3d сканирование автомобиля своими руками

Обновлено: 03.07.2024

В материале нашего блога, посвященном применению аддитивных технологий в автопроме, мы подробно рассмотрели их главные преимущества и потенциал для российской отрасли. И если внедрение 3D-печати пока сопряжено с определенными трудностями (например, с необходимостью крупных инвестиций и недостаточной автоматизацией), то трехмерное сканирование видится сегодня наиболее предпочтительной и доступной 3D-технологией для автомобильной промышленности.

3D-сканеры дают возможность в разы сократить время и расходы на этапе разработки, повысить качество выпускаемой продукции и, в конечном счете, ускорить выпуск продукта на рынок. Они могут использоваться на любом этапе управления жизненным циклом продукта и помогут оптимизировать производственный процесс любым предприятиям отрасли – от крупных производителей автомобилей, двигателей, спецтехники и компонентов до небольших компаний, выполняющих тюнинг, техобслуживание и ремонт.

Устройства для 3D-сканирования позволяют снять многие ограничения, которые есть у традиционного измерительного оборудования. Такие привычные для метролога инструменты, как шаблоны, микрометры, штангенциркули стоят недорого, но отличаются субъективностью показаний и не подходят для сложных измерений. Координатно-измерительные машины обладают большей точностью, чем 3D-сканеры, но они дороже, более габаритны и требуют специальной подготовки оператора.

Оптические системы контроля, к которым относятся 3D-сканеры, – лучшее решение по соотношению цены и качества, так как они обеспечивают:

    ,
  • высокую точность оцифровки объектов сложной геометрии,
  • могут работать автономно,
  • просты в эксплуатации.

Благодаря 3D-сканеру существенно облегчается труд дизайнера, технолога, конструктора: выполнение трудоемких сложных измерений и создание дизайна с нуля уходят в прошлое.

В этой статье мы продемонстрируем выгоды этой технологии на конкретных примерах, а на представленных ниже видео вы сможете отследить процесс 3D-сканирования в реальном времени.

Какие задачи решает 3D-сканирование

Процесс 3D сканирования

    : возможность проверки любых геометрических параметров, включая входной и выходной контроль, метрологический контроль деталей, корпусов и производственной оснастки. автокомпонентов для оперативного получения проектной документации и модернизации продукта. в целях автотюнинга, прототипирования и оценки внешнего вида изделий, модернизации производственных цехов и оборудования. любого необходимого ассортимента (например, снятых с производства деталей). Модели, сохраненные в цифровых библиотеках, доступны удаленно из любой точки Земного шара.

Главные преимущества 3D-сканирования для автоиндустрии

1. Точность

Безусловно, точность – основополагающий критерий для метрологии. 3D-сканеры позволяют эффективно выполнять измерения с метрологической точностью от 20 до 80 микрон (в зависимости от устройства и размеров объекта).

2. Скорость

Быстродействие – это производительность. 3D-сканирование выводит скорость измерений на новый уровень: процесс оцифровки и обработки в ПО такого компонента, как дверь автомобиля, занимает примерно 20 минут вместо 4 часов измерений на КИМ. Вы не только экономите время, но и снижаете производственные издержки.

3. Надежность

Современные профессиональные и промышленные 3D-сканеры отличаются повышенной стабильностью и надежностью. Ручные устройства предназначены для транспортировки на удаленные объекты и могут работать в условиях производственной вибрации. Все портативные 3D-сканеры, которые компания iQB Technologies использует в своей работе, регулярно путешествуют по России и ближнему зарубежью без единой поломки.

4. Простота

Как выбрать 3D-сканер

3D-сканер Solutionix в автоиндустрии

3D-сканер – это устройство, предназначенное для быстрого анализа физического объекта и создания его точной компьютерной 3D-модели. Принцип его работы основан на вычислении расстояния до объекта при помощи двух камер. В дополнение к камерам используется подсветка – светодиодная или лазерная. Оба типа сканеров применимы в автомобилестроении.

Компания iQB предлагает решения, которые с успехом работают на ведущих предприятиях по всему миру:

    для оцифровки изделий габаритами от нескольких сантиметров до 4 метров. Устройства серии Go!SCAN (в том числе последняя модель Go!SCAN SPARK) основаны на технологии структурированного подсвета; HandySCAN 3D и MetraSCAN 3D – лазерные устройства, которые являются сертифицированными метрологическими инструментами промышленного класса. Модель нового поколения HandySCAN BLACK – самый быстрый портативный лазерный 3D-сканер на рынке. Объемная точность, которую может обеспечить технология Creaform, – до 80 микрон на 16 куб. м. для небольших объектов (10-500 мм) со множеством мелких деталей. Позволяют получить погрешность менее 8 микрон. выполняют быстрое и точное сканирование крупногабаритных объектов, сложных конструкций, помещений и ландшафтов. Работают в диапазоне от 0,6 до 350 м, отличаются повышенной точностью, простотой в работе и возможностью эксплуатации в сложнейших условиях окружающей среды. предназначены для оцифровки объектов размерами от 1 до 120 м (зданий, цехов, элементов промышленных объектов) с целью получения исполнительной документации, размещения нового оборудования или создания 3D-модели помещений. Обеспечивают быстрое получение сканов с линейной точностью до 70 микрон на 10 м.

Некоторые из вышеуказанных сканеров внесены в реестр измерительных средств Российской Федерации и имеют соответствующие сертификаты.

Контроль качества на автомобильном производстве

Основная задача 3D-сканирования, которая поможет оптимизировать автомобильное производство, – это контроль геометрии с целью сверки с эталонной моделью. Можно контролировать не только автомобильные компоненты, но и пресс-формы и оснастку, а также выполнять анализ износа оснастки.

Использование 3D-сканеров дает возможность оперативно отслеживать брак деталей, поступающих от поставщиков, а наличие метрологических сертификатов и методик поверки – получить отчет по отклонениям от заявленной геометрии. При обнаружении брака появится возможность найти его причину, сравнить скан с эталонной CAD-моделью и предоставить отчет производителю или сторонней организации.

Результаты 3D сканирования двери автомобиля

Автозавод выполнял измерения с помощью КИМ по контрольным точкам с получением информации в виде числовой таблицы.
Время работы оборудования и обработки результатов: 4 часа.

Ручной 3D-сканер Creaform HandyScan 700 + ПО Geomagic Control X.
Время подготовки к работе, включая калибровку и наклейку меток – 7 минут.
Время получения скана двери автомобиля (с учетом работы оператора) – 5 минут.
Инспекционный анализ (сравнение с CAD-моделью) – 10 минут.
Всего затрачено времени: 22 минуты.

Автоматизированный контроль на конвейере

Автоматизированные сканирующие системы, включающие 3D-сканер, робот-манипулятор и ПО, могут выполнять не только выборочную проверку, но и контролировать все изделия на производственной линии. Как результат – сокращение времени и ресурсов на процедуры контроля качества и значительное снижение процента брака.

Передовые системы автоматизированного контроля качества на конвейере предлагает компания Creaform. Это MetraSCAN 3D-R – оптический 3D-сканер, устанавливаемый на роботе, и CUBE-R – готовое решение, состоящее из поворотного стола, робота-манипулятора со сканером, отслеживающего устройства и стойки управления. Обе системы уже функционируют на предприятии Daimler в Штутгарте и на заводах концерна Renault-Nissan во Франции.

Посмотрите, как MetraSCAN 3D-R позволяет всего за 2 минуты 27 секунд получить скан двери автомобиля с отчетом:

Реверс-инжиниринг

Кроме того, реверс-инжиниринг выполняет задачу замены производственного оборудования вследствие устаревания, износа или отсутствия, а также оценки текущего и подбора оптимального размещения производственного оборудования и инженерных коммуникаций в цеху.

Реверс-инжиниринг трактора с помощью 3D сканера

В блоге мы уже писали о внедрении 3D-сканирования во французской компании MX, которая производит погрузочное оборудование для сельскохозяйственных тракторов. Производители тракторов редко делятся информацией о своей новой продукции, а получить CAD-модели этих тракторов еще сложнее, поскольку они являются интеллектуальной собственностью. Однако для разработки и производства такого навесного оборудования, как погрузочные манипуляторы MX, иметь 3D-модели абсолютно необходимо. Поэтому компании приходится выполнять 3D-измерения всех тракторов, для которых она хочет спроектировать и производить навесное оборудование, и до недавнего времени эти задачи решались с помощью манипуляторов для 3D-измерений. Сегодня MX использует технологии 3D-сканирования для оцифровки всех областей, необходимых для проектирования адаптируемых конструкций, включая точки крепления кронштейнов и их окружение. 3D-решения Creaform позволили более чем в 2 раза сократить время измерения, а следовательно, уменьшить срок вывода продукта на рынок.

Создание CAD-моделей и цифровых архивов

Получение конструкторской документации и чертежей вручную занимает много времени. Цифровая архивация и получение CAD-моделей изделий – одна из возможностей, которые открывают 3D-сканеры. Вы можете взять любую деталь, снятую с производства, быстро выполнить сканирование и получить 3D-модель для дальнейшего репродуцирования и сохранения в архиве. Цифровыми библиотеками очень удобно пользоваться: конструктор или технолог в любой момент и в любом месте получит доступ к необходимой модели и с легкостью внесет в нее корректировки.

При наличии цифровой модели готового изделия вы можете сравнить результат, полученный после функционального тестирования или краш-теста, с первоначальным изделием либо с эталонной CAD-моделью. Это позволит провести анализ повреждений и износа и внести в конструкцию соответствующие доработки.

Храня информацию об отсканированных на производстве объектах, предприятие получает возможность формировать картину выпускаемой продукции, прогнозировать дальнейший производственный цикл и сокращать издержки.

Вот пример из моего личного опыта. Я увлекаюсь мотоциклами и для своего Ducati Monster приобрел на аукционе eBay давно снятый с производства рычаг задней подвески от модели Ducati 888, который имеет меньший вес и ряд регулировок. На видео выше показан процесс сканирования детали, который занял 10 минут. Результат – полигональная модель в формате .stl. Из модели мы получаем эскизные размеры детали и создаем в САПР параметрическую CAD-модель. Затем пишется управляющая программа для станков с ЧПУ, которая передается токарю-фрезеровщику. В итоге мы имеем копию детали, которая перестала выпускаться 25 лет назад, а ее 3D-модель сохранена в цифровом архиве.

На пути к Индустрии 4.0

Наша компания провела исследование среди более 100 автопроизводителей, работающих на российском рынке. Мы выяснили, что 37% применяют, а 32% планируют внедрять 3D-сканирование. Все больше предприятий автомобилестроения задумываются о внедрении инновационных технологий, в том числе 3D-сканеров – в первую очередь это касается российских автозаводов зарубежных производителей. Есть четкое понимание, что без ускорения выпуска продукции не выдержать конкуренции. Можно говорить о том, что отечественная автомобильная промышленность следует общемировому тренду перехода к цифровому производству и готова к переменам.

Статья опубликована 31.10.2018 , обновлена 11.05.2021

Об авторе

Всем привет! Подскажите, кто имел или имеет дело и опыт в данном хэнд мэйде, какой проектор и камера лучше на сегодняшний день подойдёт для создания 3д сканера в домашних условиях? Может поделитесь опытом. Заранее спасибо!

Это нужно Бахметьева и Кизякова на помощь звать.

Это нужно Бахметьева и Кизякова на помощь звать.

Старый Sony Nex5 справляется отлично, для предметов 300×300×300 распечатал себе платформу с шагом 10°. И собрал лайт куб.

Для уличных сканов выбираю облачную погоду.

Хочу попробовать обвес себе на автомобиль сделать сам. Деталь крупная, поэтому уже спросив про штатив у друга фотографа , тот сказал, что дешёвый покупать нет смысла, будет сильная тряска при вращении, даа вот сразу вопрос, необходим здесь проф штатив или пойдёт и дешёвый и не важна вся эта тряска?

если скан будет на платформе, которая вращается, то пойдет любой, там главное выставить мануальный режим, что бы не менялась экспозиция.

можно и руками, вот мой первый скан на улице, руками 2 года назад.




Если процесс будет в гараже, то только руками, нельзя менять направление света и тени.

если скан будет на платформе, которая вращается, то пойдет любой, там главное выставить мануальный режим, что бы не менялась экспозиция.

можно и руками, вот мой первый скан на улице, руками 2 года назад.




Если процесс будет в гараже, то только руками, нельзя менять направление света и тени.

моя проф студия летом




моя проф студия летом




Блин ну круто же!

Кто на что горазд)

Сложный фон, как для дров.

Самый крутой и точный софт - Bentley Contex Capture, пользовал его у знакомого, работающего в порту.

А так Capturing Reality и Meshroom, Agisoft - не зашел.

Сложный фон, как для дров.

не знаю, прога отделила коричневое от другого коричневого

А кто-то нашел какой-то приличный оборотный стол. Что-бы сам вращал?Есть такие для фото, но они там вращают плавно по кругу. А не "ступенями" на сколько-то градусов псле активыции

А кто-то нашел какой-то приличный оборотный стол. Что-бы сам вращал?Есть такие для фото, но они там вращают плавно по кругу. А не "ступенями" на сколько-то градусов псле активыции

А кто-то нашел какой-то приличный оборотный стол. Что-бы сам вращал?Есть такие для фото, но они там вращают плавно по кругу. А не "ступенями" на сколько-то градусов псле активыции

Я видел, чувак шестерёнки сделал

А сколько нужно (достаточно) кадров на одну модель?

Буквально вчера снимал фрукты. Налупил порядка 60-70 кадров на один предмет. Но пока скинул всё это добро на жёсткий диск. Через недельку-другую хочу попробовать отсканировать.

Кстати в моём случае студия была такой: Пасмурная погода, старенький, покосившийся стул и водружённая на него коробка из пенопласта.

Здравствуйте, в данной статье хочу подробно рассказать Вам, как сделал свой 3D сканер.

Корпус сканера в основном будет сделан из вырезанной МДФ панели, который состоит из двух частей соединяющихся переходными трубками, часть деталей взял из предыдущего проекта по изготовлению поворотного стола .

Основным контроллером будет использоваться Arduino Uno, для которого сделал шилд с драйвером А4988, который будет управлять шаговым двигателем NEMA17, а также на шилде дополнительно расположил пины подключения двух лазеров.

Корпус сканера начал делать с поворотного стола, детали корпуса соединял с помощью мелких саморезов или клея. В корпусе так же сделал отверстия для вентилятора охлаждения двигателя и переходных соединительных трубок. В промежутке между столом и основанием установил большой подшипник с поворотной частью, которая осталась от предыдущего пробного проекта .

Сам поворотный диск состоит из четырех частей, склеенные между собой под разными углами. Во внутрь основания установил двигатель NEMA17 на вал, которого будет фиксироваться диск.

Установил переходные трубки в вырезанные отверстия корпуса, также в одной из трубок сделал отверстие для проводов управления двигателем. Трубки установил вплотную к двигателю для отвода тепла от него.

Даниил Веловатый

Привыкнуть к трехмерным принтерам было просто: нарисовал нужную деталь или фигурку на компьютере, загрузил в принтер — и спустя несколько часов забрал ее воплощение в пластике. Да что уж в пластике, печатают уже и в металле, и даже в органике: недавно напечатали живую печень. Неудивительно, что хочется пойти дальше. Следующий этап — сканирование. Как ни странно, но до появления 3D-принтеров большой необходимости в переносе реального объекта в цифровой мир не было: создатели игр и фильмов просто нанимали художников, которые рисовали все, что было нужно. Потребность в сканерах возникала лишь тогда, когда было важно передать рельеф и форму объекта с очень высокой точностью. При этом часто были совершенно неважны ни продолжительность сканирования, ни стоимость. Так появились первые представители 3D-сканеров: лидары.

Лидар (от английского Light Detection and Ranging) — дорогое, но очень точное устройство. Оно позволяет с точностью до миллиметров строить 3D-модели объектов, размер которых можно сравнить с размерами здания. Из расшифровки аббревиатуры LIDAR следует, что им является любой дальномер, измеряющий расстояние при помощи света. Под это описание попадает невероятное количество устройств. Но чаще всего лидарами называют аппараты вроде этого:


Внутри аппарата размещена особая система зеркал. Здесь установлен фазовый лазерный дальномер, который измеряет расстояние при помощи лазера, а два зеркала служат для отклонения лазерного луча в двух плоскостях. Таким образом, луч пробегает определенный сектор пространства и строит его 3D-модель. Как можно догадаться, скорость такого сканера зависит от быстродействия дальномера и скорости вращения зеркал. А так как все это довольно сложное оборудование, требующее тонкой настройки, стоит оно довольно больших денег. Намного выгоднее бывает заказать сканирование, чем купить сам аппарат. Тем более что надо еще разбираться, как им пользоваться.

Технологии для землян

Так как устройства промышленного сектора были, мягко говоря, не по карману рядовому потребителю, а потребность сканировать реальность росла, появились дешевые настольные и ручные 3D-сканеры. Первые, как правило, имеют поворотный стол, на который помещается исследуемый объект. Спустя несколько минут после начала сканирования мы получим готовую модель. Конечно, качество сканирования и размер сканируемой области несравнимы с лидарами, зато стоят они на несколько порядков дешевле. Именно к такому классу устройств и относится разработанный нами сканер. Основная проблема этих сканеров в том, что сканируемый объект должен поместиться на поворотный стол, что сильно ограничивает область применения. Еще один существенный минус этих сканеров — неполнота сканирования и слепые зоны. Если вы, например, попытаетесь отсканировать вазу, то сканер увидит только ее внешнюю часть, а не полость внутри.


Второй тип сканеров — ручные 3D-сканеры. Их необходимо руками переносить вокруг объекта, но модель они строят с помощь камер. Алгоритм работы таких сканеров существенно сложнее, стоят они дороже, и качество результата хуже, зато они позволяют сканировать большие объекты и тратить на это меньше времени. Выглядят они примерно так:


Одно из основных преимуществ такого сканера — он не ограничен областью сканирования. Мы можем отсканировать, например, лицо человека без необходимости ставить его голову на поворачивающийся стол. При определенном усердии можно отсканировать даже целое помещение, если только точность позиционирования позволит это сделать. Чтобы повысить точность, можно наклеивать специальные метки, которые сканер находит и использует как реперные точки. Собственно, на фотографии выше так и сделано. Такой подход ограничивает область сканирования, но, к сожалению, здесь либо овцы целы, либо волки сыты.

В нашей лаборатории мы решили создать дешевый 3D-сканер, имеющий точность, сравнимую с точностью 3D-печати. Это был наш первый серьезный проект, поэтому мы допускали ошибки, многого не понимали и еще больше узнавали в процессе. Сначала мы построили простой лазерный дальномер из лазерной указки и . Чтобы понять, как 2D-камера позволяет измерять расстояние, придется подключить воображение. Представьте себе натянутую в воздухе нить, по которой ползет паук. Если мы стоим вплотную к веревке, то видим, как паук ползет строго на нас (не очень приятное зрелище). А если теперь мы посветим на всю эту конструкцию лампой сбоку, на полу мы увидим тень. Так как свет поступает сбоку, проекция паука будет двигаться по проекции нити. Измеряя расстояние от начала тени нити до тени паука, мы можем вычислить, сколько паук прополз, умножив на некоторый коэффициент, ведь мы создаем сжимающее отображение.

Приблизительно так же работает наш сканер. Только вместо нити — лазерный луч, а вместо экрана с тенью — камера. Так же как паук двигается по нити, вдоль лазерного луча двигается пятно, возникающее, когда этот луч встречает препятствие. Обнаружив положение пятна на фотографии, мы можем определить расстояние до объекта, на котором это пятно находится. На словах это сложно. На картинке выглядит проще:

Чем дальше стенка, тем ближе к пунктирной .

Чем дальше стенка, тем ближе к пунктирной линии будет точка pfc на матрице камеры

Но такой дальномер измеряет расстояние до одиночной точки, а это занимает очень много времени. Поэтому мы поставили на лазер линзу, которая превращает лазерное пятно в лазерную линию. Теперь мы измеряем расстояние сразу до сотен точек (ведь линию можно представить как набор точек), осталось соорудить систему, позволяющую этой линией пройтись по всему предмету, а для этого нужен поворотный стол, на который предмет и помещается.

Сам сканер собран из фанерных деталей, которые были вырезаны лазером. Для поворота стола используется шаговый двигатель, которым управляет разработанная нами плата. Она же управляет яркостью лазера и подсветки.

Обработка изображения с камеры происходит на компьютере, для этого была написана программа на Java. После окончания сканирования программа выдает так называемое облако точек, которые с помощью другой программы соединяются в полноценную модель. Эту модель уже можно напечатать на 3D-принтере, то есть получить копию реального объекта.

Читайте также: