Как сделать ламинарный поток

Обновлено: 08.07.2024

В динамике жидкости ламинарный (обтекаемый) поток возникает, когда жидкость течёт слоями без разрыва между слоями.

При низких скоростях жидкость имеет свойство течь без бокового перемешивания — соседние слои скользят мимо друг друга, как игральные карты. Здесь нет поперечных токов, перпендикулярных направлению потока, вихрей или пульсаций.

В ламинарном потоке движение частиц жидкости происходит упорядоченно, по прямым линиям, параллельно поверхности. Ламинарное течение — режим потока с высокой диффузией импульса и конвекцией низкого импульса.

Если жидкость течёт через закрытый канал (трубку) или между двух плоских пластин, может возникнуть ламинарный либо турбулентный поток — это зависит от скорости и вязкости жидкости. Ламинарный поток возникает при более низких скоростях, которые ниже порога, при котором он становится турбулентным. Турбулентный поток представляет собой менее упорядоченный режим потока, с вихрями или небольшими пакетами частиц жидкости, что приводит к боковому перемешиванию. В ненаучных терминах ламинарный поток называют гладким.

Ламинарный поток - как он выглядит

Отвлечемся немного от предыдущих записей, да, я помню что обещал рассказать подробно про очистку фильтров, однако, текст мне видится длинным, потому предлагаю сегодня обсудить ламинарные потоки, тем более что это довольно красивая тема, ну а в следующих уж точно будут фильтры.

Когда жидкость или газ течет равномерно и без турбулентности, это называется “ламинарный поток”. Наиболее наглядным примером ламинарного потока для большинства из нас будут дугообразные потоки воды в фонтане, когда массой кристально чистой воды выстреливают, как пулей, и она изящно летит рассекая воздух из одной точки в другую.

фонтан

Домен самарского производителя фонтанов здесь возможен

Когда я впервые увидел этот эффект в рекламном ролике парка Disney World много лет назад, я был уверен, что они добавили что-то к воде (может, глицерин?). Теперь я знаю, что все это делается путем создания ламинарного потока. Наиболее удивителен даже не сам полет воды в воздухе, а то, что нет никаких брызг, когда вода приземляется на другом конце. В промышленном клининге, отсутствие всплесков и летящих во все стороны брызг, может стать значительным доводом в пользу применения ламинарного потока. Давайте копать немного глубже.

Кстати, просто для удовольствия, попробуйте выполнить описанное выше при помощи садового шланга.
Ламинарный поток в трубе или патрубке означает, что вся жидкость однородной массы и все ее частицы движутся с одинаковой скоростью в одном направлении.

ламинарный против турбулентного потоки

Верхний рисунок показывает ламинарный поток через трубку или трубки. Обратите внимание, что поток прямой и равномерный, как в трубке, так и после выхода. А на нижнем рисунке образубтся турбулентные течения в результате неравномерного стока и шероховатой поверхности.

Ламинарный поток возможен не только в трубах или после них, но и практически в любом ограниченном пространстве, таком как – цисцерны, трубопроводы, печи, и т.п. Ламинарный поток является важным дополнением в нескольких направлениях промышленного клининга. Например, он очень важен там, где необходим эффективный обмен воды и важно свести к минимуму ее потребление. В клининге, ламинарный поток может уносить загрязнения с места очистки, туда где они могут быть эффективно собраны путем фильтрации и утилизированы в другом, еще более удобном месте. В случае очистки помещений, ламинарный поток воздуха позволяет продуть всю комнату, избавив ее от возможных примесей и газов. Давление и скорость — главные враги ламинарного потока в жидкостях и газах. Даже незначительные дефекты поверхностей, содержащих поток, могут привести к турбулентности в случае давления и высокой скорости в трубе. Поэтому очень важны гладкие стенки патрубков. Трубопроводы и трубки должны быть как можно более линейными. Насадки и вентиляторы перед местом где нужен ламинарный поток, абсолютно противопоказаны. При Линеаризации потока, как правило, требуется устройство для его выпрямления. В случае газа, ламинарный поток может быть получен путем пропускания газа через серию параллельных трубочек. Важно при генерировании ламинарного потока убедиться, что он правильно получен. Любое препятствие для потока создаст турбулентность.

В случае жидкостей существует ряд схем для получения ламинарного потока. В клининге, ламинарный поток обычно требуется в резервуаре. Использование только сопел (независимо от того, сколько их) не позволит выполнить эту работу. Успешное создание ламинарного потока может быть достигнуто с помощью пористого металла, или пластинки из металла или пластика внутри потока. В любом случае, вся боковая стенка должна составлять источник, а не только небольшое окно. Объем жидкости удаленнной из резервуара, должен совпадать с объемом жидкости введенной в резервуар, так можно избежать появления турбулентности.

При проектировании моечных машин, ламинарный поток это не то что следует оставлять без внимания или к чему следует подходить без хорошего понимания принципов механики, участвующей в процессах. Это, немного сложнее, чем кажется, и полностью противоречит здравому смыслу, но, при правильном использовании, может быть очень эффективным инструментом.

Плоский радиальный ламинарный поток
Плоский радиальный ламинарный поток
Плоский радиальный ламинарный поток
Плоский радиальный ламинарный поток
Плоский радиальный ламинарный поток
Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.jpg

Плоский радиальный ламинарный поток. Что касается радиальной плоскости ток представляет собой упрощенную модель потока, генерируемого при: Фильтрующий. Фильтрация-это процесс, с помощью которого жидкость Пористая среда. Основные уравнения теории фильтров Он был приобретен Жуковским в 1889 году. В частности, при фильтрации возникает радиальный поток. Очень часто устанавливается войлочный фильтр через топливо 13. 3.

Если разрывы или их количество не совпадают, то формула расчета Жить: 12-6. Плоского радиального ламинарного потока 194 ламинарный поток f 12 И фигура тоже. 12-11. Фильтр тонкой очистки. / — f и l секций;а о РП в 2-с; 5-й металлической сети В двигателе внутреннего сгорания система питания сто. 1 из Такие фильтры показаны в собранном и разобранном виде И фигура тоже. 1 2-1 1. В отличие от фильтрационного двигателя.

Возникает проблема фильтра Для обоих перепад давления Со стороны filter. In состояние белка Возможна подача жидкости через фильтр. Как в ламинарных, так и в турбулентных потоках filtering. In условия ламинарного течения Пьезоэлектрический фильтр Грудь пропорциональна начальной скорости потока degrees. In турбулентное состояние Пьезометрический уклон фильтрации Порядок lorpor tsoyoi Ален потребления]> 1.

Только в ламинарном режиме возможно получение точных решений уравнения движения жидкости. Людмила Фирмаль

  • Рассмотрим только ламинарную фильтрацию потока (Рис. 1 2-1 2 Фильтр с кольцевого сечения. Экспериментальное исследование Зависимость может быть выражена ламинарной фильтрацией Между пьезометрическим уклоном и расходом в следующем виде: (12-40 И фигура тоже. 12-12. Распределение Давление и скорость Секция фильтра. Чтобы получить вычисленную зависимость, представим уравнение.

На рисунке 1-12-13 представлены результаты исследования автора Сопротивление давлению войлочного фильтра c секцией Рисунок 1 12-11. Расследование. Фильтры различных размеров и различных марок были отлиты 1. С дистанции Если вы посмотрите на этот график, вы можете увидеть, что падение давления Эксперимент пропорционален расходу 1-го порядка. Для подтверждения эффективности Формулы (от 12 до 43) .

Исходная Формула (1 2 4 0). Вы можете использовать формулу (от 12 до 42) Давление фильтра призвано изучать закон изменения. Для этого необходимо выразить его в следующей форме:. Формула (12-45) следует за направлением потока Перепад давления или перепад давления логарифмический Закон (Рисунок 1 2-1 2). Два В исследовании принял участие 1 п. с. Мужников. 2 при расчете фильтра, внешний контур Квадрат (см. Рисунок 12 * 11), необходимо заменить соответствующей формулой 2б.

Равное значение радиуса равное b является стороной квадрата Рата. 196 ламинарное движение потока[гл. 12. 9! !внутрь !№ .! № 4! №. № 4! = 5? 5. 〜 d. 3 4 5 $ 7 6 9 1 0 / w w 3 0 40 w г / С Е Н Рис. 12-13. Перепад давления и расход при фильтрации Легкое масло[y = 0, 068 см * / с? = 0, 851 г см = 20°c). I-секция граффити и фильтров Людмила Фирмаль

  • Площадь круглого поперечного сечения фильтра составляет 5 = 2pt / g, т. е. > (12-48 ^- Объемная масса жидкости кг1м3. У-коэффициент динамической вязкости, кг * с! М2. ; crc-коэффициент пропускания, м2. Важное влияние на коэффициент пропускания глаза Вызывает пористость фильтрующей среды, которая характерна Создается так называемый коэффициент пористости (12-49).

Где находится объем пор? — Общий объем пористых сред. Чем меньше кор, тем выше плотность фильтрующего материала и тем сильнее боль Оно прилагает сопротивление шеи против жидкой фильтрации. Внутри таблицы. 12 ′ 2 указывает значение коэффициента фильтрации В случае войлочного фильтра отображаются результаты тестирования Жена

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Ламинарный режим

Движение жидкости, наблюдаемое при малых скоростях, при котором отдельные струйки жидкости движутся параллельно друг другу и оси потока, называют ламинарный режим движения жидкости.

В этой статье подробно описывается процесс ламинарного режима, переход в ламинарного режима из турбулентный, формула и закон этого режима и многое другое.

Очень наглядное представление о ламинарном режиме движения жидкости можно получить из опыта Рейнольдса. Подробное описание здесь.

Содержание статьи

Ламинарный режим движения в опытах

Ламинарный режим на опыте

Жидкая среда вытекает из бака через прозрачную трубу и через кран уходит на слив. Таким образом жидкость течет с определенным небольшим и постоянным расходом.

На входе в трубу установлена тонкая трубочка по которой в центральную часть потока поступает подкрашенная среда.

При попадании краски в поток жидкости движущейся с небольшой скоростью красная краска будет двигаться ровной струйкой. Из этого опыта можно сделать вывод о слоистом течении жидкости, без перемешивания и вихреообразования.

Такой режим течения жидкости принято назыать ламинарным.

Рассмотрим основные закономерности ламинарного режима при равномерном движении в круглых трубах, ограничиваясь случаями, когда ось трубы горизонтальна.

При этом мы будем рассматривать уже сформировавшийся поток, т.е. поток на участке, начало которого находится от входного сечения трубы на расстоянии, обеспечивающем окончательный устойчивый вид распределения скоростей по сечению потока.

Имея ввиду, что ламинарный режим течения имеет слоистый(струйный) характер и происходит без перемешивания частиц, следует считать, что в ламинарном потоке будут иметь место только скорости, параллельные оси трубы, поперечные же скорости будут отсутствовать.

Ламинарный режим

Можно представить себе, что в этом случае движущаяся жидкость как бы разделяется на бесконечно большое число бесконечно тонких цилиндрических слоев, параллельных оси трубопровода и движущихся один внутри другого с различными скоростями, увеличивающимися в направлении от стенок к оси трубы.

При этом скорость в слое, непосредственно соприкасающемся со стенками из-за эффекта прилипания равна нулю и достигает максимального значения в слое, движущемся по оси трубы.

Формула ламинарного режима течения

Принятая схема движения и введенные выше предположения позволяют теоретическим путем установить закон распределения скоростей в поперечном сечении потока при ламинарном режиме.

Ламинарный режим

Для этого сделаем следующее. Обозначим внутренний радиус трубы через r и выберем начало координат в центре её поперечного сечения O, направив ось х по оси трубы, а ось z по вертикали.

Теперь выделим внутри трубы объем жидкости в виде цилиндра некоторого радиуса y длиной L и применим к нему уравнение Бернулли. Так как в следствии горизонтальности оси трубы z1=z2=0, то

Ламинарный режим

где R – гидравлический радиус сечения выделенного цилиндрического объема = у/2

τ – единичная сила трения = - μ * dυ/dy

Подставляя значения R и τ в исходное уравнение получим

Ламинарный режим

Задавая различные значения координаты y, можно вычислить скорости в любой точке сечения. Максимальная скорость, очевидно, будет при y=0, т.е. на оси трубы.

Ламинарный режим
Ламинарный режим

Для того, чтобы изобразить это уравнения графически, необходимо отложить в определенном масштабе от некоторой произвольной прямой АА скорости в виде отрезков, направленных по течению жидкости, и концы отрезков соединить плавной кривой.

Полученная кривая и представит собой кривую распределения скоростей в поперечном сечении потока.

Ламинарный режим

График изменения силы трения τ по сечению выглядит совсем по другому. Таким образом, при ламинарном режиме в цилиндрической трубе скорости в поперечном сечении потока изменяются по параболическому закону, а касательные напряжения – по линейному.

Полученные результаты справедливы для участков труб с вполне развитым ламинарным течением. В действительности, жидкость, которая поступает в трубу, должна пройти от входного сечения определенный участок, прежде чем в трубе установится соответствующий ламинарному режиму параболический закон распределения скоростей.

Развитие ламинарного режима в трубе

Развитие ламинарного режима в трубе можно представить себе следующим образом. Пусть, например, жидкость входит в трубу из резервуара большого размеры, кромки входного отверстия которого хорошо закруглены.

Ламинарный режим

В этом случае скорости во всех точках входного поперечного сечения будут практически одинаковы, за исключением очень тонкого, так называемого пристенного слоя(слоя вблизи стенок), в котором вследствие прилипания жидкости к стенкам происходит почти внезапное падение скорости до нуля. Поэтому кривая скоростей во входном сечении может быть представлена достаточно точно в виде отрезка прямой.

По мере удаления от входа, вследствие трения у стенок, слои жидкости, соседние с пограничным слоем, начинают затормаживаться, толщина этого слоя постепенно увеличивается, а движение в нем, наоборот, замедляется.

Центральная же часть потока (ядро течения), еще не захваченная трением, продолжает двигаться как одно целое, с примерно одинаковой для всех слоев скоростью, причем замедление движения в пристенном слое неизбежно вызывает увеличение скорости в ядре.

Ламинарный режим

Таким образом, в середине трубы, в ядре, скорость течения все время возрастает, а у стенок, в растущем пограничном слое, уменьшается. Это происходит до тех пор, пока пограничный слой не захватит всего сечения потока и ядро не будет сведено к нулю. На этом формирование потока заканчивается, и кривая скоростей принимает обычную для ламинарного режима параболическую форму.

Переход от ламинарного течения к турбулентному

Ламинарное течения жидкости при некоторых условиях способно перейти в турбулентное. При повышении скорости течения потока слоистая структура потока начинает разрушаться, появляются волны и вихри, распространение которых в потоке говорит о нарастающем возмущении.

Постепенно количество вихрей начинает возрастать, и возрастает пока струйка не разобьется на множество перемешивающихся между собой более мелких струек.

Хаотичное движение таких мелких струек позволяет говорить о начале перехода ламинарного режима течения в турбулентное. С увеличением скорости ламинарное течение теряет свою устойчивость, при этом любые случайные небольшие возмущения, которые раньше вызывали только лишь малые колебания, начинают быстро развиваться.

Видео о ламинарном течении

В бытовом случае переход одного режима течения в другой можно отследить на примере струи дыма. Сначала частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым практически неподвижен. Со временем в некоторых местах вдруг возникают крупные вихри, которые двигаются по хаотичным траекториям. Эти вихри распадаются на более маленькие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.

Читайте также: