Как сделать постоянный магнит физика

Добавил пользователь Alex
Обновлено: 04.10.2024

Описание постоянного магнита – рисунок, схема, как создать. Узнайте, как выглядит катушка постоянного магнита, магнитное поле, виды магнитов, электромагнит.

Постоянным выступает магнит, созданный из ферромагнитного материала. Формируют стабильное магнитное поле.

Задача обучения

Основные пункты

  • Постоянные магниты создаются из намагниченного материала и формируют стабильные магнитные поля.
  • Намагниченные материалы, а также те, что притягиваются, именуют ферромагнитными.
  • В противовес им существует электромагнит, который намагничивается только при прохождении сквозь него электрического тока.
  • У магнитов всегда есть северный и южный полюса. Если вы разобьете его на две части, то у обоих снова будет два полюса.
  • Постоянные магниты изготавливают из ферромагнитных материалов, на которые давит магнитное поле и нагрев. Из-за этого их сложно размагнитить.

Термины

  • Электромагнит – притягивает металлы только при электрическом включении.
  • Ферромагнитный – любой легко намагничиваемый материал.
  • Постоянным именуют магнит, сберегающий свой магнетизм, даже если не ощущает на себе действия внешнего магнитного поля.

Постоянные магниты

Магнит – тело, способное вырабатывать магнитное поле. Его нельзя увидеть, но отвечает за любую заметную характеристику магнита.

Разновидности магнитов

Постоянный магнит – объект, созданный из намагниченного вещества, которое формирует собственное магнитное поле. В качестве примера можно привести обыкновенный магнитик на холодильник. Есть разные виды магнитов. Материалы, поддающиеся намагничиванию или легко притягивающиеся, именуют ферромагнитными.

Существует также электромагнит, который намагничивается только в том случае, если сквозь него пустить электрический ток.


Этот магнит напоминает подкову и создан из альнико (железный сплав). Форма позволяет ему прижать два магнитных полюса, чтобы сформировать сильное магнитное поле, способное удержать тяжелые железные обломки

Полярность

Все магниты обладают двумя полюсами: северный и южный. Они всегда существуют в парах. Даже если вы разделите магнит на две ровных части, то на обоих будет присутствовать по два полюса.


Северный и южный полюса наблюдаются парами. Если пытаться разделить их, то вы только увеличите количество. В итоге, достигнете железного атома с полюсами, которые нельзя разделить

Создание постоянных магнитов

Ферромагнитные материалы делят на мягкие (могут намагнититься, но не удерживают это свойство надолго) и твердые. Постоянные магниты из твердых (альнико и феррит) проходят специальную процедуру в сильном магнитном поле для выравнивания внутренней микрокристаллической структуры.

Если магнит поставить к ранее намагниченному ферромагнитному материалу, то он приводит к локальной намагниченности. В микроскопическом масштабе меняются области, где полюса выравниваются. До этого процесса участки малы и ориентированы беспорядочно, поэтому не создается чистого магнитного поля. Устройство может стать постоянным, если ферромагнитный материал нагревается и охлаждается.


Между двумя магнитами ставят немагнитную железку. Ее нагревают, а потом охлаждают. Железо превращается в постоянный магнит, чьи полюса выравниваются: южный примыкает к северному, а северный к южному. Отметьте, что между магнитами формируются силы притяжения

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный железняк.

magnetit

Рисунок 1. Магнитный железняк - магнетит

Кусок такой железной руды называется естественным магнитом, а проявляемое им свойство притяжения — магнетизмом.

О существовании магнитных железных руд и их замечательном свойстве — магнетизме известно было давно. Однако использовать эти свойства люди тогда еще не могли. В то время единственным практическим применением естественных магнитов было определение с их помощью сторон света: естественный магнит, подвешенный на нитке, поворачивался одним концом па север, а другим — на юг. Так появился первый компас, который широко использовался мореплавателями.

В наше время явление магнетизма используется чрезвычайно широко в различных электро- и радиоустановках. Однако теперь используются не естественные, а так называемые искусственные магниты.

Искусственные магниты изготовляются из специальных сортов стали и ее сплавов. Кусок такой стали особым образом намагничивают, после чего он приобретает магнитные свойства, т. е. становится постоянным магнитом.

Форма постоянных магнитов может быть самой разнообразной в зависимости от их назначения. На рис. 2 в качестве примера показаны наиболее распространенные формы постоянных магнитов: прямолинейный, подковообразный, кольцевой и полукольцевой.

vidy-postoyannyh-magnitov

Рисунок 2. Постоянные магниты различной формы

Чтобы ознакомиться с некоторыми свойствами постоянного магнита, проделаем ряд опытов.

Возьмем прямолинейный магнит, опустим его в железные опилки и затем вынем оттуда. Мы увидим, что опилки пристанут только к концам магнита (рис. 3). Значит, наибольшая сила притяжения постоянного магнита обнаруживается у его концов, а середина магнитными свойствами не обла дает.

postoyannyj-magnit-v-matallicheskih-opilkah

Рисунок 3. Наибольшая сила притяжения магнита обнаруживается у его концов

Концы магнита называются полюсами, а линия, проходя щая через середину магнита, — нейтральной линией. У кольцеобразного магнита полюсами будут являться те его места, где обнаруживаются наибольшие силы притяжения.

Проделаем другой опыт. Подвесим прямолинейный магнит на нитке или возьмем магнитную стрелку, укрепленную на острие штатива (рис. 4). И в том и в другом случае мы заметим, что прямолинейный магнит (или магнитная стрелка) займет вполне определенное положение: один полюс магнита будет обращен к северному полюсу Земли, а другой — к ее южному полюсу. Тот конец магнита, который обращен на север, условились называть северным полюсом магнита, а конец, обращенный к югу, — южным полюсом магнита.

strelka-kompasa

Рисунок 4. Магнитная стрелка и подвешеннвй прямолинейный магнит поворачиваются своими полюсами к полюсам Земли

Итак, каждый постоянный магнит имеет два полюса: северный и южный. Северный полюс магнита обозначается буквой С (север) или N (норд), южный — буквой Ю (юг) или S (зюйд).

Проделаем, наконец, третий опыт с постоянным магнитом. Поднесем к одному из полюсов магнита (безразлично к какому) стальной предмет. Этот предмет притянется к полюсу, и надо приложить значительное усилие, чтобы оторвать его от магнита. То же произойдет с предметами из чугуна, никеля и кобальта. Но есть металлы, на которые не действует постоянный магнит. Поднесем, например, к полюсу постоянного магнита медный предмет. Магнит не притянет его к себе. То же можно наблюдать и с другими предметами из цветных металлов—алюминия, латуни, серебра.

Следовательно, магнит притягивает к себе железо, сталь, чугун, никель, кобальт. Всё эти вещества называются магнитными. Все же остальные вещества, которые не притягиваются к магниту, называются немагнитными.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как получить постоянный магнит?
Как получить постоянный магнит?

Как я могу получить постоянный магнит? Возьмем замкнутый тороид (тороидальное ядро) из магнитотвердого материала.

  • Где Тороиды являются результатом того, что магнитный момент в области спонтанного намагничивания удерживает направление,

Нанесите 8 очень тонких радиальных разрезов на расстоянии 2 друг от друга (рис.78, а).Давайте оставим отрезанные куски тороида, как они есть сейчас.

Затем обмотайте обмотки вокруг тороидов и пропустите ток, достаточно большой, чтобы намагнитить тороиды, пока они не будут насыщены. После этого выключите ток и намотайте обмотку.

  • Тороид намагничен. Намагниченный Диаграмма 78 Магнитный поток в теле тороида определяется суммой магнитных моментов всего тороида.

Снимите отрезанные куски с тела тороида (рис.78, б).

Объем намагниченного вещества уменьшается на объем удаляемой части, что уменьшает магнитный поток в теле тороида. Людмила Фирмаль

В воздушном зазоре тороида, где нет обмотки тока в тороиде, поток проходит через него. Устройство представляет собой постоянный магнит.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

А вы знаете, что магнит может быть не только постоянным, но и работающим от электрической энергии с возможностью включения и выключения магнитного поля? Так называемые электромагниты широко применяются в электротехнике. Подобный электромагнит вы можете сделать самостоятельно. Далее узнаете как сделать электромагнит в домашних условиях.


Как изготовить электромагнит подробно изложено в данной инструкции.

Предупреждение: чем больший ток будет проходить через провод самодельного электромагнита, тем сильнее провод будет нагреваться и это даже может вызвать возгорание. Для уменьшения нагрева, при создании электромагнита, используйте более толстый медный провод.

Немного физики

Как мы помним (или не помним) из уроков физики, для того, чтобы преобразовать электрический ток в магнитное поле, нужно создать индукцию. Индуктивность создается при помощи обычной катушки, внутри которой это поле возникает и передается на стальной сердечник, вокруг которого совершена обмотка катушки.

принцип индукции







Преимущества использования электромагнитов

Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.

Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.

Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.



Грузоподъёмные электромагниты

Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.

ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.

Материалы для изготовления самого простого магнита

Простой электромагнит

В первую очередь нам потребуется любая катушка индуктивности с намотанным на сердечник медным проводом. Это может быть обычный трансформатор из любого блока питания. Отличным средством для создания электромагнитов является обмотка вокруг зауженной тыльной части кинескопов старых мониторов или телевизоров. Нити проводников в трансформаторах защищены изоляцией, состоящей из почти невидимого слоя специального лака, препятствующего прохождению электрического тока, что нам как раз и нужно. Помимо указанных проводников, для создания электромагнита своими руками также нужно приготовить:

  1. Обычную батарейку на полтора Вольта.
  2. Скотч или изоленту.
  3. Острый ножик.
  4. Гвоздь сотку.

Процесс изготовления простейшего магнита

Электромагнит от кроны

Начинаем с изъятия проводов из трансформатора. Как правило, его середина находится внутри стального обрамления. Можно, сняв поверхностную изоляцию на катушке, просто разматывать провод, протаскивая его между рамами и катушкой. Поскольку нам не понадобится много провода, этот способ здесь самый приемлемый. Когда мы высвободили достаточное количество провода, делаем следующее:

  1. Наматываем изъятый из катушки трансформатора провод вокруг гвоздя, который будет служить нашему электромагниту стальным сердечником. Витки желательно делать как можно чаще, плотно прижимая их друг к другу. Не забываем на начальном витке оставить длинный конец провода, посредством которого наш электромагнит будет запитываться к одному из полюсов батарейки.
  2. Когда дошли до противоположного конца гвоздя, также оставляем длинный проводник для запитки. Излишки провода обрезаем ножом. Чтобы спираль, намотанная нами, не распускалась, можно обмотать ее скотчем или изолентой.
  3. Зачищаем оба конца провода, идущего от гвоздя с намоткой, от изоляционного лака ножиком.
  4. Один конец зачищенного проводника прислоняем к плюсу батарейки и прихватываем его скотчем или изолентой так, чтобы контакт хорошо сохранялся.
  5. Другой конец тем же способом приматываем к минусу.

Подсоединение проводов

Электромагнит готов к работе. Разбросав по столу металлические скрепки или кнопки, можно проверить его работоспособность.

Как изготовить более мощный магнит?

Более мощный электромагнит

Как своими руками сделать электромагнит с более мощными магнетическими свойствами? На силу магнетизма влияет несколько факторов, и самым главным из них является мощность электрического тока батареи, которую мы используем. Например, изготовив электромагнит из квадратной батарейки на 4,5 вольт, силу его магнитных свойств увеличим втрое. 9-вольтовая крона даст еще более мощный эффект.

Но не стоит забывать, что, чем сильнее электрический ток, тем больше потребуется витков, поскольку сопротивление при малом количестве витков будет слишком сильным, что приведет к сильному нагреву проводников. При сильном их нагреве изоляционный лак может начать плавиться, витки начнут коротить друг на друга или на стальной сердечник. И то, и другое рано или поздно приведет к короткому замыканию.

Также сила магнетизма зависит от количества витков вокруг сердечника магнита. Чем их будет больше, тем сильнее будет поле индукции, и тем сильнее будет магнит.












Сверхпроводящий электромагнит

Сверхпроводимостью считают свойство материалов с сопротивлением, близким к нулю. Электромагниты с практически нулевым показателем сопротивления обладают сверхмощным магнитным полем. Сила магнитного воздействия может заставить парить в пространстве такие диамагнетики, как кусочки свинца и органические объекты.

Как было замечено физиками, металлы приобретают свойство сверхпроводимости при сверхнизкой температуре. Чтобы получить эффект сверхпроводимости, обмотки ЭМ помещают в сосуд Дьюара с жидким гелием, который снабжён клапаном для сброса паров вещества. Сверхпроводящие магниты применяют в медицинском оборудовании – аппаратах МРТ (магнитный резонансный томограф). В экспериментальных поездах на воздушной подушке применяются сверхпроводящие магниты.



Сверхпроводящий магнит

Изготавливаем более мощный магнит

Попробуем изготовить своими руками электромагнит на 12 вольт. Питаться он будет от сетевого блока питания на 12 вольт или от 12-вольтового автомобильного аккумулятора. Для его изготовления нам понадобится гораздо большее количество медного проводника, а потому следует изначально извлечь из заготовленного трансформатора внутреннюю катушку с медным проводом. Болгарка – самое отличное средство для ее извлечения.

Что нам понадобится для изготовления:

  • Стальная подкова от большого навесного замка, которая послужит нам сердечником. В данном случае примагничивать железяки можно будет обоими его концами, что еще более увеличит подъемную способность магнита.
  • Катушка с медным проводом в лакированной изоляции.
  • Изолента.
  • Нож.
  • Ненужный блок питания на 12 вольт или автомобильный аккумулятор.

Процесс изготовления мощного 12-вольтового магнита

Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:

  1. Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
  2. Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
  3. Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.


Заключительная стадия изготовления электромагнита своими руками – подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора. Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем. Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.



Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.

Постоянные магниты

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Как увидеть магнитное поле

Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.

Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.

Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.

Демонстрация структуры магнитного поля

Виды магнитов

Постоянные магниты разделяют на 2 вида:

Естественные

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.

Виды и формы ПМ

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Радиотехника

ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Ротор и статор генератора

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Электродвигатель с постоянными магнитами

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Видео

Читайте также: