Как сделать направление тока

Обновлено: 03.07.2024

Исключительно широкое применение на практике получили устройства, имеющие нелинейную характеристику (§ 1.16) и обладающие такой особенностью: они хорошо проводят ток в одном направлении и плохо проводят ток в другом направлении. Такие устройства называют выпрямителями (см. гл. 9).

Электрическую характеристику таких устройств можно получить по ранее применявшейся схеме (рис. 1.13), дополненной рубильником, предназначенным для перемены направления тока: в зависимости от положения рубильника (рис. 1.17), соединяющего генератор постоянного тока с внешней цепью, ток во внешней цепи должен изменять направление.

Рис. 1.18. Схема для определения зависимости тока от напряжения в выпрямителе. Цепь присоединяется к источнику, напряжение которого можно регулировать (ИРН). Перекидной рубильник предназначен для изменения направления тока и напряжения во внешней части цепи

Рис. 1.19. Электрическая характеристика выпрямителя. По горизонтальной оси вправо отложены значения тока для одного направления (каждое деление соответствует 1 А). По той же оси влево отложены значения тока противоположного направления (каждое деление теперь соответствует 0,05 А). По вертикальной оси отложено напряжение вверх при одном положении рубильника, вниз — при другом положении. Одно деление в вертикальной оси соответствует 0,25 В

На рис. 1.18 показана схема для измерений, а на рис. 1.19 представлена диаграмма, построенная на основании опытных данных.

Обратим внимание на то, что при одном направлении включения генератора напряжению 1 В соответствует ток 3,5 А, а при другом направлении такому же напряжению (1 В) соответствует ток, меньший 0,05 А.

В последнем случае ток меняет направление на противоположное.

Пример. Подсчитайте сопротивление выпрямителя при разных направлениях тока и при напряжении 1 В.

Из приведенных цифровых данных находим, что для одного направления (проводящего) сопротивление

Для другого направления (непроводящего) сопротивление больше, чем

Выпрямляющее действие. Практическое назначение устройств, хорошо проводящих ток в одном направлении и плохо в другом, заключается в возможности выпрямления переменного тока: ток одного направления пропускается, а ток другого направления задерживается.

Подобные выпрямители применяют для зарядки аккумуляторов от сети переменного тока и для многих других технических устройств.

Электрической ток представляет собой упорядоченное (направленное) движение заряженных частиц. В металлах этими заряженными частицами будут являться свободные электроны. Они имеют отрицательный заряд.

В растворах солей, щелочей или кислот в роли заряженных частиц представлены ионы. При этом двигаться в таких веществах будут и отрицательные ионы, и положительные ионы.

Так направление движения каких частиц в проводнике принято за направление тока? В данном уроке мы ответим на этот вопрос

Направление тока

Сразу озвучим главное правило (рисунок 1).

За направление тока принято считать направление от положительного полюса источника к отрицательному.

Получается, что за направление тока принято направление движения положительных частиц. Ведь именно они, имея положительный заряд, будут притягиваться к отрицательным зарядам.

Но как же движение свободных электронов в металлах? Ведь они обеспечивают течение тока в проводнике. А электроны — это отрицательно заряженные частицы. По логике, как раз-таки они должны двигаться к положительному полюсу. То есть, мы получаем абсолютно противоположные выводы.

Почему за направление тока было принято движение от положительного полюса к отрицательному?

Такая путаница в этом вопросе возникла по одной простой причине. Дело в том, что явление электрического тока было открыто раньше, чем более подробные знания о строении атома. На тот момент считалось, что сам атом неделим, не было никакой информации об электронах и ионах.

Поэтому считали, что ток может иметь два разных направления. Но почему так происходило, объяснить не могли.

Существовали даже предположения, что существует два разных вида тока. Эти виды могли при соприкосновении нейтрализовать друг друга. На самом деле, тело просто получало одинаковое количество положительных и отрицательных зарядов. Оно становилось электрически нейтральным. Так что дело тут было совсем не в каких-то видах тока.

В итоге, известный французский ученый Андре Ампер (о нем вы еще более подробно узнаете в следующих уроках) убедил научное сообщество принять одно из двух направлений за основное. И выбор пал на направление от положительного источника тока к отрицательному (рисунок 2).

Направление тока в цепи

Важный момент:
принятое направление тока учтено во всех правилах и законах, связанных с электрическим током.

По этой причине условное направление тока не стали менять, даже когда ученые получили новые данные о строении вещества.

При использовании схем электрических цепей важно помнить, что ток распространяется именно от положительного полюса источника тока к отрицательному (рисунок 3).

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.



Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…

Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.

от плюса к минусу

принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..

Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот.

В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.

Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.



Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.



Параллельная электрическая цепь

Защита от токов короткого замыкания

Что можно сказать в заключение. Если вы планируете сделать ремонт электропроводки своими руками или модернизировать существующую, почитайте эту статью . Крайне внимательно отнеситесь к выбору аппаратов защиты вашей сети. Важный совет: когда устанавливаете или будете устанавливать новый автомат, УЗО или диффавтомат, внимательно прочитайте бумагу, которая идет в комплекте. В ней содержится такой пункт, как срок эксплуатации и срок поверки. В течении срока эксплуатации производитель дает гарантию, что устройство будет выполнять свои основные функции. Срок поверки указывает на период, в течение которого могут измениться параметры срабатывания защиты, то есть через указанный промежуток времени желательно (а я бы даже сказал обязательно) либо сделать поверку автомата, либо заменить (благо, не так дорого он стóит). Кстати, пробки с плавкими предохранителями в поверке не нуждаются. Не забывайте делать регулярный осмотр электропроводки и как минимум раз в год протягивать винтовые соединения на автоматах и шинах нулевых и заземляющих проводов. Не забывайте про заземление — оно поможет вовремя выявить устройства с поврежденной изоляцией.

Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания: 1. Последовательное соединение элементов. 2. Параллельное соединение элементов. 3. Последовательно-параллельное (смешанное) соединение элементов.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Базовые понятия о электричестве

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.



Основные характеристики переменного тока

Как течет ток от плюса к минусу

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.
Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.


А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).



Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

ДобрыйМальчик

\u043e\u043c\u0435\u043d\u044f\u0442\u044c \u043f\u043e\u0434\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435 \u043a \u043f\u043e\u043b\u044e\u0441\u0430\u043c \u0438\u0441\u0442\u043e\u0447\u043d\u0438\u043a\u0430 \u0442\u043e\u043a\u0430 (\u0442\u043e \u0435\u0441\u0442\u044c \u043f\u043e\u043c\u0435\u043d\u044f\u0442\u044c \u043c\u0435\u0441\u0442\u0430\u043c\u0438 \u043a\u043b\u0435\u043c\u043c\u044b \u043d\u0430 \u0431\u0430\u0442\u0430\u0440\u0435\u0435). ">,- \u0438\u0437\u043c\u0435\u043d\u0438\u0442\u044c \u043f\u043e\u0434\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435 - \u043f\u043e\u043c\u0435\u043d\u044f\u0442\u044c \u043c\u0435\u0441\u0442\u0430\u043c\u0438 \u043a\u043b\u0435\u043c\u043c\u044b
- \u0432\u0441\u0442\u0430\u0432\u0438\u0442\u044c \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e \u0444\u0430\u0437\u043e\u0434\u0432\u0438\u0433\u0430\u044e\u0449\u0438\u0445 \u0446\u0435\u043f\u043e\u0447\u0435\u043a (RC \u0446\u0435\u043f\u0438 \u0438\u043b\u0438 RL \u0446\u0435\u043f\u0438 )
">]" data-testid="answer_box_list">

IUV

Мне известны два варианта
- изменить подключение - поменять местами клеммы
- вставить несколько фазодвигающих цепочек (RC цепи или RL цепи )

Можно п оменять подключение к полюсам источника тока (то есть поменять местами клеммы на батарее).

ДобрыйМальчик

ДобрыйМальчик

ДобрыйМальчик

ну да .я лабу просто делаю а там задание поменяйте направление тока на противоположное!


Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10 -19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10 -19 = 6,24 • 10 18 электронов.
Следовательно, если 6,24 • 10 18 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор - амперметр.


Рис. 1

Направление электрического тока

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные - притягиваются), что хорошо иллюстрирует рис. 2 .

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и др.).

Читайте также: