Как сделать полимерные материалы

Обновлено: 04.07.2024

Полимерами называют высокомолекулярные химические соединения (ВМС) вещества, обладающие молекулярной массой от тысяч до нескольких миллионов атомных единиц. Макромолекулы полимеров образовываются из огромного количества повторяющихся мономерных звеньев. Свойства полимеров зависят от химической природы мономера, молекулярной массы, методом производства полимера, стереоструктурой молекул (расположением в пространстве) и степенью их разветвленности, а также связей между молекулами различной природы.

Большинство полимеров являются по природе диэлектриками, также имеют низкую теплопроводность и достаточно высокие механические характеристики.

Классификация полимеров

Разделение полимеров на четкие классы – достаточно сложное дело. В современной теории существует несколько подразделений полимерных материалов по видам:

  • полимеры могут быть природными или синтетическими, также бывают модифицированные полимеры;
  • по типу реакции образования полимеры делятся на полимеризационные и поликонденсационные;
  • в зависимости от химического состава полимеры подразделяются на неорганические (например, силиконы), органические полимеры (например, полистирол) и элементоорганические полимеры (например, фторопласты). При этом основной вид используемых полимеров – органические;
  • по методу переработки и соответствующему отношению к воздействию на них температуры полимеры делят на термопластичные (термопласты) и термореактивные (реактопласты). Первые способны перерабатываться многократно, вторые – как правило, нет;
  • по составу мономерных звеньев полимеры делят на гомополимеры и сополимеры (гетерополимеры);
  • также полимеры разделяются по строению главной цепи на гомоцепные и гетероцепные, по пространственному расположению мономерных звеньев на стереорегулярные и атактические (нестереорегулярные), по степени разветвления на линейные, разветвленные, лестничные и сшитые и т.д.

Структура полимеров.jpg

Рис. 1 Структура полимеров

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами. При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально. При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Завод полиэтилена

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Основные свойства полимеров

Строение макромолекул в виде цепи, а также различные типы связей между ними, возникшие при образовании молекул, определяют природу специальных физико-химических характеристик полимеров. Среди них важная особенность к пленко- и волокнообразованию, способности полимеров к вытяжке, прочности в определенных направлениях, эластичности и т.п. Такое строение полимерных молекул определяет тот факт, что вязкость растворов полимеров обычно высока. ВМС могут в высокой степени набухать в жидкостях, при этом образуя несколько видов систем, по свойствам находящихся между твердым жидким агрегатным состояниями.

Количество мономерных звеньев в макромолекулах полимеров и природа звена определяют молекулярную массу всего ВМС. Любой полимер всегда состоит из множества макромолекул, каждая из которых индивидуальна и отличается от других в том числе по длине цепи. Из-за этого факта молекулярная масса полимеров – всегда примерная средняя величина. Также из описанного следует, что важной характеристикой является молекулярно-массовое распределение (ММР), которое показывает в каком диапазоне молекулярных масс молекулы представлены в конкретном образце полимера. Чем меньше молекулярно-массовое распределение, тем стабильнее свойства полимеров и тем проще описать методики их переработки.

Полимеры могут находиться в нескольких агрегатных состояниях, которые отличаются от состояний обычных низкомолекулярных веществ, например в состоянии вязкотекучей жидкости, эластичном состоянии, такие как каучук, силикон, другие эластомеры, твердых пластмасс.

Типы переработки полимеров в изделия

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре. При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта. Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т.д.

Классификация полимеров по областям применения

Полимеры, главным образом, термопласты подразделяют по степени роста технических и эксплуатационных характеристик. Основной характеристикой полимера при этом является температура долговременной эксплуатации. В данном случае полимеры с известными допущениями и довольно большими разночтениями у разных авторов разделяют на три категории:

  • General purpose plastics или полимеры общего (общетехнического) назначения;
  • Engineering plastics или конструкционные пластики (полимеры инженерно-технического назначения);
  • Super-engineering plastics или суперконструкционные полимеры.

Также всё более важную роль в современной индустрии полимеров играет класс эластомеров или термоэластопластов (TPE, ТПЭ). По своим свойствам и методам переработки в изделия эти материалы аналогичны термопластам, при этом по внешнему виду и эксплуатационным свойствам близки к резине и каучуку. ТПЭ в быту повсеместно путают с резиной из-за способности этих материалов к значительным обратимым деформациям.

Также полимеры и их марки классифицируют по наиболее подходящему способу переработки - литьевые, экструзионные, пресс-порошки и т.п.

Фото 1

Использование бетона является обязательным при любом строительстве (промышленном, дачном, частном).

Без этого материала не обойтись при облагораживании садовых участков, утеплении конструкций и т.д.

На помощь строителям пришел новый класс материалов – полимерный фибробетон.

Изготовить его можно самостоятельно, используя при этом отходы пластика, которые в буквальном смысле лежат под ногами. Несложная технология изготовления полимербетона позволяет осуществить этот процесс своими руками.

В этой статье пойдет речь о производстве полимербетона на основе вторичных полимеров.

Преимущества полимерного бетона

Армировать бетон строители научились достаточно давно. Еще в начале прошлого столетия был запатентован способ упрочнения бетона металлом.

Использование же в качестве усиливающих агентов полимеров появилось относительно недавно.

Пластик имеет ряд преимуществ, которые способны потеснить традиционные армирующие материалы: металл и стекло. Полимер более технологичен, он удобен и безопасен в обращении.

Многие строители отрицательно отзываются о пластике, поскольку он может комковаться при смешивании. Сейчас есть множество добавок, которые помогут решить эту проблему.

Полимер более легкий, чем металл или стекло. Поэтому он даже способен несколько облегчить конструкцию. Пластмассовые армирующие частицы устойчивы к коррозии и атмосферному воздействию. Можно добиться такого соотношения ширины и длины волокна, которое позволит упрочнить бетон в несколько раз по сравнению со стандартным образцом.

Рецептура и состав

Содержание армирующего наполнителя никак не отражается на основной рецептуре бетона.

Фото 2

Вот примерное соотношение компонентов, рекомендуемое для приготовления смеси:

  1. Цемент. Берется из расчета 1 части. В зависимости от типа производимых работ, можно выбрать быстро отверждаемые марки, либо стандартные.
  2. Песок. В рецептуру рекомендуется добавлять из расчета 4 части на 1 часть цемента. Для более прочных марок допустимо уменьшить пропорции до 3 частей. Требования к качеству песка довольно высокие. Его нужно хорошо просеять от крупных частиц и при необходимости промыть водой. Такая процедура позволит сделать матрицу прочнее.
  3. Армирующие компоненты. Измельченный пластик рекомендуется добавлять из расчета от 3 до 10 килограмм на 1 кубометр смеси.
  4. Пластификаторы. Это тип добавок, улучшающих пластичность смеси при заливке и повышающих прочностные характеристики. Дозировка указана на упаковке, обычно стандартно вводят от 0,25 до 0,50% от общей массы.
  5. Гидрофобизатор. Позволяют повысить устойчивость к водной эрозии, поскольку создают слой на поверхности бетона. Дозировка небольшая, до 0,5%, в зависимости от рекомендации на этикетке.

Требования к армирующим пластикам

В качестве усиливающего компонента рекомендуется использовать полиолефиновые марки (полиэтилен, полипропилен). Они удачно сочетают в себе прочность и гибкость, что позволяет не ломаться при воздействии нагрузки.

Полиолефины отличаются морозостойкостью, которая позволит армирующей добавке противостоять атмосферному воздействию и даже проводить работы при отрицательных температурах.

Пластик наиболее проявляет свои усиливающие свойства тогда, когда соблюдается большое соотношение длины и ширины кусков.

Поэтому качественный и правильный упрочняющий материал можно получить экструзией и резкой на рубильном станке соответствующего полимера.

Фото 3

Эта технология более затратная и трудоемкая, но полученный таким способом армирующий пластик может использоваться даже в промышленном строительстве.

Если не стоит задача получить бетонную смесь для фундаментальной застройки, то можно использовать дробленый на мелкую фракцию пластик.

Для равномерного распределения полимера по матрице лучше предварительно обработать его замасливателем.

Это силиконовые составы, например, гидрофобизатор или грунтовка на основе силана. Они тонким слоем покрывают дробленку, предотвращая комкование.

Технология изготовления раствора

Очень важен порядок загрузки компонентов:

  1. Если используется аппрет, то лучше предварительно замешать его с дробленкой в бетономешалке. Перемешивание лучше вести до тех пор, пока не покроются равномерным слоем все куски пластика.
  2. Далее в определенной пропорции засыпают цементо-песочную смесь и все тщательно перемешивают.
  3. Постепенно, не прекращая вращение, вливается вода. Количество жидкости определяется необходимой вязкостью смеси. Если нужен бетон для блоков, то состав делают более густым. И наоборот, для заливки фундамента можно делать раствор более текучим.
  4. При добавлении армирующего пластика рекомендуется увеличить время смешения примерно в 2 раза по сравнению со стандартным бетоном.

Необходимое оборудование

Фото 5

Процесс можно разделить на два ключевых этапа, исходя из которых можно определиться с основными единицами оборудования:

  1. Изготовление дробленого пластика. Для этого в самом простом исполнении нужна дробилка роторного типа и приемник для дробленки (лоток, бак, ёмкость большого объема). Зазор между ножами должен регулироваться для наработки фракции дробленки нужного размера.
  2. Приготовление смеси в бетономешалке. Подойдет стандартная с перемешивающими лопастями. Вспомогательный инструмент – лопата, ведра, совки и т.д.

Области применения

Армированный бетон может применяться там, где необходима высокая прочность и долговечность.

Тонкие волокна, равномерно распределенные по всем направлениям, усиливают конструкции. Поэтому из армированного бетона можно изготавливать блоки для монолитного строительства.

Полимерные частицы позволяют повысить прочность бетона на растяжение, повысив тем самым его марку.

Поскольку сейчас технологии строительства изменились, то использование тяжелых блоков, армированных стальными прутьями, более невозможно. На смену им приходят такие же прочные, но гораздо более легкие полимербетоны.

Кроме того, введенный в состав цемента пластик может повысить теплоизоляционные свойства бетонной плиты.

Полимерцемент не дает сильную усадку, что важно при отливке сборных конструкций, когда есть риск получить детали разного размера. Помимо изготовления строительных блоков, полимербетон можно использовать для заливки фундаментов, тротуарной плитки, несъемной опалубки и т.д.

Есть интересные идеи изготовления садовых скульптур, скамеек, фонтанов и вазонов. Из полимербетона такие конструкции получаются более прочными.

Видео по теме

В данном видео показано изготовление красивого искусственного мрамора из полимербетона с разводами:

Вывод

Полимербетон – более современный материал, в отличие от традиционных цементных составов. Помимо своих полезных характеристик, он уникален тем, что может послужить отличным способом использования вторичного пластика.

Количество отходов на нашей планете колоссальное, а использование их в бетоне – отличная идея утилизации.

Возрастающие темпы строительства и, соответственно, нарастающие объемы потребления полимербетона могут наладить использование пластиковых отходов в строительных технологиях не только в кустарных, но и промышленных масштабах.

Зная, как смешивать компоненты и обладая соответствующим оборудованием, вполне возможно изготовить полимерцементный раствор в домашних условиях.

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Полимерные материалы

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Напольное покрытие из вспененного полимерного материала

Напольное покрытие из вспененного полимерного материала

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Варианты структуры полимеров

Варианты структуры полимеров

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Полимеры

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Полимерные материалы

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

На фото изображено - Полимерная глина для начинающих, рис. Работа с глиной

Бывает, смотришь на какую-нибудь брошку, фигурку или значок и думаешь, что хочется сделать что-то подобное своими руками. Но лепить из глины слишком хлопотно и сложно, а штампованные пластиковые аксессуары массового производства давно считаются дурным тоном. В этом случае выручит полимерная глина. Из этого удивительного материала вы сможете вылепить все что угодно: забавные фигурки любимых персонажей, украшения, необычный декор для интерьера и одежды, аксессуары и многое-многое другое. После обработки полимерная глина становится очень твердой и напоминает пластик.

Содержание

Что такое полимерная глина, и какой она бывает

Полимерная глина – это материал на основе поливинилхлорида. Своей пластичностью он напоминает пластилин, а после застывания становится очень твердым, как пластик. Другие названия – термопластика, пластика. В зависимости от технических особенностей обработки и состава выделяют следующие виды полимерной глины.

Самоотвердевающая полимерная глина

На фото изображено - Полимерная глина для начинающих, рис. Изделия из полимерной глины (тарелки)

Из названия ясно, что пластика отвердевает при нахождении на воздухе в течение нескольких часов. Именно поэтому такую глину хранят в герметичной упаковке. Выпускается нескольких разновидностей самоотвердевающей глины:

  • тяжелая глина по своим свойствам сходна с природной. Для ее размягчения добавляют воду. После застывания края изделия могут крошиться, а его поверхность – пойти трещинками;
  • легкая глина быстро раскатывается до тонкого пласта и хорошо тянется;
  • холодный фарфор белого цвета очень пластичный, его можно окрасить в различные оттенки;
  • жидкая самоотвердевающая глина представляет собой густой белый или полупрозрачный гель, который нужен для создания одежды на глиняных фигурах. Лоскут ткани пропитывают жидкой глиной и формируют на фигурке нужные предметы одежды. После застывания она принимает твердость пластика.

Плюсы самоотвердевающей глины:

  • если вы передумали и решили внести изменения в работу, то это можно сделать в течение нескольких часов, пока она застывает;
  • поверхность изделия легко очищается от прилипших соринок в любой момент;
  • размягчить пластику можно обычной водой;
  • подходит для лепки крупных элементов.

Недостатком самоотвердевающей глины является ее свойство при высыхании слегка бледнеть, то есть цвет изделия меняется. Кроме того, она не подходит для мелких деталей.

Запекаемая полимерная глина

На фото изображено - Полимерная глина для начинающих, рис. Изделия из полимерной глины (игрушка заяц)

Запекаемая глина отвердевает при высокой температуре, более 100°C, поэтому для финишной обработки потребуется хорошая духовка. Изделие получается очень прочным, с ровной плотной поверхностью.

Плюсы:

  • можно покрасить в любой цвет, краска отлично наносится и крепко держится;
  • при высыхании цветная глина сохраняет сочность красок;
  • подходит для лепки мелких и сложных элементов.

Инструменты и материалы

Для комфортной и продуктивной работы с полимерной глиной необходимо обзавестись некоторыми специальными инструментами, которые станут вашими верными помощниками на разных этапах.

Для лепки и декора

Например, для изготовления самой фигурки и ее украшения потребуются:

  • силиконовая подложка с разметкой, которая служит и трафаретом для создания одинаковых элементов нужной формы, и помогает защитить стол от частичек глины и порезов. Если подложка жароустойчивая, то на ней можно запекать изделие;
  • набор стеков. Ими вы будете выравнивать поверхность изделия, соединять детали, наносить узоры и выполнять многие другие манипуляции, где нужна точность движений;
  • лезвия для резки глины, их может заменить прочный острый канцелярский нож;
  • акриловая скалка для раскатывания пластов глины, не прилипающих к ее поверхности. Благодаря этому они получаются ровными и гладкими. Кроме того, такая скалка помогает быстро смешать глину разных цветов и получить плавные переходы;
  • экструдер. Он представляет собой шприц с набором насадок, как у одноименного кондитерского инструмента. Через него выдавливают колбаски глины нужной формы и размера;
  • паста-машина сэкономит немало времени и поможет быстро сделать идеально ровный тонкий пласт глины;
  • деревянные зубочистки, незаменимые для запекания бусин (сохраняют отверстие полым и ровным) и придания изделию нужной текстуры;
  • формы для пластики. Они обычно продаются наборами, где есть самые популярные конфигурации. С их помощью вырезают различные фигурки из пласта для украшений, панно и других работ;
  • штампы и текстурные листы используются для создания определенной текстуры;
  • силиконовые молды – благодаря им можно быстро получить практически готовую деталь или создать любое количество одинаковых элементов, например, бусин.

Работать с формами, штампами, текстурными листами, молдами, совершенно несложно. Подготовьте пласт глины нужной толщины, прижмите к листу или молду, обрежьте стеком лишнее, если необходимо. Деталь готова. Во время лепки может потребоваться специальный размягчитель, который необходим для глины, которая произведена относительно давно и может крошиться в руках. Если полимерная глина свежая и липнет к пальцам, смочите ее водой.

Для запекания

Для запекаемой глины нужна духовка с точным регулятором температуры. Приготовьте и таймер: за временем придется следить очень внимательно.

Многие мастера советуют помещать подложку с фигурками в кулинарный рукав для запекания. Во время нагрева из глины испаряются пластификаторы, которые оседают на стенках духового шкафа. Так вы избавите себя от лишней уборки.

В качестве основы для запекания пластики часто используют пергамент или фольгу. Изделие не прилипает к ним и не подгорает. Если нужно запечь детали круглой формы, то из фольги делают подставку в виде буквы W. Бусины из нее не выкатятся и не сплющатся под собственным весом.

Для шлифовки

Для сборки изделия

Если изделие состоит из деталей, соединенных проволокой или леской, потребуется набор из трех инструментов:

  • плоскогубцы – для фурнитуры и проволочных соединений;
  • кусачки – для резки лески и проволоки;
  • круглогубцы – для скручивания проволоки;

Иногда для фурнитуры нужно проделать отверстие. В этом случае выручит машинка с набором минисверл. Кроме того, детали из пластики можно соединять в единое целое при помощи следующих видов клея:

Для защиты готового изделия

С этой целью изделие покрывают специальными лаками для полимерной глины. Наилучшим образом для этого подойдет прозрачный полиуретаново-акриловый лак на водной основе, так как он быстро сохнет и образует плотное прочное покрытие.

Внимание! Лаки для ногтей и волос, а также обычный акриловый лак для изделий из пластики, использовать нельзя ни в коем случае!

Для нанесения лака приготовьте несколько кисточек разной толщины с синтетическим ворсом. Они понадобятся и для окрашивания глины и готовых скульптур.

Столовые приборы, изготовленные из биоразлагаемого пластика (крахмал с полиэфиром). Фото с сайта en.wikipedia.org


Это важный момент. Например, из углеводородного сырья научились получать и прочные полимеры, которые не разлагаются в почве больше 200 лет, и биоразлагаемые — они содержат специальные добавки, благодаря которым соответственно ГОСТу распадаются за 180 дней на компоненты, нетоксичные для растений (поэтому их часто также называют биопластиками). А из растений можно получить и стандартные блоки, из которых делают обычные полимеры (этилен, амид и другие), а можно и биоразлагаемые пластики. Скажем, полиэтилен, используемый для упаковки, получают гидролизом и последующей ферментацией сахара из сахарного тростника; полиамид, из которого делают ткани, выделяют из касторового масла, а его получают из растения клещевины. И оба эти полимера ничем не отличаются от своих собратьев, сделанных из нефти. Разница только в том, что сырье на следующий год вновь вырастет на поле. Или в море — ведь сырье может иметь и животное происхождение, к примеру, хитозан (его добавляют в некоторые пластики) получают из хитина панциря ракообразных.

Как сделать из кукурузы пластиковую бутылку для молока? Выращивают специальные сорта (в основном на биомассу идут кукуруза, пшеница, картофель, сахарный тростник и свекла), потом собирают урожай, извлекают из биомассы крахмал (полисахариды) или сахар. Если это масличные культуры (клещевина, соя, рапс), то выделяют триглицериды — сложные эфиры глицерина. Затем начинаются очистка и переработка, включающие не только химические стадии, но и биотехнологические — с участием ферментов и микроорганизмов. Каждому конечному продукту соответствует своя технологическая цепочка. Конечный продукт — или мономер для дальнейшей полимеризации (это может быть обычный этилен, амид, эфир, молочная кислота), или чистая природная биомолекула, пригодная для дальнейшей модификации (например, крахмал).

Общая схема производства полимеров из растений

Из чего бы ни были сделаны традиционные полимеры, проблема утилизации остается. Согласно современным тенденциям, полиамид, полученный из касторового масла, или полиэтилен и полиэтилентерефталат из биомассы надлежит собирать и отправлять на переработку, точно так же, как и их нефтяные аналоги. Если переработка и повторное использование невозможны, тогда их сжигают.

Некоторые компании идут другим путем, смешивая традиционные полимеры с природными молекулами. Например, компания Roquette модифицировала крахмал из пшеницы, пришив к нему гидрофобные группы, и стала добавлять его к полиэтилену или полипропилену. Получается композитный материал, из которого делают упаковку для косметики, стаканчики для йогуртов и даже панели автомобиля.

Крахмал — пожалуй, самое распространенное сырье для биоразлагаемых материалов, с ним работают более 30% специализированных предприятий. Конечно, сам он довольно хрупкий, но если в него добавить растительные пластификаторы (глицерин, сорбитол), волокна льна, конопли или полимер молочной кислоты, полученный из кукурузы или свеклы, то это увеличит механическую прочность и пластичность. Модификация гидрофильных ОН-групп сделает его устойчивым к влаге. Таким образом, крахмал используют не только в качестве наполнителя, но и модифицируют его, после чего получается полимер, который разлагается в окружающей среде, но при этом обладает свойствами коммерчески полезного продукта.

Изделия из модифицированного крахмала производят на том же оборудовании, что и обыкновенную пластмассу, его можно красить. Правда, его технологические свойства пока уступают полиэтилену и полипропилену, которые он мог бы заменить. И все-таки из крахмала уже делают поддоны для пищевых продуктов, сельскохозяйственные пленки, упаковочные материалы, столовые приборы, сеточки для хранения овощей и фруктов и многое другое.

Полилактиды, или полимеры молочной кислоты (ПЛА), которые получают после ферментации сахаров кукурузы или другой биомассы, также используют довольно широко. Из 80 организаций, производящих в различных странах биоразлагаемые пластики или их смеси, полимеры на основе ПЛА делают около 20% компаний. На самом деле ПЛА часто смешивают с крахмалом для лучшего биологического разложения и рентабельности производства. Полилактиды — яркие и прозрачные, поэтому они могут составить конкуренцию полистиролу и полиэтилентерефталату. Из них производят изделия с коротким сроком службы: упаковки для фруктов и овощей, яиц, деликатесных продуктов и выпечки, а также хирургические нити, используют их как средство доставки лекарств. В полилактидные пленки упаковывают сандвичи, леденцы и цветы. Существуют ПЛА-бутылки для воды, соков, молочных продуктов.

Производство биопластиков в мире по регионам на 2010 год (в процентах)

Еще одна группа, полигидрокси-алканоаты (ПГА) — третьи по значимости биоразлагаемые полимеры (в промышленном масштабе ПГА производят около 8% компаний). Самые значительные представители этого семейства, полигидроксибутират (ПГБ) и полигидроксивалерат (ПГВ), также получают из сахаров. Из них делают упаковочные и нетканые материалы, одноразовые салфетки и предметы личной гигиены, пленки и волокна, связывающие вещества и покрытия, водоотталкивающие покрытия для бумаги и картона.

В общем и целом на упаковку идет примерно 60% биопластиков, причем не только биоразлагаемых. Эти полимеры также используют при производстве одноразовой посуды, в сельском хозяйстве (защитные пленки), электронике (разъемы, оболочка компьютеров, зарядные устройства, мобильные телефоны, клавиатуры). Появляются всё новые приложения.

В этих ручках все, кроме чернил, сделано из модифицированного крахмала

Одно из преимуществ биопластиков, которое подчеркивают все их производители, — они существенно уменьшают выбросы диоксида углерода в окружающую среду. Это зависит именно от сырья, ведь биомасса растет благодаря тому, что поглощает из атмосферы диоксид углерода. И даже если неразлагаемые пластики, сделанные из растений, сожгут в конце цикла, в атмосферу попадет лишь тот углекислый газ, что они поглотили при жизни. По приблизительным подсчетам, только пластики на основе крахмала могут сэкономить от 0,8 до 3,2 т CO2 на тонну продукции по сравнению с полиэтиленом, полученным из органического топлива. При производстве ПЛА в атмосферу выбрасывается вполовину меньше углекислого газа, чем при производстве полимеров на основе нефти. В любой статье о биопластиках подобные цифры подчеркивают с особым оптимизмом.

Безусловно, возобновляемое сырье уменьшает зависимость от полезных ископаемых, и это замечательно. Однако не составит ли выращиваемая биомасса конкуренцию продовольственным сельскохозяйственным культурам? Похоже, это теоретические опасения. Сегодня биомасса, которая идет на производство биотоплива и химических продуктов, — это не более 5% от всей биомассы, используемой человеком. Распределение выглядит примерно так: 62% биомассы — это сельскохозяйственные культуры (продукты питания), 33% — лес для обогрева, строительства, мебели и бумаги, и только оставшиеся 5% идут на текстиль, химию. Вряд ли это соотношение сильно изменится в последнее время даже при активном росте производства биопластиков. По большому счету речь о конкуренции не идет. Тем более что сейчас многие производители стремятся изготовлять биопластики из отходов сельхозпроизводства и целлюлозы, оставшейся от обработки древесины.

Упаковки из биопластиков. Фото с сайтов www.2b1stconsulting.com, www.ecofriend.com, packworld.com, greenerpackage.com

Биопластики на основе полилактидов, крахмала и целлюлозы


Конечно, коммерческими гигантами движет не только забота о планете и желание вызвать позитивное к себе отношение у сознательных потребителей. Активно участвуя в сокращении выбросов СО2, они также снижают себе ставку налогов. Кстати, несовершенство биоупаковки они всё-таки учитывают: газированные напитки разливают в растительный, но не биоразлагаемый материал, а йогурты в стаканчиках из ПЛА должны храниться в холодильнике.

Контейнеры для фруктов — одно из применений полимера молочной кислоты. Фото с сайта www.caleidoscope.in

Хоть эксперты и считают, что производство биопластиков к 2020 году будет составлять 3,5–5 миллионов тонн, или примерно 2% (по некоторым оценкам, 5%) от общего производства пластиков, говорить о массовом выпуске пока не приходится. Правда, есть и оптимистичные подсчеты, согласно которым к 2020 году пятая часть мирового рынка пластмасс будет занята биопластиками (примерно 30 миллионов тонн).

Полигидроксиалканоаты, произведенные микробами из растительного сахара, — материал для упаковки

Проблема, как всегда, в деньгах — сегодня биопластики стоят в 2–7 раз дороже, чем их аналоги, полученные из углеводородного сырья. Однако не стоит забывать о том, что еще пять лет назад они были в 35–100 раз дороже. Практически все группы полимеров, которые сегодня делают из нефти, уже имеют аналоги, произведенные из биоресурсов, и их можно было бы по крайней мере частично заменить во всех применениях. Но пока биопластики так дороги, их массовый выпуск нереален. Многие эксперты полагают, что как только большое количество заводов начнет выпускать биопластики, цена упадет, и тогда-то они составят реальную конкуренцию полимерам из нефти. Поскольку свойства материалов улучшаются, а объемы производства растут, то перспективы, очевидно, есть. Но сегодня конкурентоспособны в массовом масштабе только полимеры с уникальными свойствами — например, те, которые используют в фармакологии и медицине. Уникальна также молочная кислота, из которой сегодня делают 200 тысяч тонн полилактидов в год.

Вероятно, кто-то опять подумает: если посчитать все затраты на выращивание биомассы, ее переработку и извлечение сахара и крахмала, превращение их в полимеры и изготовление конечных продуктов, то сколько же энергии для этого потребуется? Наверняка больше, чем при добыче газа и нефти. Стоимость, очевидно, будет различаться в зависимости от выращиваемой культуры, климата и схемы производства. Где-то и когда-то это выгодно, а в других случаях о выгоде можно говорить с большой натяжкой. Но в любом случае этот сектор надо активно развивать — ведь накопленные знания пригодятся будущим поколениям. Ведь потомки регулярно будут поминать нас тихим словом, когда, отправившись в лес по грибы, под каждой сгнившей корягой будут находить совершенно целые пластиковые бутылки.

Читайте также: