Как сделать натуральное число в с

Обновлено: 03.07.2024

С чего начинается изучение математики? Да, правильно, с изучения натуральных чисел и действий с ними. Натуральные числа (от лат. naturalis — естественный; естественные числа) — числа , возникающие естественным образом при счёте (например, 1, 2, 3, 4, 5, 6, 7, 8, 9…). Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом .

Существуют два подхода к определению натуральных чисел:

  1. натуральные числа — числа, возникающие при подсчете (нумерации) предметов ( первый , второй , третий , четвёртый , пятый"…);
  2. натуральные числа — числа, возникающие при обозначении количества предметов (0 предметов, 1 предмет, 2 предмета, 3предмета, 4 предмета, 5 предметов ).

В первом случае ряд натуральных чисел начинается с единицы, во втором — с нуля. Не существует единого для большинства математиков мнения о предпочтительности первого или второго подхода (то есть считать ли ноль натуральным числом или нет). В подавляющем большинстве российских источников традиционно принят первый подход. Второй подход, например, применяется в трудах Николя Бурбаки , где натуральные числа определяются как мощности конечных множеств .

Отрицательные и нецелые ( рациональные , вещественные ,…) числа к натуральным не относят.

Множество всех натуральных чисел принято обозначать символом N (от лат. naturalis — естественный). Множество натуральных чисел является бесконечным, так как для любого натурального числа n найдётся натуральное число, большее чем n.

Наличие нуля облегчает формулировку и доказательство многих теорем арифметики натуральных чисел, поэтому при первом подходе вводится полезное понятие расширенного натурального ряда , включающего нуль. Расширенный ряд обозначается N 0 или Z 0 .

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • сложение: слагаемое + слагаемое = сумма;
  • умножение: множитель × множитель = произведение;
  • возведение в степень: a b , где a — основание степени, b — показатель степени. Если a и b — натуральные числа, то и результат будет натуральным числом.

Дополнительно рассматривают ещё две операции (с формальной точки зрения не являющиеся операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет)):

  • вычитание: уменьшаемое — вычитаемое = разность. При этом уменьшаемое должно быть больше вычитаемого (или равно ему, если считать нуль натуральным числом)
  • деление с остатком: делимое / делитель = (частное, остаток). Частное p и остаток r от деления a на b определяются так: a=p*r+b, причём 0

Следует заметить, что операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Натуральное число называется простым, если оно имеет только два различных делителя: единицу и само себя. Задача поиска простых чисел не дает покоя математикам уже очень давно. Долгое время прямого практического применения эта проблема не имела, но все изменилось с появлением криптографии с открытым ключом. В этой заметке рассматривается несколько способов поиска простых чисел, как представляющих исключительно академический интерес, так и применяемых сегодня в криптографии.

Решето Эратосфена

Алгоритм можно несколько оптимизировать. Так как один из делителей составного числа n обязательно , алгоритм можно останавливать, после вычеркивания чисел делящихся на .

Иллюстрация работы алгоритма из Википедии:

Сложность алгоритма составляет , при этом, для хранения информации о том, какие числа были вычеркнуты требуется памяти.

Существует ряд оптимизаций, позволяющих снизить эти показатели. Прием под названием wheel factorization состоит в том, чтобы включать в изначальный список только числа взаимно простые с несколькими первыми простыми числами (например меньше 30). В теории предлагается брать первые простые примерно до . Это позволяет снизить сложность алгоритма в раз. Помимо этого для уменьшения потребляемой памяти используется так называемое сегментирование. Изначальный набор чисел делится на сегменты размером и для каждого сегмента решето Эратосфена применяется по отдельности. Потребление памяти снижается до .

Решето Аткина

Более совершенный алгоритм отсеивания составных чисел был предложен Аткином и Берштайном и получил название Решето Аткина. Этот способ основан на следующих трех свойствах простых чисел.

Если n — положительное число, не кратное квадрату простого числа и такое, что . То n — простое, тогда и только тогда, когда число корней уравнения нечетно.

Если n — положительное число, не кратное квадрату простого числа и такое, что . То n — простое, тогда и только тогда, когда число корней уравнения нечетно.

Если n — положительное число, не кратное квадрату простого числа и такое, что . То n — простое, тогда и только тогда, когда число корней уравнения нечетно.

Доказательства этих свойств приводятся в этой статье.

На начальном этапе алгоритма решето Аткина представляет собой массив A размером n, заполненный нулями. Для определения простых чисел перебираются все . Для каждой такой пары вычисляется , , и значение элементов массива , , увеличивается на единицу. В конце работы алгоритма индексы всех элементов массива, которые имеют нечетные значения либо простые числа, либо квадраты простого числа. На последнем шаге алгоритма производится вычеркивание квадратов оставшихся в наборе чисел.

Из описания алгоритма следует, что вычислительная сложность решета Аткина и потребление памяти составляют . При использовании wheel factorization и сегментирования оценка сложности алгоритма снижается до , а потребление памяти до .

Числа Мерсенна и тест Люка-Лемера

Конечно при таких показателях сложности, даже оптимизированное решето Аткина невозможно использовать для поиска по-настоящему больших простых чисел. К счастью, существуют быстрые тесты, позволяющие проверить является ли заданное число простым. В отличие от алгоритмов решета, такие тесты не предназначены для поиска всех простых чисел, они лишь способны сказать с некоторой вероятностью, является ли определенное число простым.

Один из таких методов проверки — тест Люка-Лемера. Это детерминированный и безусловный тест простоты. Это означает, что прохождение теста гарантирует простоту числа. К сожалению, тест предназначен только для чисел особого вида , где p — натуральное число. Такие числа называются числами Мерсенна.

Тест Люка-Лемера утверждает, что число Мерсенна простое тогда и только тогда, когда p — простое и делит нацело -й член последовательности задаваемой рекуррентно: для .

Для числа длиной p бит вычислительная сложность алгоритма составляет .

Благодаря простоте и детерминированности теста, самые большие известные простые числа — числа Мерсенна. Самое большое известное простое число на сегодня — , его десятичная запись состоит из 24,862,048 цифр. Полюбоваться на эту красоту можно здесь.

Теорема Ферма и тест Миллера-Рабина

Простых чисел Мерсенна известно не очень много, поэтому для криптографии с открытым ключом необходим другой способ поиска простых чисел. Одним из таким способов является тест простоты Ферма. Он основан на малой теореме Ферма, которая гласит, что если n — простое число, то для любого a, которое не делится на n, выполняется равенство . Доказательство теоремы можно найти на Википедии.

Тест простоты Ферма — вероятностный тест, который заключается в переборе нескольких значений a, если хотя бы для одного из них выполняется неравенство , то число n — составное. В противном случае, n — вероятно простое. Чем больше значений a использовано в тесте, тем выше вероятность того, что n — простое.

К сожалению, существуют такие составные числа n, для которых сравнение выполняется для всех a взаимно простых с n. Такие числа называются числам Кармайкла. Составные числа, которые успешно проходят тест Ферма, называются псевдопростыми Ферма. Количество псевдопростых Ферма бесконечно, поэтому тест Ферма — не самый надежный способ определения простых чисел.

Тест Миллера-Рабина

Более надежных результатов можно добиться комбинируя малую теорему Ферма и тот факт, что для простого числа p не существует других корней уравнения , кроме 1 и -1. Тест Миллера-Рабина перебирает несколько значений a и проверяет выполнение следующих условий.

Пусть p — простое число и , тогда для любого a справедливо хотя бы одно из условий:


Существуют два подхода к определению натуральных чисел — числа, используемые при:

  • перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России);
  • обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Николя Бурбаки, где натуральные числа определяются как мощность конечных множеств.

Отрицательные и нецелые числа натуральными числами не являются.

Множество всех натуральных чисел принято обозначать знаком [math]\mathbb[/math] . Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

Определить множество натуральных чисел позволяют аксиомы Пеано (англ. Peano axioms):

  1. [math]1\in\mathbb[/math] ( [math]1[/math] является натуральным числом);
  2. Если [math]x\in\mathbb[/math] , то [math]S(x)\in\mathbb[/math] (Число, следующее за натуральным, также является натуральным);
  3. [math]\nexists x\in\mathbb\ (S(x) = 1)[/math] ( [math]1[/math] не следует ни за каким натуральным числом);
  4. Если [math]S(b)=a[/math] и [math]S(c)=a[/math] , тогда [math]b=c[/math] (если натуральное число [math]a[/math] непосредственно следует как за числом [math]b[/math] , так и за числом [math]c[/math] , то [math]b=c[/math] );
  5. Аксиома индукции. Пусть [math]P(n)[/math] — некоторый одноместный предикат, зависящий от параметра — натурального числа [math]n[/math] . Тогда:

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

  • [math]0=\varnothing[/math]
  • [math]S(n)=n\cup\left\[/math]

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Классы эквивалентности этих множеств относительно биекций также обозначают [math]0, 1, 2, \dots.[/math]

Есть два способа определения суммы двух натуральных чисел [math]a\ и\ b[/math] . Если натуральные числа определяют через мощность множества с конечным числом элементов (мощность множества — это количество элементов в нём), тогда целесообразно дать следующее определение суммы:

Пусть [math]N(S)\ — [/math] мощность множества [math]S[/math] . Возьмём два не пересекающихся множества [math]A\[/math] и [math]B,\[/math] причём [math]N(A) = a[/math] и [math]N(B) = b[/math] . Тогда [math]a + b[/math] можно определить как: [math]N ( A ∪ B )[/math] .

Здесь, [math]A ∪ B\ — [/math] это объединение множеств [math]A\ и B\[/math] . В альтернативной версии этого определения множества [math]A\ и\ B[/math] перекрываются и тогда в качестве суммы берётся их дизъюнктное объединение, механизм, который позволяет отделять общие элементы, вследствие чего эти элементы учитываются дважды.

Другое известное определение рекурсивно: Пусть [math]n+\ — [/math] следующее за [math]n[/math] натуральное число, например [math]0+ = 1, 1+ = 2.[/math] Пусть [math]a + 0 = a[/math] . Тогда общая сумма определяется рекурсивно: [math]a + (b+) = (a + b)+[/math] . Отсюда [math]1 + 1 = 1 + 0+ = (1 + 0)+ = 1+ = 2[/math] .

Воспользуемся определением натуральных чисел [math]\mathbb[/math] как классов эквивалентности конечных множеств. Обозначим классы эквивалентности конечных множеств [math]C,\A,\B\[/math] порождённых биекциями, с помощью скобок: [math][C], [A], [B].[/math] Тогда арифметическая операция умножение определяется следующим образом: [math][C] = [A] \cdot [B] = [A \times B];\[/math] где: [math]A \times B=<(a,\ b) \mid a \in A,\ b \in B>\[/math] прямое произведение множеств — множество [math]C,[/math] элементами которого являются упорядоченные пары [math](a,\ b)[/math] для всевозможных [math]a \in A,\ b \in B[/math] . Данная операция на классах введена корректно, то есть не зависит от выбора элементов классов, и совпадает с индуктивным определением.

Воспользуемся определением натуральных чисел [math]\mathbb[/math] как классов эквивалентности конечных множеств. Обозначим классы эквивалентности конечных множеств [math]C , A , B[/math] порождённых биекциями, с помощью скобок: [math][C],\ [A],\ [B].[/math] Тогда арифметическая операция вычитание определяется следующим образом: [math][C] = [A] − [B] = [A \backslash B];\[/math] где [math]A \backslash B = \ < C \in A \mid C \notin B \mid B \subset A \>—\ [/math] разность множеств. Данная операция на классах введена корректно, то есть не зависит от выбора элементов классов, и совпадает с индуктивным определением.


Формула деления с остатком: [math]n = m \cdot k + r,[/math] где [math]n\,[/math] — делимое, [math]m\,[/math] — делитель, [math]k\,[/math] — частное, [math]r\,[/math] — остаток, причем [math]0\leqslant r \lt b [/math]

Любое число можно представить в виде: [math]n = 2 \cdot k + r[/math] , где остаток [math]r\, = 0\,[/math] или [math]r\, = 1\,[/math] Любое число можно представить в виде: [math]n = 4 \cdot k + r[/math] , где остаток [math]r\ = 0\,[/math] или [math]r\, = 1\,[/math] или [math]r\, = 2\,[/math] или [math]r\, = 3\,[/math] Любое число можно представить в виде: [math]n = m \cdot k + r[/math] , где остаток [math]r\,[/math] принимает значения от [math]0\,[/math] до [math](m-1)\,[/math]

Если простое число [math]p[/math] делит без остатка произведение двух целых чисел [math]x\cdot y[/math] , то [math]p[/math] делит [math]x[/math] или [math]y[/math] .

Пусть [math]x\cdot y[/math] делится на [math]p[/math] , но [math]x[/math] не делится на [math]p[/math] . Тогда [math]x[/math] и [math]p[/math] — взаимно простые, следовательно, найдутся такие целые числа [math]u[/math] и [math]v[/math] , что

Умножая обе части на [math]y[/math] , получаем

Каждое натуральное число [math]n\gt 1[/math] представляется в виде [math]n=p_1\cdots p_k[/math] , где [math]p_1,\ldots ,p_k[/math] — простые числа, причём такое представление единственно с точностью до порядка следования сомножителей.

Существование. Пусть [math]n[/math] — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если [math]n[/math] составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, [math]n[/math] тоже является произведением простых чисел. Противоречие.

Формулировка принципа математической индукции:

Пусть имеется последовательность утверждений [math]A_1, A_2, A_3, \ldots[/math] И пусть первое утверждение [math]A_1[/math] верно и мы умеем доказать, что из верности утверждения [math]A_k[/math] следует верность [math]A_[/math] . Тогда все утверждения в этой последовательности верны.

Верность этого метода доказательства вытекает из так называемой аксиомы индукции, пятой из аксиом Пеано, которые определяют натуральные числа. Рассмотрение аксиом Пеано выходит за рамки этой статьи.

Также существует принцип полной математической индукции. Вот его строгая формулировка:

Пусть имеется последовательность утверждений [math]A_1, A_2, A_3, \ldots[/math] . И пусть мы умеем доказать, что из верности утверждения [math]A_1, A_2, A_3, \ldots, A_k[/math] следует верность [math]A_[/math] . Тогда все утверждения в этой последовательности верны.

Аксиому индукции можно заменить на аксиому существования минимума, и доказать аксиому индукции как теорему.

Для любого подмножества натурального ряда всегда существует минимум. Т. е. [math]\forall A \subset \mathbb N, A \ne \varnothing, \exists x \in A: \forall y \in A, x \leqslant y[/math]

Из этой теоремы вытекает следующее утверждение, эквивалентное аксиоме математической индукции, но иногда более удобное при проведении доказательств.

Если [math]T(n)[/math] истинно при [math]n = 1,[/math] а из того, что оно истинно при всех [math]n \lt k,[/math] следует, что оно истинно и при [math]n = k,[/math] то [math]T(n)[/math] истинно для всех натуральных значений [math]n[/math] .

Натуральные числа — это числа, которые используются при счёте или нумерации.

Натуральные числа, записанные в порядке их возрастания (начиная с 1) и без пропусков, образуют ряд натуральных чисел, или короче натуральный ряд:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . — натуральный ряд.

В натуральном ряду есть первое число — 1 (один или единица), но нет последнего числа — за каждым натуральным числом следует ещё одно, которое больше предшествующего на единицу. Таким образом, есть наименьшее натуральное число — 1, а наибольшего натурального числа не существует. Следовательно 1 — это самое маленькое натуральное число.

Натуральный ряд бесконечен.

Все натуральные числа записать невозможно. Поэтому при записи натурального ряда выписывают подряд несколько первых чисел, следующих друг за другом в натуральном ряду, и в конце ставят многоточие (три точки).

Отсутствие предметов для счёта условились обозначать числом 0 (нуль).

Нуль не считается натуральным числом.

Чётные и нечётные натуральные числа

В натуральном ряду чередуются нечётные и чётные числа, то есть числа, которые делятся на 2 и которые на 2 не делятся. Начинается натуральный ряд с нечётного числа:

1, 2 , 3, 4 . 98 , 99, 100 , 101, .

Нечётные числа обозначены чёрным цветом, а чётные — красным.

Прямой и обратный счёт

Прямой счёт — это перечисление чисел в порядке их возрастания. Под порядком возрастания, в данном случае, подразумевается что каждое последующее число больше предыдущего на единицу.

Рассмотрим прямой счёт от 1 до 10:

1,2,3,4,5,6,7,8,9,10
один два три четыре пять шесть семь восемь девять десять

Перечисление чисел натурального ряда в порядке их возрастания называется прямым счётом.

Обратный счёт — это перечисление чисел в порядке их убывания. Под порядком убывания, в данном случае, подразумевается что каждое последующее число меньше предыдущего на единицу.

Рассмотрим обратный счёт от 10 до 1:

10,9,8,7,6,5,4,3,2,1
десять девять восемь семь шесть пять четыре три два один

Перечисление чисел натурального ряда в порядке их убывания называется обратным счётом.

Читайте также: