьюдента можно представить как

Нас интересует "истинное значение параметра" - среднее изменение какого-либо количественного признака как результат экспериментального воздействия - обозначим его \(\delta\). Оценкой этого истинного параметра является наблюдаемое (выборочное) среднее изменение признака. Тогда t-критерий примет вид

Если нулевая гипотеза заключается в равенстве истинного эффекта нулю, формула для парного критерия Стьюдента примет вид

В книге П. Дальгаарда (Dalgaard 2008) имеется пример о суточном потреблении энергии, измеренном у одних и тех же 11 женщин до и после периода менструаций:

Индивидуальные разницы в потреблении энергии у этих женщин составляют:

Усреднив эти индивидуальные разницы, получим

Задача заключается в том, чтобы оценить, насколько статистически значимо эта средняя разница отличается от нуля. Применим парный критерий Стьюдента (обратите внимание на использование аргумента paired = TRUE ):

Как видим, рассчитанное программой P-значение оказалось намного меньше 0.05, что позволяет нам сделать заключение о наличии существенной разницы в потреблении энергии у исследованных женщин до и после менструации. Истинная величина эффекта (в абсолютном выражении) с вероятностью 95% находится в интервале от 1074.1 до 1566.8 кДж/сутки.

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Распределение Стьюдента

Общий подход в проверке гипотез описан здесь, поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ 2 . Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь нормальное распределение с математическим ожиданием μ и дисперсией

Тогда случайная величина

имеет стандартное нормальное распределение со всеми вытекающими отсюда последствиями. Например, с вероятностью 95% ее значение не выйдет за пределы ±1,96.

Однако такой подход будет корректным, если известна генеральная дисперсия. В реальности, как правило, она не известна. Вместо нее берут оценку – несмещенную выборочную дисперсию:

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s. Другими словами, являются ли распределения случайных величин

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннесса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию:

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Распределение средней арифметической

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию.

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t.

Отличие распределения средних от нормального закона

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s 2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ 2 (хи-квадрат) с таким же количеством степеней свободы, т.е.

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Тогда исходное выражение примет вид

Это и есть t-критерий Стьюдента в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Вероятности и квантили t-критерия приведены в специальных таблицах распределения Стьюдента и забиты в функции разных ПО вроде Excel.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

где ξ распределена по стандартному нормальному закону, а χ 2 k подчиняется распределению χ 2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

есть частный случай стьюдентова отношения

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двусторонним. Обычно пользуются двусторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность критерия.

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Распределение хи-квадрат

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Влияние аномальных выбросов на распределение средней

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

Таблица t-распределения Стьюдента

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Расчет t-критерия Стьюдента в Excel

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Сравнение расчетного и табличного значения t-критерия Стьюдента

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

Расчет p-value для t-критерия

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Отклонения гипотезы

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Проверка гипотезы через доверительные интервалы

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

– общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

Уильям Госсет

Уильям Госсет

1. История разработки t-критерия

2. Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

3. В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch's t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

4. Как рассчитать t-критерий Стьюдента?

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:


где М1 - средняя арифметическая первой сравниваемой совокупности (группы), М2 - средняя арифметическая второй сравниваемой совокупности (группы), m1 - средняя ошибка первой средней арифметической, m2 - средняя ошибка второй средней арифметической.

5. Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

6. Пример расчета t-критерия Стьюдента

Для изучения эффективности нового препарата железа были выбраны две группы пациентов с анемией. В первой группе пациенты в течение двух недель получали новый препарат, а во второй группе - получали плацебо. После этого было проведено измерение уровня гемоглобина в периферической крови. В первой группе средний уровень гемоглобина составил 115,4±1,2 г/л, а во второй - 103,7±2,3 г/л (данные представлены в формате M±m), сравниваемые совокупности имеют нормальное распределение. При этом численность первой группы составила 34, а второй - 40 пациентов. Необходимо сделать вывод о статистической значимости полученных различий и эффективности нового препарата железа.

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:




Два события называются независимыми, если наступление одного из них никак не влияет на наступление другого. Аналогично, две совокупности можно назвать независимыми, если свойства одной из них никак не связаны со свойствами другой.

Пример выполнения t-теста в программе STATISTICA.

Женщины в среднем ниже мужчин, однако, это не является результатом того, что мужчины оказывают какое-либо влияние на женщин - дело здесь в генетических особенностях пола. С помощью t-теста необходимо проверить, имеется ли статистически значимое различие между средними значениями роста в группах мужчин и женщин. (В учебных целях мы допускаем, что данные о росте подчиняются закону нормального распределения и поэтому t-тест применим).


Рисунок 1. Пример оформления данных для выполнения t-теста для независимых выборок


Рисунок 2. Еще один вариант оформления данных для выполнения t-теста для независимых выборок

Для выполнения t- теста для независимых выборок необходимо выполнить следующие действия:

1-а. Запустить модуль t-теста из меню Statistics > Basic statistics/Tables > t-test, independent, by groups (если в таблице с данными есть группирующая переменная, см.рисунок 3)​


ИЛИ

1-б. Запустить модуль t-теста из меню Statistics > Basic statistics/Tables > t-test, independent, by variables (если данные внесены в самостоятельные столбцы, см. рисунок 4).


Ниже описывается вариант теста, при котором в таблице с данными имеется группирующая переменная.

2. В открывшемся окне нажать кнопку Variables и указать программе, какая из переменных таблицы Sreadsheet является группирующей, а какая - зависимой (рисунки 5-6).


Рисунок 5. Выбор переменных для включения в t-тест


Рисунок 6. Окно с выбранными переменными для проведения t-теста

3. Нажать на кнопку Summary: T-tests .


Рисунок 7. Результы t-теста для независимых выборок

В итоге программа выдаст рабочую книгу Workbook , содержащую таблицу с результатами t -теста (рисунок 7 ). Эта таблица имеет несколько столбцов:

Классная статья! Подскажите пожалуйста какой критерий лучше использовать для сравнения количественных признаков где все переменные независимые?

блин, забыл написать, что сравниваем 3 группы

Основы доказательной медицины. Биомедицинская статистика.

Автор статьи:


Ольга Светлицкая

Председатель Совета молодых ученых (СМУ), кандидат медицинских наук, доцент кафедры анестезиологии и реаниматологии БелМАПО.

Читайте также: