Конденсатор своими руками

Добавил пользователь Алексей Ф.
Обновлено: 04.10.2024

Конденсатор – детям не игрушка

(Архив пионерской мудрости)

Страшная история из нефильма ужасов

Конденсатор является одним из главных элементов в блоке питания импульсных лазеров. Высоковольтный конденсатор используется для питания импульсных ламп-вспышек, а также для накачки импульсных газоразрядных лазеров. Параметры конденсатора выбираются в зависимости от конкретного типа лазера. Определяющими являются такие величины как емкость, рабочее напряжение, волновое сопротивление и собственная индуктивность конденсатора. От емкости и рабочего напряжения конденсатора зависит энергия накачки. Энергия конденсатора рассчитывается по простой формуле

Е = СU 2 /2, где Е – энергия конденсатора

С – емкость конденсатора

U – напряжение зарядки конденсатора

От волнового сопротивления зависит величина тока, который будет проходить при разряде конденсатора через малую нагрузку. Чем меньше в олновое сопротивление конденсатора , тем выше ток. В олновое сопротивление рассчитывается по формуле

ρк = √(Lк/Cк ), где ρк - в волновое сопротивление конденсатора

Lк – индуктивность конденсатора

Cк - емкость конденсатора

От собственной индуктивности конденсатора зависит быстрота передачи энергии конденсатора в нагрузку. Чем меньше индуктивность конденсатора, тем выше крутизна фронта импульса накачки. Откуда в конденсаторе индуктивность ? Дело в том, что обкладки конденсатора представляют собой проводник тока, а проводник, через который протекает ток, имеет индуктивность. Даже если конденсатор состоит лишь из двух обкладок, реальная схема конденсатора соответствует рисунку ниже.


Это классический колебательный контур с активным сопротивлением R, которое зависит от диэлектрика между обкладками конденсатора и удельного сопротивления всех токоведущих элементов конденсатора. Таким образом, заряд и разряд конденсатора происходит не мгновенно, а имеет колебательный характер. Частота колебаний определяется формулой Томпсона, из которой и вычисляется собственная индуктивность конденсатора.

формула Томпсона

, где Lк – собственная индуктивность конденсатора

Cк - емкость конденсатора

fp – основная резонансная частота

Разумеется, чем выше энергия конденсатора, тем больше мощность накачки. Однако с увеличением емкости конденсатора возрастает и время импульса накачки. Если длительность накачки не имеет принципиального значения, то для работы лазера подойдут высоковольтные электролитические конденсаторы. Такие конденсаторы можно использовать, например, для накачки рубинового или неодимового лазера. Конечно, проблематично раздобыть кондер, имеющий 1000 мкФ при рабочем напряжении 3 кВ. Но эта проблема легко решается, если использовать банк конденсаторов. При последовательном соединении отдельных конденсаторов суммарное напряжение зарядки возрастает, а емкость можно увеличить параллельным подключением конденсаторов. В радиотехнических магазинах можно купить электролитические конденсаторы, имеющие, например, 150 мкФ х 450 В.


Из таких конденсаторов можно составить банк на любую емкость и рабочее напряжение.
На рисунке ниже показан пример банка конденсаторов, эквивалентный одному конденсатору на 30 мкФ х 2 кВ.



Однако максимальное напряжение таких конденсаторов ограничено на уровне 15 кВ при емкости 1 нФ. Такие конденсаторы можно использовать для накачки самодельных азотных лазеров или лазеров на парах металлов.
Для накачки лазеров на красителях потребуется 100 – 1000 штук таких конденсаторов, соединенных параллельно. Учитывая стоимость одного такого кондера на уровне ~ 80 руб/шт, все удовольствие обойдется любителю минимум 8 000 руб. Так еще нужно спаять из кучи конденсаторов единый банк.
Через Интернет можно приобрести конденсаторы типа КВИ-3, которые также подходят для накачки лазеров, но их цена будет еще дороже (~ 200 руб/шт).


Также через Интернет приобретаются конденсаторы типа КПИМ, которые вполне подойдут для накачки лазера на красителе.


Эти конденсаторы имеют впечатляющие характеристики. Рабочее напряжение может быть в пределах 5 – 100 кВ при емкости конденсатора 0,1 – 240 мкФ. Но вот частота импульсов будет

Самодельный высоковольтный конденсатор

Схема конденсатора проста, но вот трудности реализации этой схемы в виде готовой конструкции возрастают с ростом рабочего напряжения конденсатора. Для начала разберем возможные варианты простого конденсатора из двух обкладок, разделенных воздухом. На рисунке 1 показаны пластины заряженного конденсатора. Если нужно изготовить конденсатор с низкой индуктивностью, то следует стремиться укорачивать все токоведущие элементы. Причем направление токов в обкладках конденсатора при разрядке должно быть противоположным, дабы снизить магнитное поле. Направление токов зависит от места подключения электродов конденсатора. Индуктивность конденсатора будет самой наименьшей, если электроды конденсатора соединены с обкладками по центру, как показано на рисунке 2.


Собственно по этой схеме изготавливаются коммерческие керамические конденсаторы. Только у высоковольтных конденсаторов обкладки имеют форму круга во избежание возникновения коронных разрядов. Возможные варианты подключения электродов к обкладкам конденсатора, а также направления токов при разрядке показаны на рисунке ниже.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке - суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

Самодельные КПЕ из фольгированного стеклотекстолита

Переменные конденсаторы, они же конденсаторы переменное емкости или КПЕ, используется во множестве устройств. Они нужны в генераторах, антенных тюнерах, некоторых видах антенн, и много где еще. Обратим внимание на тот факт, что в любительской радиосвязи, к примеру, трансивер может с легкостью выдавать 25 Вт или 100 Вт, максимально же разрешенная мощность составляет 1000 Вт. Понятно, что общедоступные маленькие КПЕ тут совершенно не годятся, а нужных для таких мощностей КПЕ в магазине вы попросту не найдете.

Подходящие большие КПЕ из старой радиоаппаратуры можно приобрести на Авито и досках объявлений радиолюбителей. Но цены там зачастую не низкие, к конденсаторам редко указывается их емкость, не представляется возможным найти два или более одинаковых конденсатора, плюс есть риски и неудобства, сопряженные с покупкой с рук. А между тем, изготовить переменный конденсатор в домашних условиях не так уж и трудно.

Идею я подсмотрел в статье Build Your Own Transmitting Air Variable Capacitors 2003-го года за авторством David Hammack, N4DFP. В своей статье Дэвид использует медные листы, которых у меня не оказалось. Но я прикинул, что с тем же успехом подойдет и медь на одностороннем фольгированном текстолите, которого у меня как раз в избытке. Почему бы не попробовать?

Сразу покажу, что у меня в итоге получилось. Вид спереди:

Самодельный переменный конденсатор, вид спереди

Самодельный подстроечный конденсатор, вид сзади

Конденсатор имеет пять прямоугольных пластин размером 20 x 50 x 1 мм, зафиксированных двумя длинными болтами M3. Пластины разделены гайками. Еще четыре пластины в форме полукруга с радиусом 25 мм крепятся на одном болте M3. Этот болт можно вращать при помощи ручки от потенциометра, которую я приклеил к болту при помощи эпоксидного клея. Все это хозяйство держится на каркасе из двух прямоугольных кусков листового пластика размером 30 x 50 мм. Для соединения с подвижными пластинами я использовал толстый медный провод, изогнутый в форме петли. Провод плотно прилегает к вращающемуся болту и закреплен на каркасе конденсатора с помощью термоклея. Капля припоя, которую можно видеть на втором фото, служит для ограничения углов поворота ручки. Понятно, что все работало бы и без нее. Но мне хотелось, чтобы ручка имела какие-то крайние полажения, а не просто крутилась во все стороны.

Fun fact! Текстолит толщиной 1 мм можно резать обычными ножницами для бумаги. А стоящая у меня на столе катушка припоя очень удачно оказалась диаметром именно 25 мм — по ней и обводил.

Емкость такой поделки меняется от 13 до 53 пФ. Увеличивая площадь пластин или их количество, можно получить хоть 1000 пФ. Не думаю, что кому-то могут понадобится подстроечные конденсаторы большей емкости. Но такой конденсатор будет не очень удобен, как из-за больших размеров, так и того факта, что небольшой поворот ручки будет приводить к сильному изменению емкости.

Возможное решение заключается в том, чтобы использовать описанный выше конденсатор только для точной подстройки, а для грубой подстройки использовать конденсаторы фиксированной емкости. Последние можно соединять параллельно при помощи переключения тумблеров с двумя контактными группами.

Пример самодельного конденсатора фиксированной емкости:

Самодельный конденсатор фиксированной емкости

Конденсатор состоит из шести пластин 25 x 50 мм. Пластины были склеены при помощи эпоксидного клея. Все четные пластины соединены между собой, и аналогично соединены все нечетные. Емкость конденсатора составляет 270 пФ. Практическая ценность таких конденсаторов, по-видимому, не очень высока, поскольку высоковольтные керамические конденсаторы фиксированной емкости легко доступны и стоят недорого. Тем не менее, давайте рассмотрим и их тоже, на случай, если когда-нибудь понадобится работать с очень высокими напряжениями.

Fun fact! Альтернативный способ изготовления конденсатора фиксированной емкости заключается в том, чтобы просто взять кусок коаксиального кабеля. Типичный кабель RG58 обладает погонной емкостью около 100 пФ на один метр.

Зависимость емкости конденсатора от числа пластин выглядит следующим образом:

2 пластины (1 слой диэлектрика) - 52 пФ
4 пластины (3 слоя диэлектрика) - 165 пФ
6 пластин (5 слоев диэлектрика) - 270 пФ

Можно заметить, что емкость растет пропорционально количеству слоев диэлектрика с точностью до ошибки измерения, что соответствует теории. Используя первую строчку, ради интереса можно посчитать диэлектрическую проницаемость используемого текстолита:

Это сходится с ожидаемым значением от 4.4 до 4.7.

На StackExchange подсказывают, что чтобы пробить подобные конденсаторы, нужно по крайней мере 3 кВ на 1 мм расстояния между пластинами — это в предположении, что ток пойдет по воздуху. Для надежности, рекомендуется использовать в качестве максимального напряжения половину от этого значения. Напряжение пробоя можно увеличить, увеличивая расстояние между пластинами. Но, как видно из приведенной выше формулы, в этом случае пострадает емкость, и придется увеличивать площадь и/или количество пластин. Более практичное решение заключается в том, чтобы вытравить 3 мм меди по границе пластин. Тогда напряжение пробоя составит порядка 20 кВ — напряжение пробоя 1 мм текстолита или 7 мм воздуха.

Каково будет максимальное напряжение на конденсаторе зависит от цепи, в которой планируется его использовать. Это нужно каждый раз моделировать или считать. Но чтобы оно превысило безопасные 10-15 кВ, придется постараться. В этом случае всегда можно просто увеличить расстояние между пластинами и использовать более толстый текстолит.

Fun fact! Само собой разумеется, ничто не мешает делегировать изготовление компонентов конденсатора вашему любимому производителю печатных плат.

Как видите, все оказалось достаточно просто. Очевидные плюсы самодельных КПЕ — низкая стоимость и доступность. Можно сделать сколько угодно ровно таких конденсаторов, каких нужно. Что же до времени, которое потребуется на изготовление конденсатора, я думаю, оно сопоставимо со временем, которое вы потратите на поиск готового, а также на переговоры с его продавцом.

Дополнение: Листовой алюминий, вероятно, будет более подходящим материалом для самодельных КПЕ, чем стеклотектолит.

Требования снизить размеры радиодеталей при увеличении их технических характеристиках послужило причиной появления большого количества приборов, которые сегодня используются повсеместно. Это в полной мере коснулось и конденсаторов. Так называемые ионистры или суперконденсаторы являются элементами с большой емкостью (разброс данного показателя достаточно широк от 0,01 до 30 фарад) с напряжением зарядки от 3 до 30 вольт. При этом их размеры очень малы. А так как предмет нашего разговора – это ионистр своими руками, то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет.

Ионистор своими руками

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.











Как они проводят переменный ток



Чтобы убедиться в этом воочию, достаточно собрать несложную схему. Сначала надо включить лампу через конденсаторы C1 и C2, соединенные параллельно. Лампа будет светиться, но не очень ярко. Если теперь добавить еще конденсатор C3, то свечение лампы заметно увеличится, что говорит о том, что конденсаторы оказывают сопротивлению прохождению переменного тока. Причем, параллельное соединение, т.е. увеличение емкости, это сопротивление снижает.

Отсюда вывод: чем больше емкость, тем меньше сопротивление конденсатора прохождению переменного тока. Это сопротивление называется емкостным и в формулах обозначается как Xc. Еще Xc зависит от частоты тока, чем она выше, тем меньше Xc. Об этом будет сказано несколько позже.

Другой опыт можно проделать используя счетчик электроэнергии, предварительно отключив все потребители. Для этого надо соединить параллельно три конденсатора по 1мкФ и просто включить их в розетку. Конечно, при этом надо быть предельно осторожным, или даже припаять к конденсаторам стандартную штепсельную вилку. Рабочее напряжение конденсаторов должно быть не менее 400В.

После этого подключения достаточно просто понаблюдать за счетчиком, чтобы убедиться, что он стоит на месте, хотя по расчетам такой конденсатор эквивалентен по сопротивлению лампе накаливания мощностью около 50Вт.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Конденсатор 5

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Электроемкость

На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.

Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):


Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):


Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.

Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.

Здесь: – емкость; – переданный заряд; – потенциал, до которого зарядился проводник.

Схема измерения

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.


Сравнение конструкций разных типов конденстаторов (Источник: Википедия)


Суперконденсаторы различной емкости производства Maxwell

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Параметры КПЕ

Основным параметром для таких деталей, который поможет определить возможность работы устройства в колебательном контуре, стала минимальная и максимальная емкость. Данный показатель чаще всего указывается рядом с самим конденсатором переменной емкости на схеме устройства.

Стоит отметить, что в таких устройствах, как радиоприемники и радиопередатчики, используется сразу несколько колебательных контуров. Для того чтобы настроить работу сразу нескольких частей, используют блоки конденсаторов. Один блок чаще всего состоит из двух, трех или более секций КПЕ.

Роторная часть для таких блоков обычно крепится на один общий вал для всех конденсаторов переменной емкости. Это делается для удобства, так как при вращении всего одного ротора появляется возможность изменения емкости сразу всех устройств, находящихся в этой секции.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Конденсатор 9

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:

  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.

В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Читайте также: