Как сделать реверб на микрофон

Обновлено: 03.07.2024

Всем привет.
В этой статье поговорим о том, как сделать гитарный ревербератор. Наш ревер будет отличатся простотой конструкции, и хорошим для своего класса звуком.

Ревер выполнен на специализированной микросхеме HT8970 или ее аналог PT2399. Это микруха обладает встроенной памятью, или что то такое, и предназначается для использования в системах караоке. Конечно качество звука не позволяет использовать этот ревер для работы в студии, но для концертной деятельности вполне подходит.
Функция регулятора громкости, (которой в оригинальной схеме нет), позволяет гитаристам использовать этот ревер для того чтоб подчеркнуть сольные партии, то есть при игре соло повышается громкость, ну и добавляется сам эффект реверберации.

В моей практике эта штуковина зарекомендовала себя с положительной стороны, и если бы наша группа не распалась. Эхх!

Содержание / Contents

↑ Откуда ноги растут?

Мы видим, что у первого операционника я просто зачеркнул номиналы, потому что их можно менять в очень широких пределах, от этого зависит входное сопротивление, и необходимо немного поднять коэффициент усиления этого каскада. Лично у меня на этом месте стоят 470к и 680к
Конечно понятно, что все мы радиолюбители люди прямо скажем амбициозные, и не всякий, далеко не всякий из нас будет повторять ту или иную конструкцию целиком, как она описана, на это тоже могут быть разные причины, так что, друзья, в любом случае, раз уж мы с вами знаем с какой стороны брать в руки паяльник, в конечном итоге решать, изменять или не изменять схему, вам.

↑ Несколько слов о работе схемы

Сигнал пройдя предварительное усиление левым по схеме операционником попадает непосредственно на микросхему ревера, и через резистор 10к на правый операционник, с него через регулятор громкости (на схеме не показан) на выход. С выхода ревера (выв 14) задержанный сигнал через переменный резистор WET, разделительный конденсатор, и резистор 10к попадает также на правый операционник, где подмешивается к основному сигналу, а через переменный резистор REP идет обратно на вход микросхемы.
Таким образом мы можем регулировать глубину обратной связи (REP), или количества повторов сигнала, и уровень (WET) задержанного сигнала. В некоторых схемах еще вводят регулировку исходного сигнала, это делается очень просто, но я решил ее не делать. Микросхема позволяет регулировать время задержки, регулятор TIME, переменный резистор выв. 6.

↑ Печатная плата, расположение деталей, part-list:

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Здесь настолько все хорошо показано, что я думаю комменты излишни

После того как вы сделаете плату (как делать плату - решайте сами, я рекомендую фоторезист, ультрафиолет и все такое), впаяете в нее делали и у вас должно получится примерно так:

↑ Вид на монтаж

Все конденсаторы которые 0,1 мкф у меня на 250 Вольт , этого делать конечно не обязательно, просто у меня таких кондеров полно.
Итак для того чтоб это дело выглядело круто нам понадобится крутой корпус. Здесь полная свобода, для каждого. Я решил сделать корпус из нержавейки попросив своих друзей, имеющих аппарат лазерного раскроя металла, по моим чертежам сделать мне такую коробку.
Мы имеем, платку ревера, четыре переменных резистора, вот тут поясню, дело в том что на схеме нет регулятора громкости, а без него я считаю, такой ревер совершенно бесполезен, поэтому сигнал с выхода мы будем заводить не напрямую в джек, а через переменный резистор порядка 50—100 ком, выполняющий регулятор громкости.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Соеденяем все это дело вместе, стараемся аккуратно, используем термоусадку, и т д

Потом припаиваем питающее гнездо, разъем для кроны, все, это дело запитываем, запускаем, подключаем, включаем, если работает то наруливаем различные звуки, и сразу же пишем пару семплов, их будем слушать в конце статьи.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

↑ Обещанные пара семплов

2) задержка на максимум, обратная связь на минимум.

3) Задержка почти на минимум, обратная связь не помню на сколько.

↑ Горизонты

Надо добавить, что у этой микросхемы, если с ней поиграть я думаю откроются так сказать незапротоколированные возможности. Например, делаем регулировку исходного сигнала, ставим ее на минимум, и задержку тоже ставим на минимум. Таким образом у нас получается фазовращатель, то есть левый канал идет напрямую, а правый через время задержки, соответствующее углу сдвига фаз около 90 или 270 на частоте гдето 1000 гц. Получается псевдостереоэффект!
Или делаем генератор функций с частотой 0,5—20 гц, и пытаемся это дело запустить на 6-ю ногу микросхемы, и если правильно подобрать амплитуду, то получим эффект фленджер.

И напоследок буквально пара аккордов, навеянных мне дымом канифоли по всей квартире.
Записано кстати тоже с этим ревером.

Ревербератор (англ. Reverberator) — устройство или программа, имитирующая эффект реверберации. Реверберация, созданная с помощью таких устройств, называется искусственной, она может выполнять две задачи:

  • Создание естественного пространственного эффекта.
  • Создание искусственных эффектов, которые не существуют в природе.

При создании эффекта комната изменяется так, что слушатель думает, что звук звучит в определенном пространстве (атмосфере), а не в "сухой" студии звукозаписи.

Download

Содержание


Первые эффекты реверберации создавались при помощи реального физического помещения, так называемых эхо-камер. В одном конце комнаты устанавливалась колонка, проигрывающая звук, а в другом микрофон, записывающий этот звук вместе с эффектом реверберации. Эта техника по-прежнему используется, но она требует специальной звукоизоляции комнаты и создаёт одну из главных проблем - это трудность изменения времени реверберации.


Система пластинчатого ревербератора использует электромеханические преобразования. Для создания вибраций используется большая пластина из листового металла. Звукосниматель фиксирует колебания, которые появляются по всей пластине, а результат выводится в виде звукового сигнала. Ранние модели использовали один звукосниматель, получая моно сигнал на выходе, более поздние модели имеют два звукоснимателя для создания стерео сигнала. Время реверберации можно регулировать с помощью поглощающих мягких подушек, сделанных из акустических плиток. Чем ближе поглощающая подушка, тем короче время реверберации. Однако, подушка никогда не касается пластины.


Система пружинного ревербератора, также как и пластинчатого, использует электромеханические преобразования, но для создания вибраций используется пружина. На одном конце пружины установлен преобразователь, а на другом - звукосниматель, аналогичный тому, который используются в пластинчатом ревербераторе. Преобразователь создаёт колебания пружины, а звукосниматель захватывает их. Пружинные ревербераторы очень часто установлены в гитарных усилителях, это связано с их компактностью и низкой стоимостью.


Ленточный ревербератор, также очень часто называемый магнитным ревербератором (магнитофонный). Самый распространённый ревербератор в 70х-80х годах. Такие устройства по конструкции сильно напоминали обычный катушечный магнитофон, хотя и имели принципиальные отличия. Подаваемый на вход ленточного ревербератора сигнал поступает на записывающую головку, с помощью которой записывается на "бесконечную" магнитную ленту (то есть ленту, замкнутую в кольцо). После этого сигнал считывается с ленты несколькими воспроизводящими головками, расположенными последовательно и рядом друг с другом. При этом количество головок в некоторых моделях могло доходить до нескольких десятков. Для того, чтобы реверберация носила затухающий характер, уровень считываемого с каждой последующей головки сигнала должен быть меньше предыдущего. Сигналы со всех головок воспроизведения смешиваются и поступают на выход устройства. Кроме того, эти же сигналы (уже значительно ослабленные) вновь подаются на записывающую головку вместе с основным сигналом.

Для того, чтобы качество реверберации было более или менее приемлемым, устройство должно обеспечивать довольно высокую скорость движения ленты - 38 см/с - и небольшое расстояние между воспроизводящими головками. В противном случае будет наблюдаться эффект эха с отчетливо прослушиваемыми повторами, что к реверберации никакого отношения не имеет. Как правило ленточные ревербераторы могли работать в обоих режимах (реверберации и эха), так как механизм работы у этих эффектов один и тот же.

Цифровые ревербераторы для создания эффекта реверберации используют различные математические алгоритмы. Вследствие того, что реверберация вызвана очень большим количеством эхо, простые алгоритмы ревербераторов используют несколько схем задержек и обратной связи для создания больших, распадающихся серий эхо. Более продвинутые цифровые ревербераторы могут имитировать различные временные и частотные отклики реальных комнат.

С появлением цифровой обработки звука и других цифровых технологий стало возможным моделирование практически любой "эхо-камеры"; по этой причине реверберационные комнаты перестали использоваться. Однако, естественно звучащие пространства, такие как церкви, продолжают использоваться в классической и других формах акустической музыки.

Свёрточный ревербератор — это цифровой процессор, моделирующий реверберацию физического или виртуального пространства на основе математической свёртки. В качестве свёртки используется предварительно записанный аудио сэмпл импульсного отклика моделируемого пространства. Процесс свёртки умножает каждый сэмпл звука для обработки (отражений) с сэмплами импульсного файла.

Основная цель импульсного ревербератора состоит в моделировании реального помещения, а именно точное повторение реверберации определённой комнаты или устройства. При создании свёртки помещения в нём устанавливается микрофон или несколько микрофонов (для стерео эффекта), затем производится очень короткий импульс звука (часто электрической искры), микрофон улавливает все эти звуки, как оригинальный, так и отклик комнаты на этот звук (то есть реверберацию). Затем запись импульса очищается и загружается в процессор свертки (в импульсный ревербератор).

В сравнении с другими видами ревербераторов импульсный считается наиболее качественным. Потому как импульсы повторяют все особенности и нюансы помещений в которых они записывались. То есть если записать свёртку кафедрального собора, а потом этой свёрткой обработать звук, то его звучание будет помещено в этот собор, повторяя все его особенности. Более того, импульсы часто снимаются с дорогих аналоговых ревербераторов, такой импульс способен очень точно моделировать этот ревербератор без необходимости его покупки.

Эффект реверберации является эффектом отражения звука от стен и прочих предметов.

Ревербераторы позволяют продюсеру эмулировать различные пространственные планы (холл, комната, концертный зал). Эффект реверберации позволяет создать определённое виртуальное помещение для выбранного инструмента или всего микса в целом.

Разные ревербераторы имеют свой определённый алгоритм работы, что в свою очередь сказывается на результате обработки.

К основным параметрам ревербератора относится:

Dry – уровень сухого сигнал (без обработки);

Wet – уровень обработанного сигнала (обычно, реверберационный хвост).

Иногда эти два регулятора объединяют в один (Mix).

Early Reflection (ER) – уровень сигнала ранних отражений. Это самые первые отражения, которые воспринимает слушатель.

Decay – время затухания реверберации;

Pre-Delay – время задержки реверберации. Это разница во времени между чистым сигналам и его отражениями (реверберация).

Size – размеры моделируемого помещения;

Damping – скорость затухания частот (High Damping);

Diffusion – размытость реверберации;

Density – плотность реверберации.

Эффект реверберации

Общие правила реверберации

1.) Расстояние до источника звука в помещении определяется соотношением громкости прямого и отражённого сигналов. Чем громче отражения, тем дальше источник звука.

Чтобы сделать звук ближе к слушателю необходимо отодвинуть отражения на задний план.

2.) Чем дальше к слушателю звук, тем меньше высоких частот может содержать реверберационный хвост.

3.) Ранние отражения влияют на размеры помещения, а реверберационный хвост характеризует акустические свойства помещения – материалы и форма стен, заглушеность, поглотительая способность.

Общая характеристика реверберационных планов

— быстрое время затухания;

— незначительный срез высоких частот;

— громкость сухого сигнала значительно превышает громкость ранних отражений и реверберационного хвоста (небольшое количество обработанного сигнала).

— более значительное время затухания;

— высокие частоты ослаблены фильтром;

— громкость сухого сигнала превышает громкость обработанного.

— большое время затухания;

— высокие частоты отражений срезаны фильтром;

— громкость сухого и обработанного сигналов равны.

Это всё лишь общие рекомендации. Настройки различных плагинов могут значительно отличаться.

Эффект реверберации является больше художественным инструментом, поэтому при настройке необходимо полагаться на свой слух, а не на какие-то стандарты и правила.

Понимание всех параметров ревербератора, анализ эталонных треков и эксперименты – вот путь к поиску того эффекта, который действительно подходит определённой композиции, над которой ведётся работа.

Смотрите видео о настройке ревербератора.

Если понравилась статья, поделись с друзьями!

Добавьте свой комментарий. Отменить ответ

Рубрики

Подписывайся на новые статьи

Онлайн курс

Электронная музыка
с нуля до PRO



Подробнее

Онлайн курс

Создание EDM в FL Studio



Подробнее

Нашли ошибку?
Выделите текст и нажмите Ctrl+Enter.

© Создание электронной музыки, 2011 - 2022. Все права защищены.

Мы используем файлы cookie, чтобы вам было удобнее пользоваться нашим сайтом.

Вы можете узнать больше о том, какие файлы cookie мы используем, или отключить их в настройках .

Этот веб-сайт использует файлы cookie, чтобы мы могли предоставить вам лучшие результаты вашего запроса. Информация о файлах cookie хранится в вашем браузере и выполняет такие функции, как распознавание вас, когда вы возвращаетесь на наш веб-сайт, и помогает нашей команде понять, какие разделы веб-сайта вы находите наиболее интересными и полезными.

Мы используем файлы cookie, чтобы анализировать трафик, подбирать для вас подходящий контент и рекламу, а также дать вам возможность делиться информацией в социальных сетях. Мы передаем информацию о ваших действиях на сайте партнерам Google: социальным сетям и компаниям, занимающимся рекламой и веб-аналитикой. Наши партнеры могут комбинировать эти сведения с предоставленной вами информацией, а также данными, которые они получили при использовании вами их сервисов.

Строго необходимые файлы cookie должны быть включены постоянно, чтобы мы могли сохранить ваши предпочтения в настройках файлов cookie.

Если вы отключите эти файлы cookie, мы не сможем сохранить ваши настройки. Это означает, что каждый раз, когда вы посещаете этот веб-сайт, вам нужно будет снова включать или отключать файлы cookie.

supersonic

Well-Known Member

Те более, все гораздо проще чем кажется. Для понимания пространственности микса нужно немного пространственного воображения, знания элементарной геометрии в пределах школьного курса , немного элементарных истин из теории психоакустики и чуток повседневной логики и здравого смысла, чтобы все это склеить воедино.

Немного психоакустики

Для начала вспомним, а чем же собственно наше ухо определяет глубину и дальность звуков в пространстве?

Чем дальше звук, тем он звучит тише, потому что звуковая волна теряет свою силу. В миксе ощущение громкости не обязательно задается ручкой уровня, на восприятие громкости звука влияет еще и компрессия. Но принцип не меняется, звук заднего плана должен по ощущению быть тише солирующего.

2.Задержка во времени.

Это очень важный принцип, который вытекает из скорости звука. Звук у нас за одну секунду успевает преодолеть 330 метров.

1 метр ~ 3 миллисекудны

Звук от каждого из трио барабанщиков, даже при условии что они стучат идеально ровно в такт, достигает уха слушателя с разной задержкой во времени.

Чем дальше звук, тем более он глухо звучит. Естественный завал по верхам обусловлен тем фактом, что чем выше частота звуковых колебаний, тем быстрее она затухает. Этот феномен, однако, становится заметен на слух при довольно большом отдалении источника, порядка 15-20 метров.

Эти три принципа будут работать всегда, даже вне помещения, где нет никаких отражений, если подвесить источник сигнала и слушателя в воздухе. Но самое интересное начинается, когда источник и слушатель находятся в помещении. Пространственная локализации сигнала, обогащенного отражениями от стен, гораздо легче для слуха, чем звуковых колебаний вне помещений.

Немного геометрии

Если же звук отражается стенами помещения, то эти три принципа работают на каждом отражении и даже отражении отражения. Т.о. чувствительность к локализации источника звука в пространстве возрастает многократно. Мы ощущаем слухом хитрую мозаику тончайших фазовых взаимодействий между отражениями.

В психоакустике принято разделять реверберацию на ранние отражения и хвост. Следует стразу оговориться, что это деление условно и принято для удобства моделирования реверберации. Ранние отражения — это самые первые отражения которые приходят к слушателю от стен помещения. Каждое из этих отражений поражает свою реверберацию. В какой-то момент мы перестаем ощущать индивидуальные отражения — они сливаются в непрерывное звуковое облако, похожее на розовый шум — это хвост реверберации.

Хвост несет информацию о длительности затухания реверберации и ее частотной окраске. Т.е. о характеристике материала стен помещений. Допустим ковры и плотные занавески сильно поглощают высокие частоты, сравнительно эффективно рассеивают звук и обладают низким коэффициентом отражения. Поэтому помещение отделанное такими материалами будет обладать низким временем затухания реверберации и характерным завалом ее АЧХ по высоким, т.е. реверберация будет короткой и глухой. Если же в помещении голые бетонные стены, то они плохо поглощают энергию звуковых волн и примерно одинаково отражают все частоты, такая реверберация будет иметь длинный яркий хвост.

Самый же принципиальный момент с точки зрения локализации в пространстве — ранние отражения. Именно они несут информацию о геометрии помещения, его размерах и расположении источника звука в нем. Мы не можем определить на слух форму помещения, но четко различаем отклики реверберации разных форм.


Желтые столбики это и есть ранние отражения. Форма и размеры помещения для нашего уха как раз определяются порядком и структурой последовательности этих столбиков.


Что же происходит с реверберацией, когда мы меняем положение источника в пространств?

Принципиальный момент здесь — пределей или же задержка реверберации, т.е. время на которое первое отражение опаздывает по сравнению с прямым сигналом.

Так, вот глядя на картинку можно вывести одно простое правило.

Чем дальше и глубже в помещении находится источник звука, тем меньше будет пределей.

А так ли это важно? На самом деле лет 50 вся поп-музыка записывается по этому принципу и никто не жаловался. Но современный поп-микс собственно и не ставит задачи воссоздать реальное пространство, помимо прочего там используются и совершенно не существующие в реальности пространственные эффекты, например, хорус или некоторые нереалистичные дилей (например, модулированные). Кроме этого, пространство микса может создаваться при помощи набора совершенно разных реверов, ни коим образом не преследуя реалистичность звучания.

Немного практики

Что бы отдалить звук в миксе на задний план нужно выполнить строго говоря все нижеследующие условия (на практике достаточно лишь некоторые из них):

1.Сделать звук заднего плана тише солирующего.
2.Задержать его во времени, чтобы он запаздывал.
3.Уменьшить пределей ревера
4.Срезать высокие cut-off фильтром

Пользоваться этим надо с умом. Здесь важно понимать какой звук в аранжировке к какому плану тяготеет. Яркий, с острой атакой тембр, скажем, пробойный цыкающий хэт невозможно задвинуть назад, сколько на него ревера не вешай — получиться вычурная, неестественная, сыплющая песком картина. Если его таки нужно отодвинуть назад, придется срезать ему верх и отказаться от яркости и атак.

А в целом, яркие, острые тембры тяготеют к переднему плану, на них требуется меньше ревера.
Темные, глухие и мягкие тембры, второстепенные и фоновые звучки тяготеют к задним планам — больше ревера и возможна микрозадежрка.

supersonic

Well-Known Member

Ревер и темп

Тем, что задержку дилея стараются синхронизировать с темпом песни никого не удивишь. То же самое правило можно применить и к реверу. Просто так звучит естественней. Все замечали что в балладах с меленным темпом хвосты реверов длиннее. И напротив такой длинный хвост будет только привносить грязи при темпе 150 bpm.

То же самое с ранними и пределеем. Их зачастую стараются настроить так, чтобы они попадали в долю, подчеркивая ритмику композиции.

1 доля такта звучит 60 000мс / BPM.

Например для темпа 120 BPM - 1 доля звучит 500 мс, целый такт 4/4 - 2000 мс, т.е. 2 сек, а 1/16 — 500/16=31,25мс.

3D моделирование и мульти-имульсы

3D моделирование использует FIR (finite impulse responce) математическую модель. Она позволяет получить гораздо более точную и правдоподробную реверберационную картинку. Существенный недостаток этой модели — она требует огромного количества вычислений. Она настолько требовательна к производительности процессора, что для ее реализации в реальном времени с максимальным качеством потребовался бы процессор в тысячи и миллионы раз более мощный любого из современных.

Поэтому 3D моделирование пляшет от обратного. Поскольку реверберация — это довольно линейный процесс, можно просчитать в оффлайне 3-х мерную модель помещения, учитывая параметры стен, расположения источника, слушателей и даже высшие порядки реверберации (собственную реверберацию, которую порождает каждое отражение), и получить импульс, который можно использовать в любом конволюционном ревербераторе.

Т.о. можно получить набор импульсов для разных положений источника сигнала в моделируемом помещении.

Примером таких программ служат Voxengo Impulse Modeller и FIReverb Suite.

В этих программах можно задать геометрию помещения, расположение источника звука и слушателя и рассчитать в оффлайне импульс реверберации для каждого инструмента расположенного в каждой точке виртуального помещения . Однако, в большинстве случаев это утомительный, трудоемкий процесс, а тонкая разница в звучании не всегда оправдывает затраты во времени (до десятков минут для рассчета одного импульса с максимальными настройками). Рекомендовать эту схему работы можно только для специальных приложений, где важна максимальная точность передачи пространства.

Есть и плагины, построенные по схожему принципу, работающие в реальном времени, например Prosoniq Rayverb, Cakewalk SoundStage или QuikQuak RaySpace. Однако возможность работы в реал-тайме достигается там за счет существенного упрощения математической модели и по качеству и плотности хвоста они мало чем отличаются от традиционных IRR алгоритмиков.

Факты на заметку

1. Когда мы применяем искусственную реверберацию в миксе к голосу или к живым инструментам, следует помнить, что, будучи записанными при помощи микрофона они уже содержат в себе небольшую реверберацию. Абсолютно насухо тон-ателье никогда не глушат, потому что в частности голос при этом начинает звучать неестественно. Небольшая реверберация в трекинге неотменная часть записи, влияющая на разборчивость, полетность, ощущения воздуха, живизны и т.п.

Накладывая при этом реверберацию сверху, мы неизбежно добавляем ранние отражения поверх уже существующих. Особенно этом может быть заметно на барабанах и т.п. перкуссионных звуках с короткой резкой атакой. Если мы хотим максимально сохранить естественность атак и избежать каши в ранних отражениях имеет смысл подмешивать ранние с осторожность.


Тема закрыта.
У кого есть, что сказать, пишите в личку модератору раздела этого раздела.
Вопросы задавать в соответствующем разделе.

Читайте также: