Как сделать микроботов

Обновлено: 07.07.2024

Ученые разработали новые микроботы, которые могут доставлять лекарства в определенные места организма: их можно подзаряжать с помощью лазера.

Авторы новой работы напечатали микроботов размером с клетку с помощью системы лазерной литографии для 3D-печати Их сделали из гидрофобной (водоотталкивающей) смолы.

Для того, чтобы питать и направлять микроботов, авторы использовали внешний ультразвуковой преобразователь: его нужно навести на цель, после этого звуковые волны заставляют пузырьки колебаться и толкают робота вперед. Таким образом можно управлять ими дистанционно.

Новые роботы смогут без лишних вмешательств доставить лекарства к определенному органу или области в организме человека: новая разработка мобильнее, чем аналоги и быстрее перемещается по организму.

Сейчас ученые работают над созданием роботов из биосовместимых и биоразлагаемых материалов, чтобы они безвредно растворялись в организме, как только их работа будет выполнена.

Роботы заменяют людей на производстве и в быту, трудятся в опасных условиях. Андроиды, напоминающие человека, работают, как правило, в качестве промоутеров, а промышленные машины настроены на точное выполнение функций. Их разработкой занимаются специалисты.

Домашних же мастеров интересует вопрос, как сделать робота из подручных средств. Оригинальные механизмы можно сконструировать самостоятельно и запрограммировать на реализацию несложных задач.

Как сделать робота самостоятельно

Робот, реагирующий на источник света

Для быстрого сбора механизмов используются предметы, которые можно найти дома. Это моторчики и батарейки из детских игрушек, проволока, солнечные аккумуляторы от старых калькуляторов, светодиоды. Дополнительно потребуются фиксаторы (клей, изолента), отвертка и другие инструменты из домашней мастерской.

Перед началом работы следует определить, какие функции возьмет на себя готовый механизм. За 15 минут можно собрать робота, который ищет источник света. При включении лампы он будет двигаться к ней, а при перемещении фонаря — следовать за потоком лучей.

Необходимые инструменты и детали

При сборке конструкции простого робота своими руками потребуются:

  • основа – монтажная плата или плотный материал (картон);
  • движущая сила – миниатюрные моторчики мощностью 3 или 5 В (из старой игрушки);
  • колеса – крышки от пластиковых бутылок;
  • датчики – фототранзисторы на 3 В;
  • источник питания — 3 спаянные батарейки АА (пальчиковые);
  • управляющие элементы – транзисторы 816Г (производство – Россия);
  • монтажные приспособления – провода из витой пары.

Для проделывания отверстий на картоне потребуется шило, а фиксатором элементов послужит термопластичный клей (из термопистолета). Для работы также понадобится паяльник и жесткая проволока, которую заменит разогнутая скрепка.

Робот краб НЕХА

Процесс сборки

Готовые детали следует разложить на рабочем столе и включить паяльник. Первоначально собирают плату, для чего подготавливают текстолитовую или картонную основу со сторонами от 4 до 5 см. На ней должна уместиться схема, батарейки, двигатели и крепеж переднего колеса.

Поодаль от переднего края фиксируют транзисторы, запаивая их так, чтобы маркировка располагалась на стороне правого колеса.

К 3 соединенным батарейкам подпаивают провода и определяют на плате 2 точки их схождения (плюс и минус). Удобно продеть в края платы витую пару, запаять концы к транзисторам и датчикам, вывести петлю и к ней подпаять батарейки.

Двигатели устанавливают в конце шасси с противоположной стороны платы. Управляющий моторчик крепят напротив управляемой системы. Это необходимо, чтобы робот поворачивался на свет.

Сборку электрики начинают от отрицательного полюса батарейки к положительному контакту по всей схеме. Взяв часть витой пары, припаивают отрицательный контакт датчиков к минусу батарей, и в это же место добавляют коллекторы транзисторов.

Робот, следующий за источником света

Второй фотоэлемент припаивают небольшим куском провода к транзисторной базе. Остальные ножки присоединяют к моторчикам. Для проверки правильности сборки используют тестер полярности напряжения.

После сборки проводят тестирование. Для этого включают схему и подносят ее к источнику света, поворачивая сначала одним, затем другим чувствительным элементом.

Когда все сделано правильно, двигатели на плате вращаются, меняя скорость в зависимости от степени освещения.

Если устройство не работает, проверяют правильность подключения контактов. В схеме каждый из датчиков отвечает за работу колес — правый за левое, и наоборот. Если это не так, корректируют полярность включения моторов.

Далее осуществляют сборку устройства. Первым делом изготавливают боковые колеса, склеив крышки между собой полой частью внутрь. Для их фиксации просверливают небольшые отверстия, используя миниатюрную дрель с насадками. В колесо продевают проволоку (бывшую скрепку) и закрепляют ее концы между фотодатчиками на плате.

На последнем этапе проверяют работу механизма, используя источники освещения разной интенсивности. Колеса робота должны ехать вперед. Если система работает, зафиксированные на плате моторчики и батарейки закрепляют термоклеем.

После приступают к изучению возможностей робота и расширению его функционала. Например, ставят задачу, чтобы он ездил по заданной траектории.

Робот, различающий препятствия

Перед сборкой интеллектуального устройства обдумывают его внешний вид и принцип передвижения. Оптимальный вариант – использование гусеничной цепи (как в танке).

Такими роботами легче управлять, и они способны передвигаться по любому типу поверхности. Снять гусеницы, моторчик и редуктор можно с игрушечного танка.

Инструменты и запчасти

Перед созданием робота следует подготовить:

  • микроконтроллер (ATmega 16 в корпусе Dip-40);
  • керамические конденсаторы 0,1 мкФ, 1 мкФ, 22 пФ;
  • резисторы на 25 Вт номиналом 10 кОм (1 единицу) и 220 Ом (4 штуки);
  • диод 1N4004;
  • L7805 в корпусе ТО-220;
  • паяльник;
  • инфракрасные диоды (2 шт.);
  • фототранзисторы, способные реагировать на длину ик-лучей;
  • резонатор кварцевый на 16 МГц;
  • мультиметр;
  • радиодетали;
  • гусеницы и мотор от игрушечного экскаватора, танка.

Работа с платой

Для обеспечения питания микроконтроллера подбирают стабилизатор напряжения. Оптимальный выбор – микросхема L7805, дающая на выходе стабильные 5 В. Дополнением к ней идут конденсаторы для сглаживания напряжения и диоды, защищающие от переполюсовки.

Далее осматривают корпус контроллера MK-Dip и выделяют в нем узлы:

Робот, различающий препятствия

Управление двигателями

В приспособлении используется микросхема L293D со встроенными диодами, которые защищают систему от перегрузки. Она имеет 2 канала, что позволяет подключить сразу 2 двигателя. Моторчики на плате запрещено присоединять напрямую к МК. Контакт обеспечивается с помощью ключевых транзисторов.

Во время работы возможен нагрев микроэлектронного устройства. Для отведения тепла предусмотрены ножки GND, которые следует распаивать на контактной площадке.

Установка датчиков препятствий

Ориентирование робота в пространстве обеспечивает простой инфракрасный датчик. Он состоит из диода, способного излучать в инфракрасном диапазоне, и фототранзистора для приема лучей. В отсутствии преграды перед механизмом транзистор закрыт.

При его приближении к мебели, стене, элементы улавливают тепло. Транзистор открывается, что активирует течение тока по цепи и побуждает устройство изменять траекторию движения.

Датчики устанавливают на передней части платы, подключая их с помощью проводов к основной схеме. По бокам от основы располагают гусеничный механизм.

Прошивка робота

Для работы устройства требуется программа, которая позволит снимать показания с датчиков и управлять двигателями. Простым роботам ее пишут с использованием языка программирования Си. Он представляет собой набор функций, вызывающих друг друга для дополнения.

Прописывая команды, следует учесть, что по инструкции у робота 2 датчика. Если на 1 из фототранзисторов поступает свет от инфракрасного диода, механизм начинает движение назад, отъезжая от препятствия. Он разворачивается и снова едет вперед.

Наличие преград следует проверять справа и слева, что прописывается с помощью команд. Алгоритм работы можно усовершенствовать, задав командную строку, что делать при возникновении угрозы прямого столкновения.

Улучшить готовый механизм позволит энкодер, который распознает положение робота в пространстве. Для информативности в дальнейшем устанавливается дисплей, на котором будет отображаться отладочная информация, расстояние до препятствий и другие нужные сведения.

Робот, различающий препятствия

Наилучший вариант знакомства детей с миром робототехники — конструирование и программирование Lego-роботов (EV3 и Boost).

Роботы для детей

Робототехника позволяет школьникам развивать творческие навыки и знакомить с техническими терминами. Освоив принципы конструирования lego-роботов (как правило, в школах робототехники используют для обучения lego-платформы), дети учатся разбираться в новых технологиях и осваивают азы востребованной профессии.

Ребятам будет интересно самостоятельно построить или поучаствовать в сборке:

  • механических насекомых, которые передвигаются, светятся в темноте;
  • квадропода (4-хногого шагохода) по специальным чертежам;
  • умных робоживотных, которые могут передвигаться по заданной траектории;
  • робота-колобка для накопления солнечной энергии;
  • настоящей роботизированной руки для игры на барабане и других манипуляций.

Полезные роботизированные устройства для начинающих

Первые шаги в робототехнике можно начать:

Необходимые навыки

Для изготовления роботов новичкам потребуются следующие навыки:

  • умение конструировать, создавать механизмы;
  • знание того, как обеспечивается взаимодействие маленьких помощников с внешней средой;
  • изучение темы, так как сделать шагающего робота своими руками – задача не из легких;
  • начальное представление о программировании – переменных, алгоритмах, современных языках.

Познакомившись с азами программирования, можно переходить к созданию самодельных роботов-пылесосов, мойщиков бассейнов и окон в доме. Применение роботам можно найти и в других сферах жизни.

Что мне потребуется?

В первую очередь — микроконтроллер. Он станет мозгом будущего робота. Можно сказать, что микроконтроллер — это крошечный компьютер, размещенный на одной микросхеме. У него есть процессор, оперативная и постоянная память и даже периферийные устройства: интерфейсы ввода и вывода данных, различные таймеры, передатчики, приспособления, которые инициируют работу двигателей. Набор устройств зависит от конкретной модели. Именно микроконтроллер будет получать информацию от внешнего мира через датчики движения, фотокамеры и прочие приспособления, анализировать ее и побуждать робота совершать в ответ какие-то действия.


Микроконтроллер нужно будет установить на печатную плату, запитать его, подсоединить все необходимые устройства (датчики, лампочки, двигатели), а еще собрать из подручных материалов корпус робота. Все детали, которые для этого нужны, можно купить в любом магазине радиотехники.

Если у вас нет профильного образования или опытного наставника, который подробно объяснит, что именно и в какой последовательности устанавливать (и как пользоваться паяльником!), готовьтесь к долгой и кропотливой работе: придется перерыть интернет вдоль и поперек и испортить множество деталей.

Я в ужасе и собираюсь передумать. Нельзя попроще?

Можно. Специально для тех, кто никогда не держал в руках паяльник, но очень хочет попробовать себя в робототехнике, существуют специальные наборы-конструкторы, позволяющие сделать всё то же самое, но быстрее. Самый известный и популярный — Arduino. Его главное преимущество в том, что это не просто игрушка, а целая экосистема: множество обучающих материалов и инструкций, видеокурсы, огромное пользовательское комьюнити — можно задать любой вопрос от новичкового до самого продвинутого. Есть и другие платформы — например, совсем простой конструктор Mindstorms от Lego.

Составы наборов могут быть очень разными, но в каждом есть готовая печатная плата с уже установленным микроконтроллером и всеми дополнительными деталями, которые нужны для решения простых типовых задач. Обычно плату можно напрямую подключить к компьютеру через USB. А дальше среда разработки от производителя поможет сразу же сделать первые шаги в программировании роботов. Например, заставить мигать лампочку на плате.

Теперь всё зависит от вас. Можно, используя готовую плату, реализовать собственный несложный проект: например, сделать машинку, которая движется и останавливается по команде, или гирлянду для новогодней елки. Можно купить набор, уже включающий в себя всё, что нужно для постройки робота определенного типа, и потренироваться на нем. Плюс этого варианта: все детали в наборе подготовлены так, чтобы вы могли соединить их без паяльника или других инструментов.

У меня в школе была двойка по физике, и вообще я гуманитарий. Мне нужно что-то выучить, прежде чем приступать?

Штурмовать учебники необязательно. Конечно, школьная физика пригодилась бы, но если вы ее забыли, не переживайте — вспомните по ходу дела. Для начала просто погуглите, что такое ток, сопротивление, закон Ома, конденсатор, транзистор — пара десятков статей дадут вам базовые представления о радиотехнике, и этого хватит на первое время. Позже вы легко найдете в сети всю информацию, которая вам понадобится. И усвоите ее на практике — гораздо лучше, чем из учебника.

А программировать надо уметь?


Перед первой попыткой написать программу для робота достаточно разобраться, что такое цикл и условный оператор . Для тех, кому и это кажется слишком сложным, производители конструкторов часто предусматривают визуальные редакторы: там код вообще не нужно писать, всё настраивается перетаскиванием блоков мышкой. Конечно, никакого сложного функционала так не напрограммируешь, но это уже начало. Позже, если захотите заниматься робототехникой углубленно, полезно будет освоить язык С, который чаще всего используется в этой сфере.

Меня случайно не убьет током?

Самая вероятная неприятность — некоторое количество испорченных деталей, которые вы попытаетесь подсоединить не так и не туда. Но переживать не стоит: все необходимые расходники недороги, а их поломка тоже важная часть обучения.

Мой робот сможет защитить меня от врагов? Ну или хотя бы тапочки принести?

Самый первый — вряд ли. Точнее, нет ничего невозможного, но для начала лучше поставить перед собой цель попроще. Например, на базе того же Arduino можно собрать самых разных движущихся роботов: они могут ездить просто вперед-назад, по сложной заданной траектории или по нарисованной линии. Робот, который самостоятельно объезжает препятствия или как-то еще меняет свое поведение при приближении к разным объектам, тоже посильная задача. Еще первый робот вполне сможет включать и выключать что-нибудь, ориентируясь на уровень освещенности, совершать какие-то действия в определенный момент, заданный таймером, или по нажатию кнопки.

Умение собирать роботов как-то пригодится мне в жизни?

Да, еще как. Вы неизбежно научитесь программировать. Причем будете в состоянии не просто писать код, который что-то как-то делает, но и понимать всю цепочку, по которой набранные вами на клавиатуре символы преобразуются в действия целого механизма. Уметь программировать в наше время почти так же полезно, как знать английский язык: пригодится, даже если вы маркетолог или продавец мороженого.


Где можно узнать больше о роботах?

Можно пройти один из многочисленных, в том числе совершенно бесплатных онлайн-курсов. Можно выбрать курс, посвященный Arduino, — как, например, этот от МФТИ, или начать с Lego. А можно не привязываться к конкретной платформе и учиться робототехнике в целом — например, на этом курсе от Бауманки. Ну а если вы знаете английский, буквально вся Coursera с программами по робототехнике от ведущих мировых университетов к вашим услугам.

А если мне понравится и я захочу сделать это своей профессией? Куда податься?

SRI International разработала роботизированный улей из насекомоподобных машин, способных создавать практически любые конструкции. Эти роботы в будущем послужат промышленности, медицине и даже малому бизнесу.

Дизайн роботизированного комплекса, как нетрудно догадаться, был вдохновлен муравьиными колониями, где каждая особь выполняет свою задачу, в конечном итоге направленную на достижение общей цели.

Микро-роботы SRI и платформа, на которой они базируются, также способны объединяться с программой DARPA Open Manufacturing, что позволяет создавать новые продукты в широком диапазоне производственных вертикалей. Роботы могут собрать практически что угодно, вне зависимости от габаритов и сложности объектов. Что еще более важно, они способны делать это быстро — большинство подобных прототипов страдает в первую очередь именно от недостатка скорости, который делает их использование практически невыгодным. Микроботы SRI также отличаются от аналогичных проектов и более традиционных автоматизированных систем тем, что практически не имеют ограничений по мобильности: если установить намагниченную сборочную поверхность на подвижный механизм, весь комплекс можно перемещать как удобно производителю. На практике это делает ботов буквально универсальным инструментом, которые могут выполнять не только лабораторные, но и практические задачи в реальных производственных условиях.

Но в чем заключается преимущество перед уже существующими и весьма практичными 3D-принтерами? Основным бонусом является то, что роботы могут использовать любые материалы и компоненты, а также собирать из простых электронных компонентов более сложные аппараты. А если совместить оборудование для 3D-печати с армией микроботов, процесс пойдет еще быстрее.


А вот роботы SRI, судя по всему, в будущем могут стать доступными не только для крупных высокотехнологичных предприятий, но и для малого бизнеса. Они удобны в использовании, малогабаритны и могут производиться большими партиями, что значительно разнообразит и без того немалые возможности бытовых технологий.

Читайте также: