Как сделать из логарифмического потенциометра линейный

Обновлено: 05.07.2024

Одни утверждают, что громкость — величина нелинейная, посему использовать для регулировки громкости нужно потенциометры с логарифмической характеристикой. Другие их опровергают, апеллируя к тому, что резистор регулирует не громкость, а напряжение в электрической цепи.

В этом видео я решил рассказать о потенциометрах, их характеристиках и о работе в качестве регулировки громкости, а также наглядно продемонстрировать разницу в использовании линейного и логарифмического потенциометра

Иван Опарин

Линейные, логарифмические и подстроечные.

Много раз возникал вопрос. Можно ли заменить логарифмический на линейный переменный резистор. Оказалось что разница в графиках функции каждого из них.
У линейного это прямая резко возростающая вверх под углом тангенса наклона относительно оси ох (Рис. 1). График логарифма это кривая, которая растет более плавно чем линейный (Рис. 2). Логарифмические переменные резисторы чаще всего используются для более точных и тонких настройках. У линейных точности не занимать. Поэтому если вам точные и тонкие настройки не надо, то можете смело менять логарифмические на линейные или подстроечные. У подстроечных всё хорошо только ручки мутарно подводить, надо отвёрткой рулить их. (Рис. 3). Логарифмический и линейный по внешнему виду не отличаются (Рис. 4). Для удешевления линейные и логарифмические меняют на подстроечные, и это экономит деньги. Сейчас линейные и логарифмические стоят от 15 до 30 рублей, когда в свою очередь подстроечные стоят от 3 до 10 рублей. А если в примочке несколько переменников (громкость, басы, тембр и.т.п.), экономит в среднем 50 рублей точно.
Поэтому смело заменяйте резисторы если пренебрегаете точностью.
Ну а реостатные нас не сильно волнуют. Если тока микшер паять )))

Алексей Провоторов

гг. и басы крутить отверткой штоли?? за съэкономнленный полтинник. спасибо.
про15-30р. чет слабая крутилка получается. китайское фуфло , в процессе эксплуатации весь мозг съест. лучше уж из телека старого выковарить. там хоть 100пудов проверено было.
а вообще, на этих крутилках разориться не долго. когда речь заходит про звук. лучше не экономить. фирмовые крутилки начинаются от 300р.

Серега Вротмненоги

ха это есчо дешевый воот ПОТЕНЦИОМЕТР (гы как мне нравицо это слово)от ДИМАРЦО стоит пол кускапримерно )) ну и ЭРНИ БОЛ тоже от 300-канешна с китайским корпоративом не сравница..)

Вадим Рассадюк

Парень, ты еще забыл различия между переменными и подстроечными: подстроечные называются так потому что ими подстраивают и оставляют в покое. Быстро из строя выходят они если их использовать вместо переменников. Проверено на личном опыте.

Основные проблемы регулирования громкости

Прежде всего, необходимо иметь в виду, что регулятор громкости высококачественного усилителя, — это не простейший потенциометр с сопротивлением 100 кОм, ручка которого находится на верхней или лицевой панели корпуса усилителя. Он является весьма существенным блоком предусилителя и должен рассматриваться с точно такой же тщательностью, как и все остальные блоки и компоненты схемы усилителя. Прежде всего следует отметить, что чувствительность человеческого уха к уровню звукового давления, или силе звука, изменяется в соответствии не с линейным, а с логарифмическим законом. Поэтому, при проектировании регулятора громкости звука, который должен обеспечивать равномерную характеристику восприятия во всем звуковом диапазоне, необходимо использовать потенциометр, сопротивление которого изменяется по обратно — логарифмическому закону (или, иначе, по закону показательной функции). Это и является основной причиной всех проблем проектировщика.

Изготовление переменного резистора с линейной шкалой не представляет проблем. Для этого просто наносится полоска из углеродосодержащего материала равномерной толщины и ширины на изолирующую подложку, изготавливаются контакты с каждого конца, затем тем, или иным способом изготавливается подвижный контакт. Если нет смысла обременять себя проблемами с корпусом, то такой тип переменных резисторов известен под названием скелетных. Для получения обратно — логарифмического закона изменения сопротивления токопроводящей дорожки ее толщина изменяется по длине, устанавливаться металлические прессованные экраны, затем два потенциометра (для одноручечной регулировки стерео-усилителя) насаживаются на единый вращающийся вал, на котором затем можно укрепить большую и блестящую алюминиевую ручку. Технология же изготовления проводящего покрытия с изменяющейся по заранее заданному закону толщиной оказывается не самым дешевым процессом, поэтому чаще всего обратно — логарифмический закон изменения сопротивления от угла поворота движка потенциометра аппроксимируется набором прямолинейных участков (рис. 8.7).

Кусочно-линейная аппроксимация логарифмической зависимости

Рис. 8.7 Кусочно-линейная аппроксимация логарифмической зависимости

Несколько ошеломляющим результатом является то, какое неплохое совпадение с идеальной обратно — логарифмической кривой могут обеспечить всего четыре дискретные резистивные дорожки, однако, не должен вызывать удивления и тот факт, что переходы с одного участка на другой приводят к скачкообразному изменению сопротивления потенциометра при повороте рычажка такого потенциометра. Также следует ожидать, что механически связанные потенциометры способны обеспечить равномерный уровень ослабления во всем диапазоне, начиная с нуля до 60 дБ. Часть углеродных потенциометров имеет действительно замечательные характеристики, но, к великому сожалению, среда обитания потенциометров с углеродными дорожками сохранилась только в уже покрытых тленом времени старых телевизионных приемниках.

Подгонка закона изменения сопротивления потенциометра

Одним из полезных и простых способов подгонки закона изменения сопротивления потенциометра под требуемую зависимость является использование линейного потенциометра, имеющего однородную проводящую пластиковую дорожку, и подстраивающего под необходимую зависимость изменения сопротивления подгоночного резистора, установленного между подвижным контактом и землей. Такая искусственная характеристика не соответствует в точности, например, обратно — логарифмическому закону, но конечный результат оказывается значительно лучше, чем при использовании простого потенциометра с линейной характеристикой.

У идеального регулятора громкости должно быть абсолютно одинаковое ослабление (выраженное в децибелах) для заданного количества поворотов ротора потенциометра вне зависимости от того, производится ли такое вращение, когда подвижный контакт потенциометра находится в середине токопроводящей дорожки, либо в ее конце, в непосредственной близости от начала.

Ниже приводится программа , написанная на языке QBASIC, которая позволяет детально исследовать влияние подгоночного резистора на аппроксимируемую зависимость. Программа представляет модифицированный вариант обычного языка программирования низкого уровня, предназначенного для операционной системы MS DOS. Несмотря на то, что большинство современных операционных систем, совершенно не заботясь о последствиях, пытаются всеми способами откреститься от наследия DOS, операционная система Windows XP работает с DOS-программами более, чем удовлетворительно.

PRINT "This program calculates the step size"

PRINT "resulting from shunting the output of a"

PRINT "linear potentiometer with a law faking"

PRINT "How many steps of resolution do you want to"

PRINT "investigate"; = = 503

INPUT N DIM LOSSDB (N)

PRINT "What value of potentiometer will you use'; INPUT R

PRINT "What value of law faking resistor will you" PRINT "use" INPUT L PRINT

PRINT "LOSS"; TAB(15); "STEP"

DO UNTILL P = N A = P * R / N UPPER = R - A LOWER = A * L /(A + 1)

LOSSDB (P) = ((86.8589 * LOG(LOWER / (LOWER + UPER))\1) / 10

REM THE 86/8598 FACTOR ARISES BECAUSE QBASIC USES NATURAL LOGS

DO UNTILL P = N + 1

CLICK = LOSSDB (P) - LOSSDB (P - 1)

PRINT ABS (LOSSDB(P)); "db"; TAB(15); ((10 * CLICK) \ D/10: "db"

Если основным из критериев предусилителя является достижение наивысшего качества, и при этом допускается, что регулировка громкости звука не обязательно должна быть плавной, то вполне вероятным становится использование дискретного переключаемого аттенюатора. В нем используется поочередное переключение на резисторы с различными фиксированными значениями сопротивлений, которые обеспечивают ступенчатую регулировку громкости звука. Таким путем можно добиться не только идеального совпадения с обратно — логарифмическим законом изменения характеристики регулятора, но также и идеального баланса между стереофоническими каналами.

У переключаемого аттенюатора долгая и блестящая история. В компании ВВС на пультах звукорежиссеров использовались квадрантные микшеры (переключаемые аттенюаторы без фиксаторов) вплоть до 70-х годов прошлого века, потому что у них практически не было недостатков, за исключением постепенного затухания программы и прослушивания ступенчатого изменения громкости при изменении уровня ослабления — система человеческое ухо-мозг настроена на то, чтобы восприятие звука подчинялось логарифмическому закону ослабления его силы, подобно тому, как воспринимается затухающее эхо. Однако, после того как достаточно малошумящие линейные аттенюаторы с отводами от токопроводящей дорожки получили широкое распространение, гораздо более дорогие квадрантные микшеры стали достоянием истории радиовещания. Достаточно удивительным фактом является то, что переключаемые аттенюаторы с девятью, по крайней мере, ступенями, изготавливались фирмой Erie для широкого круга потребителей в 1949 году, даже тогда уже понимали преимущества точного следования изменения громкости в точном соответствии с обратно — логарифмическим законом.

К сожалению, процесс распайки большого количества резисторов для изготовления переключаемого аттенюатора занимает много времени, поэтому все большее распространение получают промышленно изготовленные переключаемые аттенюаторы для аудиотехники. Их сейчас изготавливают даже на базе тонкопленочных резисторов, которые создаются на керамических подложках галетных переключателей, при этом они обладают прекрасными характеристиками.

Переменные резисторы (резисторы переменного сопротивления, потенциометры) являются пассивными элементами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений.

Устройство переменного резистора

Переменные резисторы представляют собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось (рис. 1). На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.


Рис. 1 - Устройство переменного резистора

Переменные резисторы, имеют два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

В зависимости от резистивного элемента переменные резисторы разделяются на непроволочные и проволочные.

Принцип действия переменного резистора

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. Если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение. Переменный резистор работает как делитель напряжения, с той лишь разницей, что вращение ручки приводит к изменению положения контакта (2) и тем самым изменяется соотношение сопротивлений резисторов R1 и R2.


Рис. 2 - Принцип действия переменного резистора

Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

Номинальное сопротивление

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.


Рис. 3 - Обозначение номинального сопротивления на корпусе переменных резисторов

Форма функциональной характеристики

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона (рис. 4):

А — Линейный,

Б – Логарифмический,

В — Обратно Логарифмический (Показательный).

Например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.


Рис. 4 - График функциональных характеристик переменных резисторов

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.


Рис. 5 - Вариант конструкции резистивного элемента

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. При эксплуатации аудиоаппаратуры, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

Обозначение переменных резисторов на схемах

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод (рис. 6).


Рис. 6 - Обозначение переменных резисторов на электрических схемах

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.


Рис. 7 - Обозначение ступенчатого регулирования

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.


Рис. 8 - Обозначение сдвоенных переменных резисторов

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.


Рис. 9 - Обозначение механической связи сдвоенных переменных резисторов

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Обозначение переменных резисторов со встроенным выключателем

Рис. 10 - Обозначение переменных резисторов со встроенным выключателем

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

Типы переменных резисторов

Ползунковый потенциометр

Двойной ползунковый потенциометр

Многооборотный ползунковый потенциометр

Непроволочные переменные резисторы

В непроволочных переменных резисторах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке 11 показан переменный резистор типа СП3-4 с подковообразным резистивным элементом.

Устройство непроволочного потенциометра

Рис. 11 - Непроволочный переменный резистор

Отечественной промышленностью выпускались переменные резисторы типа СПО (рис. 12), у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Переменные резисторы типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

Рис. 12 - Переменный резистор типа СПО

Проволочные переменные резисторы

В проволочных переменных резисторах (рис. 13) сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство проволочного потенциометра

Рис. 13 - Устройство проволочного переменного резистора

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора . Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10. 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления переменных резисторов. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для переменных резисторов применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

Подстроечные резисторы





Подстроечный резистор

Рис. 14 - Подстроечные резисторы

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (рис. 15,а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (рис. 15,б) перемещение контактной щетки осуществляется червячной передачей.

Подстроечные резисторы специальной конструкции

Рис. 15 - Подстроечные резисторы специальной конструкции (многооборотные)

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

Мощный подстроечный резистор типа ПЭВР

Рис. 16 - Мощный подстроечный резистор типа ПЭВР

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

Обозначение подстроечного резистора на электрических схемах

Рис. 17 - Условное графическое обозначение подстроечного резистора

Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулятора тока) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Включение переменного резистора реостатом

Рис. 18 - Включение переменного резистора реостатом (вариант 1)

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

Включение переменного резистора реостатом вариант 2

Рис. 19 - Включение переменного резистора реостатом (вариант 2)

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

Включение потенциометра делителем напряжения

Рис. 20 - Включение переменного резистора делителем напряжения

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Читайте также: