Как сделать шероховатость на бумаге

Добавил пользователь Дмитрий К.
Обновлено: 18.09.2024

Твёрдость по Шору обозначается в виде числового значения шкалы, к которому приписывается буква, указывающая тип шкалы с явным указанием названия метода измерения твердости или прибора. Например.

Ме́тод Рокве́лла — метод неразрушающей проверки твёрдости материалов. Основан на измерении глубины проникновения твёрдого наконечника индентора в исследуемый материал при приложении одинаковой для каждой шкалы твердости нагрузкой, в зависимости от шкалы обычно 60, 100 и 150 кгс.

Наноиндентирование иначе индентирование (англ. nanoindentation) — испытание материала методом индентирования (вдавливания в поверхность образца специального инструмента — индентора), применяемое к нанообъемам материала (тонкие плёнки и покрытия, микро- и наноструктуры).

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

Кругломер накладной с многоступенчатыми самоустанавливающимися опорами — прибор для измерения отклонения от круглости наружных и внутренних номинально круглых непрерывных поверхностей деталей.

Контактный профило́метр — прибор, предназначенный для измерения неровностей поверхности. Для оценки неровности поверхности часто используют специальный показатель — шероховатость поверхности. Типичный профилометр содержит шкалу, на которой и отсчитываются значения показателя шероховатости поверхности.

Твёрдость по Шору — метод определения твёрдости очень твёрдых материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа Шора), свободно и вертикально падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка.

Метод Виккерса — (является статичным) метод измерения твёрдости металлов и сплавов по Виккерсу. Регламентируется ГОСТ 2999-75 и ISO 6507.

Сканирующий туннельный микроскоп (СТМ, англ. STM — scanning tunneling microscope) — вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.

Уровнемер — прибор, предназначенный для определения уровня содержимого в открытых и закрытых сосудах, резервуарах, хранилищах и других ёмкостях. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе и газообразующие, а также сыпучие и другие материалы. Уровнемеры также называют датчиками/сигнализаторами уровня, преобразователями уровня. Главное отличие уровнемера от сигнализатора уровня — это возможность измерять градации уровня, а не только его граничные значения.

Индентор (англ. indenter от indent — вдавливать) — элемент прибора для измерения твёрдости, вдавливаемый в испытываемый материал. Иногда инденторами (indenter) называют сами приборы для измерения твёрдости.

Толщиномер (неправ. толщинометр) — это измерительный прибор, позволяющий с высокой точностью измерить толщину материала или слоя покрытия материала (такого как краска, лак, грунт, шпаклёвка, ржавчина, толщину основной стенки металла, пластмасс, стекла, а также других неметаллических соединений, покрывающих металл). Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.

Дилато́метр (от лат. dilato — расширяю и греч. μετρέω — измеряю) — измерительный прибор, предназначенный для измерения изменения размеров тела, вызванных внешним воздействием температуры, давления, электрического и магнитного полей, ионизирующих излучений или каких-либо других факторов. Наиболее важная характеристика дилатометра — его чувствительность к абсолютному изменению размеров тела.

Тензометрия (от лат. tensus — напряжённый и греч. μετρέω — измеряю) — совокупность экспериментальных методов определения механического напряжения детали, конструкции. Основана на определении деформаций или других параметров материала, вызванных механическим напряжением (например, двойного лучепреломления или вращения плоскости поляризации света в нагруженных прозрачных деталях).

Пиранометр (греч. πῦρ + άνω + μέτρον — огонь+наверху+мера) — тип актинометра, используемый для измерения солнечной радиации, попадающей на поверхность. Прибор специально разработан, чтобы измерять плотность потока солнечного излучения (то есть в ваттах на квадратный метр), исходящего со всей верхней полусферы. Стандартный пиранометр не требует электропитания.

Трёхмерная реконструкция (3D-реконструкция) — процесс получения формы и облика реальных объектов. Процесс может быть выполнен пассивными, либо активными методами. В случае, если форма модели может меняться во времени, говорят о нежёсткой или пространственно-временной реконструкции.

Измери́тельный мост (мост Уи́тстона, мо́стик Ви́тстона, англ. Wheatstone bridge) — электрическая схема или устройство для измерения электрического сопротивления. Предложен в 1833 году Самуэлем Хантером Кристи (англ. Samuel Hunter Christie) и в 1843 году усовершенствован Чарльзом Уитстоном (англ. Charles Wheatstone). Мост Уитстона относится к одинарным мостам в отличие от двойных мостов Томсона. Мост Уитстона — электрическое устройство, механическим аналогом которого являются аптекарские рычажные.

Течеиска́тель — прибор, предназначенный для выявления, локализации и количественной оценки величины течи. Работа течеискателей может базироваться на различных физических принципах, ориентированных как на прямые, так и на косвенные измерения параметров.

Прибо́ры неразруша́ющего контро́ля — средства используемые при различных методах неразрушающего контроля для определения свойств и параметров, и оценки надёжности объекта, конструкции или сварного шва.

Метод вертикального электрического зондирования (ВЭЗ) — метод разведочной геофизики. Относится к электроразведке, входит в группу методов кажущегося сопротивления.

Гонио́метр (др.-греч. γωνία — угол и μετρέω — измеряю) — класс измерительных приборов для высокоточного измерения углов. Объекты измерения и способы измерения могут быть самыми различными, от конечностей человека до световых потоков (гониофотометр). Исторически первые гониометры были вариациями транспортира с одной или несколькими передвижными частями. Позднее и в применении к отдельным областям науки речь идёт о разных приборах, объединённых одним названием и сутью измерения (угол между чем-либо.

Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.

Чувстви́тельность к трению — характеристика взрывчатых веществ (ВВ), определяющая вероятность возникновения взрыва при внешнем воздействии фрикционного характера.

Шли́рен-ме́тод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.

То́нер — обладающий особыми свойствами чёрный или цветной порошок, который переносится с помощью электрографического принципа на заранее специальным образом заряженный фотобарабан и формирует на нём видимое изображение, которое затем переносится на бумагу.

Мановакуумметры (англ. Pressure and vacuum gauge) — приборы, измеряющие как и вакуумметрическое, так и манометрическое давление. На приборах имеется шкала как и с положительными (абсолютное), так и отрицательными значениями (вакуумметрическое).

Глазная тонометрия - это процедура, выполняемая клиническими специалистами для определения внутриглазного давления (ВГД) . Это важный тест при оценке пациентов, подверженных риску глаукомы . Большинство тонометров откалиброваны для измерения давления в миллиметрах ртутного столба (мм рт. ст.).

Твердомеры металлов (дюрометры) — применяются для проведения контроля твёрдости детали, без разрушения её структуры. Необходимость контроля твёрдости возникает на любом производственном участке (особенно машиностроительных предприятий) при контроле качества изделий, в лабораториях предприятий и научно-исследовательских институтах при разработке новых конструкций и материалов, а также при входном контроле сырья и заготовок.

Концевая мера длины (КМД, меры концевые плоскопараллельные, плитки Иогансона) — образцовая мера длины (эталон) от 0,5 до 1000 мм, выполненная в форме прямоугольного параллелепипеда или круглого цилиндра, с нормируемым размером между измерительными плоскостями.

Кониметр или (англ. Koniscope) — прибор для измерения содержания пыли в воздухе. Другое название счётчик пыли Эйткена, назван так в честь Джона Эйткена, который изобрёл первый кониметр.

На́ноанте́нна (нанте́нна) — устройство преобразования солнечной энергии в электрический ток, построенное по принципу выпрямляющей антенны, но работающее не в радиодиапазоне, а в оптическом диапазоне длин волн электромагнитного излучения. Идея использования антенн для сбора солнечной энергии была впервые предложена Робертом Бейли в 1972 году . Также эта идея была предложена Николой Тесла в патенте № 685,957 от 05.11.1901.

Компара́тор — это техническое средство, естественные или специально создаваемые среды, позволяющие сличать друг с другом меры однородных величин или показания измерительных приборов, а также сравнивать участки (точки) шкал измерений.

Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ, англ, TEM - Transmission electron microscopy) — устройство для получения изображения ультратонкого образца путём пропускания через него пучка электронов. Ультратонким считается образец толщиной порядка 0,1 мкм. Прошедший через образец и провзаимодействовавший с ним пучок электронов увеличивается магнитными линзами (объективом) и регистрируется на флуоресцентном экране, фотоплёнке или сенсорном приборе с зарядовой связью (на ПЗС-матрице.

Электро́метр — прибор, служащий для измерения электрического потенциала. Приборы этого рода могут служить для любой цели: менее точные - электроскоп, обнаруживают присутствие заряда на теле и дают возможность судить о гонке потенциале тела весьма грубо; более точные электрометры позволяют определить потенциал в принятых единицах.

Компрессио́нный мано́метр Мак-Лео́да — прибор для измерения низких давлений, был разработан в 1890 году. Действие прибора основано на измерении высоты столбика газа, сжатого ртутью в капилляре известного сечения.

Наземный лазерный сканер (НЛС) — это съёмочная система, измеряющая с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности объекта и регистрирующая соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трёхмерного изображения (скана) в виде облака точек.

Тензометрический датчик (тензодатчик; от лат. tensus — напряжённый) — датчик, преобразующий величину деформации в удобный для измерения сигнал (обычно электрический), основной компонент тензометра (прибора для измерения деформаций). Существует множество способов измерения деформаций: тензорезистивный, пьезоэлектрический, оптико-поляризационный, пьезорезистивный, волоконно-оптический, или простым считыванием показаний с линейки механического тензодатчика. Среди электронных тензодатчиков наибольшее.

Изолирующие свойства респиратора (respirator Fit Test) — способность маски респиратора плотно, без зазоров прилегать к лицу рабочего для отделения его органов дыхания от окружающей загрязнённой атмосферы. Для обнаружения неплотностей (зазоров) проводится проверка изолирующих свойств респираторов.

Базисный прибор — служит для измерения базиса при геодезических работах. Согласно современным стандартам базисный прибор должен обеспечивать измерения с относительной погрешностью не более 1 : 1 000 000.

Ультразву́к — звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 герц.

Опти́ческое стекло́ — прозрачное стекло специального состава, используемое для изготовления различных деталей оптических приборов.


Компания "Юман" представляет прибор L&W PPS TESTER для точного измерения шероховатости с использованием метода PPS (по Паркеру).

Шероховатость по Паркеру (PPS) определяется как среднее значение расстояния между тестируемым образцом и подложкой, к которой прижат образец. Среднее значение расстояния берется как корень кубический от среднего значения куба расстояния между каждой точкой поверхности бумаги и измерительной подложкой, к которой прижат образец.

Тестируемый образец удерживается в прижатом положении с определенным усилием между выровненным по уровню круглым измерительным плоским основанием кольца и эластичной подложкой. Внутренние и внешние защитные кольца обеспечивают герметичность тестируемого образца и препятствуют боковым утечкам воздуха. Поток воздуха между измерительной подложкой и тестируемым образцом пересчитывается в среднее значение расстояния в микронах.

Прибор для определения шероховатости по Паркеру (PPS) используется для измерения шероховатости мелованных и каландрированных печатных и писчих бумаг. Этот метод используют также для определения шероховатости газетной бумаги. В приборе L&W используется измерение скорости протекания воздуха между поверхностью бумаги и мягкой эталонной пластиной для оценки шероховатости. Результаты дают хорошие предсказания печатных свойств.

Измерения начинаются автоматически, как только образец помещают под измерительную головку. Образец удерживается под измерительной головкой с выбранным давлением прижима, и значения измерений снимаются во время выбранного периода измерений. Затем образец высвобождается и может быть использован для измерений в новой позиции. Все происходит в процессе одной простой последовательности измерений.

Измерения сжимаемости

Сжимаемость образца бумаги определяют путем измерения его шероховатости при двух заранее определенных давлениях прижима, симулируя таким образом эффекты влияния линейных нагрузок в различных методах печати. Сжимаемость рассчитывается по величине процентного снижения шероховатости или как отношение значений двух измерений шероховатости.

Проверка функций

Очень важно иметь возможность легко убедиться в корректной настройке прибора. Такие важные параметры как герметичность, поток при нулевом расходе и давление прижима, могут, следовательно, быть легко проверены путем фиксированной последовательности проверок, после чего создается отчет, содержащий установленные значения и отклонения от них.

Отслеживаемость и воспроизводимость

Воспроизводимость важна для всех методов измерений. Каждый прибор L&W для определения шероховатости по Паркеру (PPS) проходит индивидуальную калибровку по Мастер прибору L&W. Это гарантирует, что каждый прибор L&W для определения шероховатости по Паркеру (PPS) и каждая измерительная головка дают идентичные измерения с данной чувствительностью. Лорентцен и Веттр использует мастер систему, оснащенную 6 измерительными головками, каждая из которых регулярно проверяются по сравнению с другими.

Набор для калибровки - L&W PPS Мастер набор

Использование набора для калибровки L&W PPS Мастер набор позволяет проводить регулярные процедуры проверки всех приборов для определения шероховатости по Паркеру (PPS), имеющихся на предприятии. Следовательно, этот гарантирует полную сравнимость и воспроизводимость измерений. Набор для калибровки L&W PPS Мастер набор отслеживается по собственному Мастер прибору L&W, гарантируя таким образом полную воспроизводимость. Прибор поставляется вместе с годичной подпиской, состоящей из 4-х наборов эталонных образцов бумаг.

Поставка в ключает:

Поверочный набор, включающий три сопла, вилку и адаптер. Держатель подложек с мягкой и жесткой подложками. Воздушное сопло со шлангом и адаптером. Запасные диски с мягкой и жесткой подложкой. Набор для калибровки L&W PPS Мастер набор.
Проверочная нулевая пленка для инспекции головки PPS при очень низких значениях. Программное обеспечение для установки и калибровки (доступно только на английском языке). Кабель для соединения с внешним компьютером. Рулоны для принтера.

Виды и зернистость наждачной бумаги или шкурки: правила шлифовки

Шлифование — это один из базовых приёмов работы с широким рядом материалов. Обработка, будь она ручной или машинной, проводится абразивными шкурками. О многочисленных разновидностях наждачной бумаги и принципах её выбора мы расскажем вам в сегодняшнем обзоре.

Виды и зернистость наждачной бумаги

Гриты и номера — как определить зернистость

Зернистость, она же шероховатость — ключевой параметр для любого типа наждачной бумаги. Зернистость всегда указывается на оборотной стороне шлифовальной шкурки после литеры Р или слова Grit, иногда используются сразу оба варианта обозначений. Зернистость определяется числом от 12 до 15000, иногда даже больше.

Виды и зернистость наждачной бумаги

В простейшем представлении эта цифра — число частичек абразива на квадратный дюйм, если их рассыпать сплошным равномерным слоем. В реальности это число определяется числом проволочек в квадратном дюйме сита, через которое абразив был просеян. Фактический же размер частичек колеблется от видимых невооруженным глазом (1–1,5мм) до совершенно микроскопических (целые и десятые микрона).

Виды и зернистость наждачной бумаги

Определим область применения наждачной бумаги в зависимости от размера зерна:

  • до Р80 — для грубой обдирки и шлифования с целью выравнивания поверхности;
  • от Р100 до Р220 — применяют на втором этапе шлифовки, если нужно устранить мелкие борозды и царапины;
  • до Р280 — применяется для тонкого шлифования;
  • более мелкие шкурки уже классифицируются как полировочные.

Подробнее о точном выборе наждачной бумаги для различных целей можно прочесть здесь.

Правило выбора наждачной бумаги по зернистости очень простое — чем она выше, тем более гладкой будет поверхность после обработки. Но при этом, чем мельче наждачная бумага, тем она и стачивается быстрее, и снимаемый слой материала становится меньше. Также надо учитывать, что чем больше твёрдость обрабатываемого материала, тем более грубую бумагу можно применять для чистовой обработки. В то же время на мягкой древесине даже при зернистости в Р220 могут оставаться вполне различимые царапины.

Виды и зернистость наждачной бумаги

Шкурки по типу основы

Даже в небольшом городе, пройдясь по хозяйственным магазинам, можно найти несколько десятков разных образцов наждачной бумаги. Они будут отличаться не только по зернистости, но и по способу нанесения абразивного материала, типу насыпки и связующего, а также используемому абразивному материалу или смеси таковых. Однако на практике первоочередное значение имеет тип основы, на которую абразив нанесён.

Виды и зернистость наждачной бумаги

На бумажной основе изготавливается наиболее дешёвая и быстро расходуемая наждачная шкурка. Преимуществ у неё немного: помимо низкой цены бумага удобна, если нужно быстро оторвать свежий лоскуток для работы. Абразив с такой шкурки осыпается довольно быстро, особенно в местах излома, однако бумажная основа позволяет с большей лёгкостью обрабатывать рельефные поверхности.

Виды и зернистость наждачной бумаги

Шкурка на тканевой основе имеет несколько более высокую стоимость, но гораздо долговечней. Во многих домашних хозяйствах можно найти с полдюжины завалявшихся лоскутков тканевой наждачки, которые успешно используются время от времени по нескольку лет и при этом не потеряли абразивные качества. Не обходится и без недостатков: ткань с эпоксидной пропиткой грубая, под ней хуже чувствуется обрабатываемая поверхность. Также тканевые шлифовальные ленты имеют свойство растягиваться, хотя это касается в основном лишь расходников для машинной обработки.

Виды и зернистость наждачной бумаги

Наконец, имеется третий тип шлифовальной бумаги — на мягкой основе. Сюда относится поролоновая или полиуретановая шкурка, используемая для финальной обработки рельефных деревянных и гипсовых деталей, и фибровая наждачная бумага. Последняя, хотя и имеет схожие свойства в качестве прижатия к детали, используется для крепления на рабочий орган с липучкой, например на роторные шлифмашины.

Сухой и мокрый режим шлифования

В зависимости от абразивного материала и связующего его вещества наждачная бумага может отличаться допустимостью шлифовки с увлажнением поверхности. Помимо того, что бумага для мокрой шлифовки дороже обычной, есть ещё ряд причин, по которым это различие важно.

При снятии частиц с обрабатываемой поверхности силы трения в определённых точках могут быть настолько высоки, что вырабатываемой температуры достаточно для спекания металлической пыли. Это, в частности, справедливо для алюминия и большинства цветных металлов: если шкурку периодически не отряхивать, она быстро забьётся и придёт в негодность.

Виды и зернистость наждачной бумаги

В некоторых разновидностях бумаги эта проблема решается специальным абразивным материалом. Так, карбид кремния, особенно нанесённый электростатикой, способен крошиться, образуя новые режущие грани, поэтому такая бумага практически не забивается. Однако частиц снятого материала может быть действительно много, например, при обработке пластика, и тогда необходимо упредить их слипание, смочив наждачную бумагу водой.

Виды и зернистость наждачной бумаги

Полировка природного камня, мрамора или бетона так же не обходится без использвоания воды или специальных составов. Смачивание улучшает качество шлифовки и предотвращает распространение каменной пыли

Для ручной обработки

Часто домашнему мастеру приходится обрабатывать свои изделия вручную. Так качество шлифовки гораздо выше, остаётся меньше необработанных участков. Для ручной обработки бумага выпускается в формате листов, лент и рулонов.

Виды и зернистость наждачной бумаги

Ходовыми типами по зернистости в хозяйстве оказываются тканевая бумага Р60, Р80 и Р120. Более мелкая шкурка обычно имеет бумажную основу. Рекомендуется всегда держать в запасе разные номера абразивной бумаги для тонкой шлифовки вплоть до Р400.

Шкурка на тканевой основе зернистостью выше Р300 выпускается, преимущественно, для машинной обработки, хотя ей можно с попеременным успехом работать и вручную. Основная трудность в том, что абразив залит солидным слоем связующего, и обработка такой лентой вручную проходит крайне медленно, особенно при высокой зернистости. Однако мокрую шлифовку такой бумагой проводить — одно удовольствие.

Виды и зернистость наждачной бумаги

Также для ручной обработки будут весьма полезны полиуретановые шлифовальные губки, которыми очень удобно обрабатывать детали с мелким рельефом. Если увлекаетесь обработкой дерева — всегда имейте запас поролоновой шкурки, это самое эффективное средство для подготовки под окраску или вскрытие лаком.

Ленты и диски для машинной шлифовки

При покупке расходников для шлифовальных машин трудно ошибиться. Все они имеют конкретный тип и рабочие размеры — либо длину и ширину, либо размерный номер, либо диаметр.

Для ленточных шлифовальных машин и гриндеров используется бумага на тканевой основе, свёрнутая в кольцо. Длина и ширина в миллиметрах — основной параметр такой наждачки, определяемый пригодность для использования с тем или иным инструментом.

Виды и зернистость наждачной бумаги

Виды и зернистость наждачной бумаги

Виды и зернистость наждачной бумаги

С абразивной бумагой для роторных и дельтовидных шлифмашин всё ещё проще. Они либо подходят по размеру, либо нет — размер подходящих расходных материалов однозначно указан в инструкции к оборудованию. При выборе нужно также обращать внимание на положение отверстий для отвода пыли. Поскольку речь идёт об электроинструменте, практически вся наждачная бумага в расходниках предназначена для сухого шлифования. Остаётся только правильно подобрать зернистость по типу материала и желаемому качеству поверхности, а затем поэтапно её снижать в процессе обработки.

нажд

Наждачная бумага или шкурка – это абразивный инструмент, применяемый повсеместно, от мелких бытовых ремонтов до крупных цехов и ремонтных мастерских. Данный материал применяется для устранения неровностей поверхностей различной конфигурации, шлифовки, устранения заусенцев, коррозии и множества других целей.

Основным методом классификации наждачной бумаги является зернистость или величина её абразивных частичек. Она же является и основным указателем для применения шкурки при проведении тех или иных работ.


Показатель зернистости

Основной показатель, который учитывается при выборе – это номер бумаги соответствующий её абразивности. В номере указано количество абразивных частиц на квадратный дюйм материала. Чем большее количество абразивных крупинок помещается на единицу площади, тем они, соответственно мельче и пригодны для более тонких операций. В зависимости от количества частиц на квадратный дюйм наждачная бумага подразделяется на три основных категории:

  • Крупная. Маркируется цифрами от 12 до 80. В основном применяется для черновой обработки дерева, металла и других материалов, а также для снятия лака, краски и ржавчины. При обработке оставляет глубокие борозды и требует дальнейшей обработки менее крупной шкуркой.
  • Средняя. Показатель абразивности в пределах от 80 до 160. В основном применяется для обработки деревянных деталей, доводки поверхностей после черновой обработки.
  • Мелкая. Количество абразивных частиц – от 160 до 1400 на квадратный дюйм. Применяется для финишной обработки поверхностей, шлифовки и полировки.

Приведенная ниже таблица зернистости наждачной бумаги позволяет более точно подобрать бумагу в соответствии с планируемыми работами.


Прочие характеристики абразива

Сам абразивный материал, наносимый на основу шкурки, бывает разным. Для него используются различные природные и синтетические материалы, от физических свойств которых во многом зависит сфера применения материала. Приведём основные виды:

  • Карбид кремния. Широко используемый материал, применяется при производстве работ с лакокрасочными материалами, металлом, пластиком, стекловолокном.
  • Гранат. Природный материал, в основном используется для работы с деревом. Шкурка с данным видом абразива мягкая и эластичная, удобна в обработке неровностей и деталей со сложной конфигурацией поверхности.
  • Керамический абразив. Высокотвердый материал, часто используется при формировке изделий.
  • Окись алюминия. Стойкий абразив, ценится из-за длительности эксплуатации. Важным качеством данного типа бумаги является образование новых режущих граней при истирании старого слоя.

Разобраться в соответствии старого и нового госта поможет приведенная ниже таблица зернистости шкурки.


Как видим, основная разница заключается в направлении движения номеров в маркировке. В старом госте значения крупности зерен и их плотности уменьшаются. В международной классификации номер шкурки увеличивается при уменьшении размера зерен.

Читайте также: