Как сделать математическую модель

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Необходимость массового построения моделей требует разработки некоторой совокупности правил и подходов, которые позволили бы снизить затраты на разработку моделей и уменьшить вероятность появления трудно устранимых впоследствии ошибок. Подобную совокупность правил можно было бы назвать технологией создания математических моделей.

Процесс построения любой математической модели можно представить последовательностью этапов:

  1. Обследование объекта моделирования и формулировка технического задания на разработку модели (содержательная постановка задачи);
  2. Концептуальная и математическая постановка задачи;
  3. Качественный анализ и проверка корректности модели;
  4. Выбор и обоснование выбора методов решения задачи;
  5. Поиск решения;
  6. Разработка алгоритма решения и исследование его свойств, реализация алгоритма в виде программ;
  7. Проверка адекватности модели;
  8. Практическое использование построенной модели.

Обследование объекта моделирования

Математические модели, особенно использующие численные методы и вычислительную технику, требуют для своего построения значительных интеллектуальных, финансовых и временных затрат. Поэтому решение о разработке новой модели принимается лишь в случае отсутствия иных, более простых путей решения возникших проблем (например, модификации одной из существующих моделей).

Необходимость в новой модели может появиться в связи с проведением научных исследований, особенно — на стыке различных областей знания. После принятия решения о необходимости построения новой математической модели заказчик ищет исполнителя своего заказа. В качестве исполнителя, как правило, может выступать рабочая группа, включающая специалистов разного профиля: прикладных математиков, специалистов, хорошо знающих особенности объекта моделирования, программистов. Если решение о создании модели принято и рабочая группа сформирована, то приступают к этапу обследования объекта моделирования. Основной целью данного этапа является подготовка содержательной постановки задачи моделирования. Перечень сформулированных в содержательной (словесной) форме основных вопросов об объекте моделирования, интересующих заказчика, составляет содержательную постановку задачи моделирования.

На основании анализа всей собранной информации постановщик задачи должен сформулировать такие требования к будущей модели, которые, с одной стороны, удовлетворяли бы заказчика, а с другой — позволяли бы реализовать модель в заданные сроки и в рамках выделенных материальных средств. Системные аналитики (или операционисты) должны обладать способностью из большого объема слабо формализованной разнообразной информации об объекте моделирования, из различных нечетко высказанных и сформулированных пожеланий и требований заказчика к будущей модели выделить то главное, что может быть действительно реализовано.

На основе собранной информации об объекте моделирования системный аналитик (инженер, операционист) совместно с заказчиком формулируют содержательную постановку задачи моделирования, которая, как правило, не бывает окончательной и может уточняться и конкретизироваться в процессе разработки модели. Однако, все последующие уточнения и изменения содержательной постановки должны носить частный, не принципиальный характер.

Весь собранный в результате обследования материал о накопленных к данному моменту знаниях об объекте, содержательная постановка задачи моделирования, дополнительные требования к реализации модели и представлению результатов оформляются в виде технического задания на проектирование и разработку модели. Техническое задание является итоговым документом, заканчивающим этап обследования. Чем более полную информацию удастся собрать об объекте на этапе обследования, тем более четко можно выполнить содержательную постановку задачи, более полно учесть накопленный опыт и знания, избежать многих сложностей на последующих этапах разработки модели.

Концептуальная постановка задачи моделирования

В отличие от содержательной концептуальная постановка задачи моделирования, как правило, формулируется членами рабочей группы без привлечения представителей заказчика, на основании разработанного на предыдущем этапе технического задания, с использованием имеющихся знаний об объекте моделирования и требований к будущей модели. Анализ и совместное обсуждение членами рабочей группы всей имеющейся информации об объекте моделирования позволяет сформировать содержательную модель объекта, являющуюся синтезом когнитивных моделей, сложившихся у каждого из членов рабочей группы.

Концептуальная постановка задачи моделирования — это сформулированный в терминах конкретных дисциплин перечень основных вопросов, интересующих заказчика, а также совокупность гипотез относительно свойств и поведения объекта моделирования.

Математическая постановка задачи

Законченная концептуальная постановка позволяет сформулировать математическую постановку задачи моделирования, включающую совокупность различных математических соотношений, описывающих поведение и свойства объекта моделирования.

Математическая постановка задачи моделирования — это совокупность математических соотношений, описывающих поведение и свойства объекта моделирования.

Математическая модель является корректной, если для нее осуществлен и получен положительный результат всех контрольных проверок: размерности, порядков, характера зависимостей, экстремальных ситуаций, граничных условий, предметного смысла и математической замкнутости. Математическая постановка задачи еще более абстрактна, чем концептуальная, так как сводит исходную задачу к чисто математической, методы решения которой достаточно хорошо разработаны.

Выбор и обоснование выбора решения задачи

Однако исходное решение при этом представляет собой аналитическое выражение (или их совокупность). Решения же, основанные на алгоритмических методах, принципиально не сводимы к точным аналитическим решениям рассматриваемой задачи.

Выбор того или иного метода исследования в значительной степени зависит от квалификации и опыта членов рабочей группы. Аналитические методы более удобны для последующего анализа результатов, но применимы лишь для относительно простых моделей. В случае, если математическая задача (хотя бы и в упрощенной постановке) допускает аналитическое решение, последнее, без сомнения, предпочтительнее численного.

Алгоритмические методы сводятся к некоторому алгоритму, реализующему вычислительный эксперимент с использованием вычислительной техники. Точность моделирования в подобном эксперименте существенно зависит от выбранного метода и его параметров. Алгоритмические методы, как правило, более трудоемки в реализации, требуют от членов рабочей группы хорошего знания методов вычислительной математики, обширной библиотеки специального программного обеспечения и мощной вычислительной техники.

Численные методы применимы лишь для корректных математических задач, что существенно ограничивает использование их в математическом моделировании. Общим для всех численных методов является сведение математической задачи к конечномерной. Это чаще всего достигается дискретизацией исходной задачи, то есть переходом от функции непрерывного аргумента к функциям дискретного аргумента. Применение любого численного метода неминуемо приводит к погрешности результатов решения задачи. Выделяют три основных составляющих возникающей погрешности при численном решении исходной задачи: неустранимая погрешность, связанная с неточным заданием исходных данных (начальные и граничные условия, коэффициенты и правые части уравнений); погрешность метода, связанная с переходом к дискретному аналогу исходной задачи; ошибка округления, связанная с конечной разрядностью чисел, представляемых в вычислительной машине.

Естественным требованием для конкретного вычислительного алгоритма является согласованность в порядках величин перечисленных трех видов погрешностей.

Численный, или приближенный, метод реализуется всегда в виде вычислительного алгоритма. Поэтому все требования, предъявляемые к алгоритму, применимы и к вычислительному алгоритму. Прежде всего, алгоритм должен быть реализуем — обеспечивать решение задачи за допустимое машинное время. Важной характеристикой алгоритма является его точность, то есть возможность получения решения исходной задачи с заданной точностью за конечное число действий.

Время работы алгоритма зависит от числа действий, необходимых для достижения заданной точности. Для любой математической задачи, как правило, можно предложить несколько алгоритмов, позволяющих получить решение с заданной точностью, но за разное число действий. Алгоритмы, включающие меньшее число действий для достижения одинаковой точности, называют более экономичными, или более эффективными.

В процессе работы вычислительного алгоритма на каждом акте вычислений возникает некоторая погрешность. При этом от действия к действию она может возрастать или не возрастать (а в некоторых случаях даже уменьшаться). Если погрешность в процессе вычислений неограниченно возрастает, то такой алгоритм называется неустойчивым, или расходящимся. В противном случае алгоритм называется устойчивым, или сходящимся.

Огромное разнообразие численных методов в значительной степени затрудняет выбор того или иного метода в каждом конкретном случае. Поскольку для реализации одной и той же модели можно использовать несколько альтернативных алгоритмических методов, то выбор конкретного метода производится с учетом того, какой из них больше подходит для данной модели с точки зрения обеспечения эффективности, устойчивости и точности результатов, а также более освоен и знаком членам рабочей группы.

Реализация математической модели в виде компьютерной программы

При создании различных программных комплексов, используемых для решения разнообразных исследовательских, проектно-конструкторских и управленческих задач, в настоящее время, основой, как правило, служат математические модели. В связи с этим возникает необходимость реализации модели в виде компьютерной программы. Процесс разработки надежного и эффективного программного обеспечения является не менее сложным, чем все предыдущие этапы создания математической модели. Успешное решение данной задачи возможно лишь при уверенном владении современными алгоритмическими языками и технологиями программирования, знаний возможностей вычислительной техники, имеющегося программного обеспечения, особенностей реализации методов вычислительной математики.

Процесс создания программного обеспечения можно разбить на несколько этапов:

  • составление технического задания на разработку программного обеспечения;
  • проектирование структуры программного комплекса;
  • кодирование алгоритма;
  • тестирование и отладка;
  • сопровождение и эксплуатация.

Техническое задание на разработку программного обеспечения оформляют в виде спецификации. На этапе проектирования формируется общая структура программного комплекса. Вся программа разбивается на программные модули. Для каждого программного модуля формулируются требования по реализуемым функциям и разрабатывается алгоритм, выполняющий эти функции. Определяется схема взаимодействия программных модулей, называемая схемой потоков данных программного комплекса. Разрабатывается план и задаются исходные данные для тестирования отдельных модулей и программного комплекса в целом.

Большинство программ, реализующих математические модели, состоят из трех основных частей:

  • препроцессора (подготовка и проверка исходных данных модели);
  • процессора (решение задачи, реализация вычислительного эксперимента);
  • постпроцессора (отображение полученных результатов).

Большое значение следует придавать освоению современных технологий программирования. Назначение любой технологии — это в первую очередь повышение надежности программного обеспечения и увеличение производительности труда программиста. Причем чем серьезней и объемней программный проект, тем большее значение приобретают вопросы использования современных технологий программирования. Пренебрежение данными вопросами может привести к значительным временным издержкам и снижению надежности программного комплекса.

Важнейшим фактором, определяющим надежность и малые сроки создания программного комплекса для решения конкретного класса задач, является наличие развитой библиотеки совместимых между собой программных модулей. Программа получается более надежной и создается за меньшие сроки при максимальном использовании стандартных программных элементов.

Проверка адекватности модели

Адекватность математической модели - степень соответствия результатов, полученных по разработанной модели, данным эксперимента или тестовой задачи.

Проверка адекватности модели преследует две цели:

  • убедиться в справедливости совокупности гипотез, сформулированных на этапах концептуальной и математической постановок. Переходить к проверке гипотез следует лишь после проверки использованных методов решения, комплексной отладки и устранения всех ошибок и конфликтов, связанных с программным обеспечением;
  • установить, что точность полученных результатов соответствует точности, оговоренной в техническом задании.

Проверка разработанной математической модели выполняется путем сравнения с имеющимися экспериментальными данными о реальном объекте или с результатами других, созданных ранее и хорошо себя зарекомендовавших моделей. В первом случае говорят о проверке путем сравнения с экспериментом, во втором — о сравнении с результатами решения тестовой задачи.

Решение вопроса о точности моделирования зависит от требований, предъявляемых к модели, и ее назначения. При этом должна учитываться точность получения экспериментальных результатов или особенности постановок тестовых задач. В моделях, предназначенных для выполнения оценочных и прикидочных расчетов, удовлетворительной считается точность 10-15%. В моделях, используемых в управляющих и контролирующих системах, требуемая точность может быть 1-2% и даже более.

При возникновении проблем, связанных с адекватностью модели, ее корректировку требуется начинать с последовательного анализа всех возможных причин, приведших к расхождению результатов моделирования и результатов эксперимента. В первую очередь требуется исследовать модель и оценить степень ее адекватности при различных значениях варьируемых параметров (начальных и граничных условиях, параметров, характеризующих свойства объектов моделирования). Если модель неадекватна в интересующей исследователя области параметров, то можно попытаться уточнить значения констант и исходных параметров модели. Если же и в этом случае нет положительных результатов, то единственной возможностью улучшения модели остается изменение принятой системы гипотез. Данное решение фактически означает возвращение ко второму этапу процесса разработки модели и может повлечь не только серьезное изменение математической постановки задачи, но и методов ее решения (например, переход от аналитических к численным), полной переработки программного обеспечения и нового цикла проверки модели на адекватность. Поэтому решение об изменении принятой системы гипотез должно быть всесторонне взвешено и приниматься только в том случае, если исчерпаны все прочие возможности по улучшению адекватности модели.

Практическое использование модели и анализ результатов моделирования

Дескриптивные модели, предназначены для описания исследуемых параметров некоторого явления или процесса, а также для изучения закономерностей изменения этих параметров. Эти модели могут использоваться для изучения свойств и особенностей поведения исследуемого объекта при различных сочетаниях исходных данных и разных режимах; при построении оптимизационных моделей и моделей-имитаторов сложных систем.

Модели, разрабатываемые для исследовательских целей, как правило, не доводятся до уровня программных комплексов, предназначенных для передачи сторонним пользователям. Время их существования чаще всего ограничено временем выполнения исследовательских работ по соответствующему направлению. Эти модели отличает поисковый характер, применение новых вычислительных процедур и алгоритмов, неразвитый программный интерфейс.

Модели и построенные на их основе программные комплексы, предназначенные для последующей передачи сторонним пользователям или коммерческого распространения, имеют развитый дружественный интерфейс, мощные пре- и постпроцессоры. Данные модели обычно строятся на апробированных и хорошо себя зарекомендовавших постановках и вычислительных процедурах. Однако следует помнить, что такие модели предназначены только для решения четко оговоренного класса задач.

Независимо от области применения созданной модели группа разработчиков обязана провести качественный и количественный анализ результатов моделирования.

Работая с моделью, разработчики становятся специалистами в области, связанной с объектом моделирования. Они достаточно хорошо представляют свойства объекта, могут предсказать и объяснить его поведение.

В каждом конкретном случае математическую модель создают, исходя из целевой направленности процесса и задач исследования, с учетом требуемой точности решения и достоверности используемых исходных данных. При анализе полученных результатов возможно повторное обращение к модели с целью внесения коррективов после выполнения части расчетов.

Построение любой математической модели начинают с формализованного описания объекта моделирования. При этом аналитический аспект моделирования состоит в выражении смыслового описания объекта на языке математики в виде некоторой системы уравнений и функциональных соотношений между отдельными параметрами модели. Основным приемом построения математического описания изучаемого объекта является блочный принцип. Согласно этому принципу, после того как определен набор элементарных процессов, каждый из них исследуется по блокам в условиях, максимально приближенных к условиям эксплуатации объекта моделирования.

В результате каждому элементарному технологическому оператору ставиться в соответствие функциональный элементарный оператор с параметрами, достаточно близкими к истинным значениям.

Следующий этап моделирования состоит в агрегировании функциональных элементарных операторов в общий функциональный результирующий оператор, который и представляет математическую модель объекта. Важным фактором агрегирования является правильная взаимная координация отдельных операторов, которая не всегда возможна вследствие трудностей учета естественных причинно-следственных связей между отдельными элементарными процессами.

При выборе модели необходимо учитывать следующее:

- модель должна наиболее точно отражать характер потоков вещества и энергии при достаточно простом математическом описании;

- параметры модели могут быть определены экспериментальным или другим путем;

- в случае гетерогенных систем модели выбираются для каждой фазы в отдельности, причем для обеих фаз они могут быть одинаковыми или различными.

При построении математического описания используют уравнения таких видов:

- обыкновенные дифференциальные уравнения;

- дифференциальные уравнения в частных производных.

Алгоритмизация математических моделей:

После составления математического описания и выбора соответствующих начальных и граничных условий необходимо провести второй этап моделирования - довести задачу до логического конца, т. е. выбрать метод решения и составить программу (алгоритм).

В простейших случаях, когда возможно аналитическое решение системы уравнений математического описания, необходимость в специальной разработке моделирующего алгоритма, естественно, отпадает, так как вся информация может быть получена из соответствующих аналитических решений. Когда математическое описание представляет собой сложную систему конечных и дифференциальных уравнений, от возможности построения достаточно эффективного моделирующего алгоритма может существенно зависеть практическая применимость математической модели. В особенности это важно при использовании модели для решения задач, в которых она входит в качестве составной части более общего алгоритма, например, алгоритма оптимизации. Как правило, в таких случаях для реализации математической модели приходиться применять средства вычислительной техники; фактически без них нельзя ставить и решать сколько-нибудь сложные задачи математического моделирования и тем более задачи оптимизации, при решении которых расчеты по уравнениям математического описания обычно многократно повторяются.

Широко развитые в настоящее время методы численного анализа позволяют решать широкий круг задач математического моделирования.

Выбор численного метода:

При выборе метода для решения уравнений математического описания обычно ставиться задача обеспечения максимального быстродействия при минимуме занимаемой программой памяти. Естественно, при этом должна обеспечиваться заданная точность решения. Прежде чем выбрать тот или иной численный метод, необходимо проанализировать ограничения, связанные с его использованием, например, подвергнуть функцию или систему уравнений аналитическому исследованию, в результате которого выявиться возможность использования данного метода. При этом весьма часто исходная функция или система уравнений должна быть соответствующим образом преобразована с тем, чтобы можно было эффективно применить численный метод. Преобразованием или введением новых функциональных зависимостей часто удается значительно упростить задачу.

При выборе метода существенным моментом является размерность задачи. Некоторые методы эффективны при решении небольших задач, однако, с увеличением числа переменных объем вычислений настолько возрастает, что от них приходиться отказаться. Задачи такого класса обычно встречаются при решении систем уравнений, поиске оптимальных значений параметров многомерных функций. При соответствующем выборе метода можно уменьшить время, затрачиваемое на решение задачи и объем занимаемой машиной памяти.

Составление алгоритма решения:

Желательно составить четкое описание последовательности вычислительных и логических действий, обеспечивающих решение, т.е. составить алгоритм решения задачи. Основными требованиями к форме и содержанию записи алгоритма являются его наглядность, компактность и выразительность. В практике математического обеспечения вычислительных машин широкое распространение получил графический способ описания алгоритмов. Этот способ основан на представлении отдельных элементов алгоритма графическими символами, а всего алгоритма - в виде блок схемы. При этом набор графических символов не является произвольным, он регламентирован технической документацией по математическому обеспечению ЭВМ и соответствующими ГОСТами.

Оптимизация заключается в нахождении оптимума рассматриваемой функции или оптимальных условий проведения данного процесса. Для оценки оптимума необходимо прежде всего выбрать критерий оптимизации. В зависимости от конкретных условий в качестве критерия оптимизации можно взять технологический критерий, например максимальный съем продукции с единицы объема аппарата, экономический критерий - минимальную стоимость продукта при заданной производительности.

На основе выбранного критерия оптимизации составляется так называемая целевая функция, или функция выгоды, представляющая собой зависимость критерия оптимизации от параметров, влияющих на его значение. Задача оптимизации сводиться к нахождению экстремума (максимума или минимума) целевой функции.

Следует иметь в виду, что проблема оптимизации возникает в тех случаях, когда необходимо решать компромиссную задачу преимущественного улучшения двух или более количественных характеристик, различным образом влияющих на переменные процесса при условии их взаимной балансировки. Например, эффективность процесса балансируют с производительностью, качество - с количеством, запас единиц продукции - с их реализацией, производительность - с затратами.

Для автоматически управляемых процессов или систем различают две стадии оптимизации: статическую и динамическую.

Проблема создания и реализации оптимального стационарного режима процесса решает статическая оптимизация, создания и реализации системы оптимального управления процессом - динамическая оптимизация.

В зависимости от характера рассматриваемых математических моделей применяются различные математические методы оптимизации. Многие из них сводятся к нахождению минимума или максимума целевой функции. Линии, вдоль которых целевая функция сохраняет постоянное значение при изменении входящих в нее параметров, называются контурными или линиями уровня.

При выборе метода оптимизации необходимо учитывать возможные вычислительные трудности, обусловленные объемом вычислений, сложностью самого метода, размерностью самой задачи и т.п.

Целесообразно по возможности проводить предварительную оценку положения оптимума какой-либо конкретной задачи. Для этого необходимо рассмотреть исходные и основные соотношения между переменными. Для сокращения размерности задач часто используется прием выделения наиболее существенных переменных

Согласно принятой терминологии факторы x1, x2, . xn -- это измеряемые и регулируемые входные переменные объекта (независимые переменные); помехи f1, f2, . fs -- это не контролируемые, случайным образом изменяющиеся переменные объекта; выходные переменные y1, y2, . ym -- это контролируемые переменные, которые определяются факторами и связаны с целью исследования. Часто в планируемом эксперименте у называют параметром оптимизации (технологический или экономический показатель процесса).

Факторы x1, x2, . xn иногда называют основными, поскольку они определяют условия эксперимента. Помехи f1, f2, . fs -- как правило недоступны для измерения. Они проявляются лишь в том, что изменяют влияние факторов на выходные переменные. Объект исследования может иметь несколько выходных переменных. Опыт показывает, что в большинстве случаев удается ограничиться одним параметром оптимизации, и тогда вектор Y превращается в скаляр y.

Количество факторов и характер их взаимосвязей с выходной переменной определяют сложность объекта исследования. При наличии качественной статистической информации о факторах и зависящей от них выходной переменной можно построить математическую модель объекта исследования и функцию отклика y = f(x1, x2, . xn), связывающую параметр оптимизации с факторами, которые варьируются при проведении опытов.

Пространство с координатами x1, x2, . xn принято называть факторным, а графическое изображение функции отклика в факторном пространстве -- поверхностью отклика.

При описании объектов, находящихся в стационарном состоянии, математическая модель чаще всего представляется полиномом:

Y = f(x1, x2, . xn, Я1, Я2, . , Яn). (1)

Поскольку в реальном процессе всегда существуют неуправляемые и неконтролируемые переменные, величина у носит случайный характер. Поэтому при обработке экспериментальных данных получаются так называемые выборочные коэффициенты регрессии b0, b1, . bi, . bn, являющиеся оценками коэффициентов Я0, Я1, . Яi, . Яn.

Тогда математическая модель в форме уравнения регрессии в общем случае будет иметь вид:


Если анализируются нестационарные, т. е. изменяющиеся во времени состояния объекта, что характерно для динамического процесса, приходится рассматривать не случайные величины, как ранее, а случайные процессы. Случайный процесс можно рассматривать как систему, состоящую из бесконечного множества случайных величин. При моделировании таких объектов использовать модель в виде (2) уже недопустимо -- необходимо переходить к специальным интегрально-дифференциальным моделям и методам. В нашем случае - это градиентный метод первого порядка.

Составлению плана эксперимента всегда должны предшествовать сбор априорной информации для составления характеристики объекта исследования, опыты по наладке экспериментальной установки и при необходимости -- опыты для установления области определения наиболее существенных факторов и выходной переменной.

Теорией и практикой эксперимента выработаны определенные требования (условия), которым должны удовлетворять независимые и зависимые переменные. Поэтому на стадии подготовки к проведению эксперимента весьма полезны приведенные ниже рекомендации.

1. При выборе выходной переменной необходимо учитывать, что она должна иметь количественную характеристику, т. е. должна измеряться; должна однозначно оценивать (измерять) работоспособность объекта исследования; быть статистически эффективной, т. е. иметь возможно меньшую дисперсию при проведении опытов (это позволяет четко различать опыты); отражать как можно более широкий спектр исследуемого явления, т. е. обладать универсальностью (практически это требование обеспечить трудно, тогда рекомендуют пользоваться так называемой обобщенной переменной); иметь достаточно четкий физический смысл.

2. При выборе факторов нужно выполнять следующие требования: фактор должен быть регулируемым, т. е. определенным регулирующим устройством фактор должен изменяться от значения x'i до значения x''i; точность изменения и управления фактором должна быть известна и достаточно высока (хотя бы на порядок выше точности измерения выходной переменной), очевидно, что низкая точность измерения фактора уменьшает возможности воспроизведения эксперимента; связь между факторами должна быть как можно меньшей (в пределе должна отсутствовать), это свойство называют однозначностью факторов, что соответствует независимости одного фактора от другого.

Ряд требований предъявляется одновременно к факторам и выходной переменной: факторы и выходная переменная должны иметь области определения, заданными технологическими или принципиальными ограничениями; области определения факторов должны быть таковы, чтобы при их предельных значениях значение выходной переменной оставалось в своих границах; между факторами и выходной переменной должно существовать однозначное соответствие (причинно-следственная связь).

Успех современного экспериментирования в значительной степени обязан теории эксперимента, которая призвана дать экспериментатору ответы на следующие вопросы:

1. Как нужно организовать эксперимент, чтобы наилучшим образом решить поставленную задачу (в смысле затрат времени, средств или точности результатов).

2. Как следует обрабатывать результаты эксперимента, чтобы получить максимальное количество информации об исследуемом объекте.

3. Какие обоснованные выводы можно сделать об исследуемом объекте по результатам эксперимента.

Основой теории эксперимента является статистическое представление об эксперименте (рассматриваются случайные величины или случайные функции). Это представление отвечает действительности: как правило, итоги эксперимента связаны с некоторой неопределенностью, получающейся в результате влияния неконтролируемых факторов, случайного характера процесса на микроуровне, изменений условий эксперимента, ошибок измерения и др.

Теория эксперимента указывает исследователю точную логическую схему и способы поиска решения задач на разных этапах исследования. Можно представить весь процесс исследования циклами, повторяющимися после решения каждой из последовательных задач исследования, причем объем знаний об объекте непрерывно увеличивается.

Цель настоящей работы состоит в построении динамической модели заданного эксперимента, широко используемой при решении задач лабораторных и промышленных исследований. В работе рассмотрены основные методы и алгоритмы, относящиеся к идентификации динамических систем градиентным методом первого порядка.

Математическая модель — концепция представления реальности математическим способом, вариант схемы как комплекса, изучение которого позволяет человеку обрести знания о некой другой системе.

Простой пример: график зависимости среднесуточной температуры от времени.

Математическая модель также была создана для того, чтобы проанализировать и предугадать поведение материального объекта. Однако у математической модели есть проблема, от которой не избавиться — идеализация.

Математическое моделирование — процесс создания, а также приемы построения и исследования математических моделей.

Все науки, которые используют для решения своих задач математический аппарат, практикуют математическое моделирование. То есть, заменяют объект своего исследования математической моделью и занимаются исследованием последней.

При помощи совокупности математических методов можно описать образцовый объект или процесс, который построен на стадии содержательного моделирования.

Как осуществляется связь математической модели и реальности?

  1. Эмпирические законы.
  2. Гипотезы.
  3. Идеализация.
  4. Упрощения.

Самые важные математические модели всегда обладают качеством универсальности. То есть, совершенно разные феномены могут быть описаны одной математической моделью.

Однако стоит помнить, что модель — объект, она может иметь собственные качества и свойства, которые могут не относиться к реальному моделируемому объекту.

Часто математические модели представляют в виде:

  1. Графика. Получить данные для решения задачи мы можем, посмотрев на данные графика.
  2. Уравнения. Данные для решения задачи зашифрованы в виде уравнения, под буквами x и y.

Представим основные понятия, которые важны для изучения данной темы:

  1. Реальный объект — исследуемый объект. Им может быть явление, система, либо процесс.
  2. Модель — нематериальный или материальный объект исследования, который является заменителем настоящего процесса\явления\системы.
  3. Моделирование — способ исследования предметов с помощью прототипов.

Виды математических моделей, классификация

Существует несколько классификаций математических моделей. Рассмотрим некоторые из них.

Формальная типология

Основа данной классификации — какие математические средства используются для создания модели. Для создания схем в формальной классификации часто используется прием дихотомии.

Дихотомия — раздвоение, разделение чего-то на две части. Например, графиков.

К известным типам дихотомии относятся:

ЛинейныеНелинейные
СосредоточенныеРаспределенные
ДетерминированныеСтохастические
СтатическиеДинамические
ДискретныеНепрерывные

Типология по методу представления объекта

В рамках данной классификации выделяют структурные и функциональные модели.

  • Структурная модель показывает объект как комплекс с механизмом и устройством функционирования.
  • Функциональные модели могут отражать поведение объекта, которое мы можем воспринимать внешне.

Содержательные, а также формальные модели

Многие авторы, которые описывают процесс моделирования в математике, отмечают, что для начала нужно построить специальную образцовую конструкцию, так называемую содержательную модель.

В разных учебных изданиях идеальный объект называется по-разному. Встречаются такие примеры как умозрительная модель, концептуальная модель, а также предмодель.

Конечная математическая схема будет назваться формальной моделью (математическая модель). Она получается в результате представления предмодели с помощью формального языка.

Построить умозрительную модель можно с помощью уже готового набора идеализаций. Например, в механике существуют идеальные пружины, маятники, твердые тела и тд, которые представляют собой готовые заготовки для построения содержательной модели.

Однако есть научные области, в которых сложно построить содержательные модели, потому что в них нет полноценных формализованных доктрин. К таким дисциплинам относятся биология, физика, психология, экономика и многие другие).

Содержательная типология

В работах английского физика Рудольфа Эрнста Пайерлса можно найти некоторые типологии математических моделей, которые используются в физике и других естественных науках. Советские ученые Александр Горбань и Рэм Хлебопрос расширили классификацию Пайерлса. Данная типология акцентирует свое внимание на процессе выстраивания содержательной модели. Итак, существуют следующие типы математических моделей:

Сложность моделируемой системы

Выделяются три уровня систем по сложности:

  • простые физические;
  • сложные физические;
  • биологические системы.

Советский академик Александр Андронов выделил три типа неустойчивых моделей:

  1. Неустойчивые к преобразованию начальных требований.
  2. Неустойчивые к небольшим преобразованиям условий, которые не вызывают никаких изменений в числе степеней свободы системы.
  3. Неустойчивые к небольшим преобразованиям условий, которые вызывают изменения в числе степеней свободы системы.

Неустойчивые модели называют негрубыми. Устойчивые модели — мягкие.

Какие еще бывают модели?

  1. Игровые (игры).
  2. Учебные (тренажеры).
  3. Опытные (уменьшенные копии чего-то).
  4. Исследовательские (для исследования процессов).
  5. Имитационные (представляют явления реальности).

Это ряд прототипов, которые выделяются по принципу применения.

Также выделяют материальные и информационные модели. Натуральные — муляжи, макеты. А информационные — прототипы, которые заменяют реальность формально (то есть словесно, графически и т.д.).

Какие параметры нужны для построения математической модели

Рассмотрим принципы построения математических моделей:

  1. Информационная достаточность. Невозможно построить схему без исследуемой информации. А при полноценном информационном обеспечении (когда все известно), построение не имеет никакого смысла. Поэтому для разработки математической модели важно иметь достаточное количество информации (не избыточное или недостаточное).
  2. Осуществимость проекта. Схема обязана гарантировать достижение определенной цели исследования.
  3. Множественность модели. Модель обязана отражать свойства реальных явлений, которые сказываются на эффективности исследования. Должны исследоваться лишь некоторые части реального объекта. Для полноценного исследования необходимо проанализировать некоторое множество (ряд) моделей.
  4. Агрегирование. Создание в рамках большой и сложной системы несколько подсистем, которые могут помочь решить задачу, поставленную в исследовании.
  5. Параметризация. Подсистема с определенным параметром выражается в числовой величине. Они не описывают процесс функционирования. Зависимость величины может быть задано таблицей, формулой, графиком. Служит для сокращения объема.

Также все математические модели должны отличаться следующими признаками адекватностью, конечностью, полнотой, упрощенностью, гибкостью.

Алгоритм составления, основные моменты

Для того чтобы составить математическую модель необходимо перевести данные задачи в вид математической формы. То есть переделать слова в формулу, уравнение и т.д. Необходимо установить математические связи между всеми условиями задачи.

Стоит помнить, что формула, уравнение математической модели должно полностью соответствовать тексту задачи, потому что иначе цель исследования изменится, а значит и задачу мы будем решать другую.

Представим алгоритм решения математической модели:

  1. Определяем цель исследования.
  2. Выделяем свойства системы.
  3. Выбираем средства, с помощью которых будем исследовать систему.
  4. Проводим исследование.
  5. Анализируем получившиеся результаты.
  6. Корректируем прототип.

Попробуем составить математическую модель на примере простой задачи:

Данный текст нужно представить в виде уравнения. Для этого необходимо установить математические связи между всеми условиями задачи.

  1. Обращаем внимание на главные математические данные. 10 тушек и 50%.
  2. Найдем скрытую информацию. Под 50% имеется в виду 50% от всего количества дичи.
  3. Представим главный вопрос — сколько дичи — в виде X. То есть, X — количество всей дичи, что есть у Ивана Федоровича.
  4. Процентное соотношение дичи из тундры нужно перевести в штуки, потому что в математических задачах важно все составлять в одинаковых значениях.
  5. Число дичи из тундры невозможно посчитать в штуках, поэтому переводим в уравнение 50% = 0,5*X. Данное уравнение верно для вычисления количества дичи из тундры.
  6. Какие данные у нас есть? 10 штук тушек зайцев из тайги, 0,5*X — дичи из тундры, а также X общее количество дичи.
  7. То есть, общее количество дичи будет равно сумме дичи из тайги и дичи из тундры. То есть, уравнение X = 10 + 0,5X.
  8. X = 10 + 0,5X — математическая модель.
  9. Далее решаем линейное уравнение и получаем, что дичи всего 20 штук.
  10. Ответ: 20.

Обобщение — для того, чтобы построить математическую модель, нужно выбросить всю ненужную информацию из задачи, оставить только нужное и заменяем на математический объект.

Тимур Гамилов

Неудивительно, что интерес к математическому моделированию в медицине и спорте растет: в США с 1961 по 2006 год процент бюджетных денег, которые тратятся на медицину, возрос с 4% до 20%. В других странах люди тоже хотят жить долго и хорошо, а готовность властей финансировать науку и текущий уровень развития технологий растут с каждым годом. Поэтому вместо того, чтобы проводить медицинские эксперименты на людях, в качестве подопытных кроликов ученые используют математические модели.

Модель для сборки: инструкция

Для построения любой математической модели необходимы данные. Базовые знания о строении и функционировании организма человека можно найти в анатомических атласах и другой справочной литературе. Но поскольку организм каждого человека уникален, врачи наблюдают за каждым пациентом индивидуально: проводят МРТ, компьютерную томографию, измеряют пульс, давление.

Представим, что перед командой ученых (биологов, математиков, физиков, программистов) стоит задача — помочь в постановке диагноза и поиске метода лечения пациентов со стенозом. Первым делом мы, ученые, должны понять, что такое стеноз, и расспрашиваем об этом врачей. Оказывается, стеноз — это возникновение бляшек на сосудах, которые создают разницу в давлении между участками сосуда. В результате сосуд может не выдержать такой нагрузки и порваться. Диагностируется заболевание двумя путями. Первый — качественный способ: нужно сделать снимок сосуда, найти бляшку и по ее виду сделать вывод. Второй — количественный: через бедренную артерию в нужные участки сосуда вводятся датчики, которые измеряют разницу давлений. Результаты количественного анализа — более точные. Это значит, что можно не оперировать пациента без надобности, а осложнения после лечения будут минимальными. Минусы этого способа — в цене и высоких рисках для пациента. Нужна дешевая и безопасная альтернатива, которая поможет поставить количественный диагноз и принять верное решение о лечении. Такой альтернативой может стать математическая модель процессов, происходящих в организме, связанных с развитием болезни.

http://news.nike.com/

В нашем случае нужно понять, по каким законам возникает разница в давлениях внутри сосудов, и записать эти законы в виде уравнений. Модели создаются под каждую проблему, болезнь или задачу. Для начала в уравнения (например, гидродинамики) вписывают величины, примерно одинаковые для всех пациентов — в науке они называются константами. Помимо констант, существуют параметры — показатели, которые учитываются для каждого человека индивидуально: длина, ширина сосудов, частота пульса, вид шума в сосудах. После того как мы вписали в уравнения константы, снимаем данные с пациента и записываем их в уравнения. Так ученые связывают параметры и константы с помощью формул: теперь в готовое уравнение мы подставляем разные значения для разных пациентов, чтобы получить необходимый результат — показатель разницы давлений между участками сосуда. Лечение стеноза, в зависимости от степени тяжести заболевания, врачи проводят либо медикаментозно (когда разница в давлениях небольшая), либо с помощью хирургического вмешательства (для более серьезных случаев).

После того как модель запрограммирована, работа не заканчивается. Во-первых, измерить большую часть параметров, которые нужно внести в уравнения, скорее всего, не получится без огромных затрат и дорогостоящих операций. Например, для детального определения структуры бляшек, упругих свойств сосуда и законов, по которым он меняется со временем, потребуется колоссальное количество сил и средств. Поставить такую технологию на поток вряд ли удастся.

Во-вторых, снятые параметры могут измениться через определенное время. Эластичность сосудов сильно меняется в зависимости от гормонов, которые на данный момент присутствуют в крови. А чтобы предсказать, сколько каких гормонов содержится в кровяном русле в интересующий нас период, нужно замоделировать в буквальном смысле весь организм человека, так как гормональный фон зависит от огромного количества факторов.

Врачи не знают математику, а математики — биологию, однако без диалога невозможна ни одна дисциплина на стыке наук

В-третьих, даже если мы сможем измерить все необходимые параметры и они не станут сильно меняться со временем, измерения, скорее всего, будут неточными. И чем больше параметров мы снимаем, тем активнее будет расти эта неточность. А поскольку в организме от небольшого изменения каждого параметра существенно меняются все остальные величины, такая неточность часто становится критичной. Например, даже несущественное количество введенного лекарства, растворяющего тромбы, может привести к передозировке, которая вызовет серьезное кровотечение.

Решаются эти проблемы путем упрощения модели: ученые по максимуму сокращают количество параметров и уравнений, стараются сделать их проще, или, как говорят математики, оптимизируют систему. Несмотря на технологическое несовершенство, метод математического моделирования уже работает и помогает людям. Благодаря математическому моделированию была создана известная модель токов в клетке Ходжкина — Хаксли, которая помогла описать, как распространяются электрохимические импульсы, передающие информацию в организме по нервным клеткам. Эта разработка считается одним из самых важных открытий неврологии XX века. За нее ученые получили Нобелевскую премию.

В помощь Усэйну Болту

Профессионалы рынка спортивных достижений шутят, что в 2015 году соревнования идут не между спортсменами, а между разработчиками программ тренировок. Чтобы исследовать живого спортсмена непосредственно во время тренировки, придется повесить на него кучу приборов: измерители пульса, давления, уровня сахара в крови — и еще, желательно, МРТ-аппарат. В таком обмундировании достичь высоких показателей (или хотя бы просто сдвинуться с места) нереально. А вот с помощью математической модели можно рассчитать интересующие показатели на компьютере: ученые заранее снимают параметры со спортсмена в состоянии покоя и составляют уравнения, из которых затем можно извлечь нужные параметры в состоянии физической нагрузки. Моделировать можно самые разные процессы: например, дыхание в клетках мышц футболиста во время бега до образования тромбов. Модели могут быть одномерными или трехмерными, а также учитывать большое количество параметров — например, степень упругости сосудов при моделировании сосудистой сети.


Математически смоделированные стратегии для тренировок — уже рутина для спортивной индустрии. Показатели великого бегуна Усэйна Болта почти совпадают с графиком кривой оптимального темпа для бега на 100 метров в каждый момент времени. На соревнованиях по прыжкам с трамплина на лыжах высота конструкции выбирается с использованием математической модели тел спортсменов так, чтобы нагрузки не стали критичны для организма.

Математика + медицина

Главная трудность в развитии метода пока заключается в том, что значительное количество разработок так и остаются теорией. В повседневное клиническое использование вводится крайне малая часть таких проектов. Ученые видят будущее моделей в их адаптации под реальные условия. Теоретические расчеты нужны и важны для понимания процессов, которые происходят в организме, но не менее важно научиться использовать такие расчеты глобально. Сильно упростит задачу, если пациентам будет легко и понятно снимать показатели самостоятельно.

Ученым из разных областей придется все чаще работать на стыке наук и сотрудничать с инженерами и врачами. Чтобы эти идеи не оставались на страницах научных журналов, а реально помогали людям, математики должны начать взаимодействовать с врачами, которые ставят перед ними конкретные медицинские задачи. Такое взаимодействие (из-за особенностей образования и способа мышления) часто дается обеим сторонам непросто: врачи не знают математику, а математики — биологию, все они пользуются разной терминологией и методами. Однако без подобного диалога невозможна ни одна дисциплина на стыке наук.

Читайте также: