Яги на 144 мгц своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 18.09.2024

Да Дмитрий, даже 6мм медь тяжеловата. Попробуй найти куски проводов от ЛЭП - многожильный алюминевый провод, можно попросить у электриков обрезки или в приёмке цветмета, в любом предприятии где есть такие провода. Подходит отлично! Обрезков 1.1 м. хватит.Распускается выравнивается.
Траверса из метапола гнётся, деревянная прочнее, если 4-5 элементов штакетина с забора(2м) распилить вдоль пополам - 2 антенны получится(или одна 4м-9 эл.). Или встолярке заказать 4 м -но перевозить проблемно).

Траверса из метапола гнётся, деревянная прочнее, если 4-5 элементов штакетина с забора(2м) распилить вдоль пополам - 2 антенны получится(или одна 4м-9 эл.). Или встолярке закUA0LHS писал(а):
Да Дмитрий, даже 6мм медь тяжеловата. Попробуй найти куски проводов от ЛЭП - многожильный алюминевый провод, можно попросить у электриков обрезки или в приёмке цветмета, в любом предприятии где есть такие провода. Подходит отлично! Обрезков 1.1 м. хватит.Распускается выравнивается.азать 4 м -но перевозить проблемно).

С разбором антены нет проблем её можно разборную сделать!! у меня загвозка в том что она гнется очень сильно. чуть задел и все

А вот мое. Дачный вариант, по показала себя неплохо. Траверза- дюраль, разнокалиберная. Элементы биметалл (сталь\алюминий).

В статье описывается постройка узкополосной 7-элементной Яги для FM участка диапазона 2 м. Длина антенны составляет 3 метра, входное сопротивление 50 ом, вибратор разрезного типа. По словам автора, усиление этой антенны достигает 10,7 дБ, отношение F/B более 30 дБ.

Антенна изготовлена из алюминиевых трубок диаметром 8 мм, которые крепятся на алюминиевой траверсе диаметром 16 мм при помощи все тех же пластмассовых клипс для полипропиленовых (и не только) труб. Для пассивных элементов применены обычные алюминиевые трубки, вибратор выполнен из анодированой серебром трубы.

Размеры элементов в таблице:

Пассивные элементы крепятся к клипсам по центру одним винтом. Для того, чтобы элементы не вертелись относительно крепления, в площадке клипсы круглым напильником пропиливается неглубокая канавка.

фото0275

Вибратор состоит из двух половинок, зазор между половинками 10 мм. Рассчитан под волновое сопротивление 50 Ом. Длина вибратора по описанию, расстояние между половинками входит в эту длину. То есть при расстоянии в 10 мм длина каждой половинки будет ( 965 — 10 ) / 2 = 477,5 мм. Половинки скреплены деревянной палочкой диаметром 6 от мороженного (за неимением другого; имеет свойство ломаться). Для фиксации палочки и подключения кабеля в половинках вибратора сверлятся отверстия как можно ближе друг к другу, и ставятся винты с лепестками. Кабель подключать самым кратчайшим путем непосредственно к концам вибратора.

По традиции, вибратор смонтирован в распредкоробке, удерживается в ней при помощи гермовводов для кабеля. Коробка крепится к траверсе продетыми сквозь нее двумя винтами М3 (долго не решался сверлить траверсу, но другого простого способа не нашлось).

Траверса собирается из куска длиной два метра и куска длиной примерно 135 см, причем у основания антенны оставлена часть траверсы для крепления антенны к мачте. Половинки скрепляются металлопластиковой трубой диаметром 20 мм (внутренний диаметр как раз 16 мм).

Подведение итогов

Пятью ваттами подводимой мощности открывается репитер RR6MA (Морозовск, на расстоянии 75 км), дают рапорт 57-58, при условии, что на момент тестирования антенны прохождения не было.

UPD: Антенна — агонь, не хватает только поворотки для нее, и поставить бы чуть выше.

Если учесть, что согласующее устройство тоже имеет рабочую полосу, которая может не совпасть с полосой рабочих частот антенны, то картина окажется хуже, чем мы видим на рисунке для вариантов R1=25 Ом и R2=12.5 Ом. Если настраивать КСВ приходится не на рабочей частоте антенны, а потом поднимать антенну, то резонансная частота обязательно сдвинется килогерц на 100. Для антенны R3 = 50 Ом это не так опасно, поскольку на частотах +/- 100 КГц от резонансной её КСВ всё ещё небольшой, а для антенн с более узким рабочим диапазоном этот сдвиг резонанса может оказаться неприемлемым.

Эти же параметры для антенны R=12,5 Ом. Первая антенна обладает значительно большей равномерностью параметров по диапазону. Правда, со второй антенной можно удивить коллег большим подавлением заднего лепестка на частоте 14,090 МГц:

В реальных условиях, за счет влияния земли у антенны формируется лепестковая диаграмма направленности, форма которой кроме прочего зависит от высоты подвеса антенны над землёй. Мы будем подразумевать высоту подвеса равной одной длине волны:

Отметим, что значение коэффициента усиления в реальных условиях значительно больше, чем в свободном пространстве (в нашем случае 14,1dBi для ант R3=12,5), в то время как разница в усилении у трёх наших антенн в основном сохраняется:

Теперь воспользуемся программой YO (Yagi optimiser), чтобы посмотреть свойства антенн при дальних связях. Будем считать, что дальние связи проводятся при угле излучения 5 градусов к горизонту, как и принято по умолчанию в программе, хотя это значение можно и изменять. Вспомним также, что все наши три антенны имеют максимальное излучение под углом 14 град. Усиление антенн 1, 2 и 3 на угле излучения 5 град соответственно равны 4.38 dBd, 4.96 dBd и 5.79 dBd. Если разница в усилении между антеннами 1 и 3 в свободном пространстве составляет 1.66 dBi, а при высоте подвеса равной l она составляет 1.61 dBi, то на угле 5 град она уменьшается до 1.41 dBd. Можно предположить, что просто расчёты не очень уж точные, но тенденция всёже прослеживается: при работе с дальними корреспондентами прирост усиления за счёт изменения длины элементов меньше, чем обычно указывается в характеристиках антенны, т.е. усиление в свободном пространстве.

Подытоживая вышеизложенное можно сказать, что усиление антенны не является единственным или главным критерием её качества, при этом подразумеваются варианты антенн с одинаковым числом элементов и одинаковой длиной траверсы.

Иногда важными свойствами считаются широкополосность и минимизация помех телевидению.

Для антенны с разрезным вибратором можно предложить согласующее устройство для некоторых фиксированных значений волнового сопротивления, а именно, для 37.5 Ом и 25Ом.
Устройство представляет собой два последовательно соединённых отрезка кабеля длиной l/12 (электрическая длина, а не физические размеры). Ближний к антенне орезок кабеля имеет волновое сопротивление линии питания (у нас 50 Ом), а следующий отрезок – сорпотивление антенны, т.е. 37.5 или 25 Ом. Такие сопротивления можно получить соединяя два куска кабеля параллельно: 75/2=37.5 или 50/2=25. Устройство компактное, не требует настройки и легко защищается от атмосферных воздействий.

Желающим моделировать Яги на компьютере я бы советовал применять именно программу WA7RAI (ссылка дана выше), а не ММАNА, которая более универсальна, но в случае с Яги она слабее специализированной программы QUICK YAGI.

Антенна с разрезным вибратором может использоваться на частотах, отличных от её резонансной частоты. Простейшим способом является просто подстройка П-контура передатчика. При этом конечно не следует ожидать максимальной отдачи, да и помехи телевидению вполне возможны. Однако для некоторых сочетаний F(ant)+F(tx) можно получить неплохие результаты. Напрмер, антенна для 18.1 МГц работала без помех ТВ на частоте 24,9 МГц и похуже на 21 МГц. Но этот способ неприемлем для современных трансиверов, несмотря на наличие тюнера – не стоит рисковать! Можно добиться на выходе передатчика КСВ не более 1,5 путём подключения к кабелю короткозамкнутого шлейфа длина которого вместе с кабелем должна быть кратна l /2 за вычетом половины длины разрезного вибратора L=l /2*n – L1:

Здесь l — длина волны, на которую хотим перестроить антенну;
L1 – половина длины вибратора перестраиваемой антенны.
Расстояние до точки подключения можно рассчитать по номограммам, представленным у Ротхаммеля для короткозамкнутых шлейфов.
Можно применить выносной тюнер с большим диапазоном перестройки импеданса.

Если мы перестроим антенну для 28 МГц (её излучающий элемент) на частоту 24,9 МГц, то её рефлектор теперь будет работать как директор, и максимум излучения будет в обратном направлении тому, которое было на 28 МГц.

Диаграммы направленности антенны R=50 Ом на трёх частотах: 14,000, 14,150 и 14,250 МГц:

то же для антенны R=12,5 Ом:

Работа с программой QUICK YAGI (Qy4)

Запускается в DOS или FAR (Виндоузовский эмулятор DOS) файлом qy4.exe
Открывается первая страница меню:
Auto mode menu — автоматическое проектирование
Manual entry — ручной ввод
With tapered el’s — с элементами переменного диаметра

Команда со стрелкой – по умолчанию. При нажатии начальной буквы команды ( A, M или W) выполняется эта команда
Внизу:
Ctrl+Q: Quit = выход из программы (Y-Да, No-Нет)
Esc: To Main = переход в главное меню
F1: files = вызов файлов антенн из памяти
F2: Options = варианты

При нажатии клавишу А входим в подменю меню автопроектирования
Auto- Options настройки режима авто
Spacing (Directors) — расстояния (директоры)
Length (Directors) — длина (директоры)
Default len & space — длина и расстояния по умолчанию
Auto design of Yagi — атопроектирование Яги

Например, оставляем оба параметра No и нажимаем клавишу “Enter”

Теперь мы можем отредактировать данные вручную, например, чтобы подогнать сопротивление под 50 или 25 Ом. Можем изменять длины директора и рефлектора, а также меняя расстояния. При этом можно каждый раз смотреть не только числовые значения усиления и подавления, но и кривые КСВ, усиления и подавления в зависимости от частоты. Можно сохранять различные варианты и потом выбрать из них желаемый, или же просто понаблюдать влияние различных параметров на свойства антенны.

Набираем в окошечке рефлектора 10.8 “Enter”, в окошке директора 9.4 “Enter” Получаем:
Input Impedance 51 +j 0.5 Ohm

Чтобы убрать реактивную составляющую 0,5 Ом делаем оптимизацию, для чего нажимаем F4 и появляется подменю:
Bandwidth – ширина полосы
Driven element – активный элемент
Gain /FB/Pattern – усиление/подавление/ диаграмма
Нажимаем “D” и программа меняет длину активного так, что j=0, а сопротивление 50,9 Ом чисто активное ( на данной частоте)
Нажимаем F3 и смотрим диаграмму в гор плоскости (на данной частоте)
Нажимаем Esc и возвращаемся в меню.
Нажимаем F6 и получаем таблицу параметров в зависимости от частоты
Внизу видим строку команд:
P: print (печать) G: graph (графики) B: BW plot (ДН от частоты) Esc: exit
Нажимаем G и получаем совмещённый график КСВ, усиления и подавления в зависимости от частоты.
Разберём ещё опцию F2.
Подменю:
Change to Ft/In – изменить метры на футы/дюймы
Fed element options – параметры активного элемента
Scaler – масштабирование (по диапазонам)
Element compensation – компенсация элементов (если не изолированы от траверсы)
Нажимаем F:
Simple dipole – простой диполь
Folded dipole – петлевой вибратор
Exit no change – выход без изменений

Можно выйти из программы и запустить файл QYUTILS.EXE. Там расчёт гамма-согласователя, хотя я не пробовал его, так как предпочитаю разрезной вибратор, который исключает реактивные элементы типа конденсаторов и снижает помехи ТВ.

Ну, вобщем пробуйте разные режимы. Программа написана очень грамотно и устойчива к нестандартным ситуациям. После небольшой практики поймёте, что она в 10 раз легче, чем ММАNА и даёт в 10 раз точнее результат.

dl6wu antenna

Калькулятор рассчитывает антенну волновой канал конструкции DL6WU с бумкоррекцией (поправка на влияние несущей стрелы). Расчет по методу из второго тома К. Ротхаммеля стр 44. 52. Антенна оптимизирована по критерию максимального усиления. Особенность конструкции DL6WU состоит в том, что число пассивных элементов можно увеличивать/уменьшать без заметного ухудшения КСВ, что и позволило создать подобный калькулятор. Считается, что антенны DL6WU, обладая весьма высоким коэффициентом усиления, менее капризны к наличию вблизи них посторонних предметов и сохраняют свои характеристики при любых метеоусловиях.

Схематическое изображение антенны:

Расчет антенны волнового канал DL6WU

Конструкция DL6WU относится к так называемым "длинным Yagi", поэтому расчет с числом элементов менее 5 не рекомендуется ввиду небольшой точности. Калькулятор обновлен 02.06.2018, не забудьте обновить кэш браузера.

Вибратор антенны - линейный разрезной. Схемы согласования вибратора с фидером снижения можно посмотреть здесь. Одна из возможных схем согласования с помощью петли для линейного вибратора (3λ/4+λ/4) рассчитывается в этом калькуляторе. Необходимо только выбрать материал внутренней изоляции кабеля.

Отдельно обратим внимание на бумкоррекцию. При металлическом буме происходит локальное утолщение элементов антенны в месте монтажа на траверсе. Это приводит к уменьшению погонной индуктивности в этом месте, что эквивалентно укорочению элемента. Чтобы сохранить его электрическую длину, необходимо элемент физически удлинить. Это и называется коррекцией на влияние траверсы (бума) или бумкоррекцией. Программы моделирования проволочных антенн, основанные на ядре NEC, например MMANA не умеют учитывать эту поправку, что является одной из проблем в проектировании антенны Uda-Yagi. Приходится прибегать к эмпирическим методам и формулам в расчете бумкоррекции, основанным на больших массивах практических измерений реальных антенн, что и проделал в свое время DL6WU. Очень хорошо проблема расчета бумкоррекции описана в статье DL2KQ, формулы из которой и используются этим калькулятором.

Можно выделить три разных случая монтажа элементов на траверсе антенны:

  1. Элементы проходят через середину металлического бума и электрически соединены с ним путем опрессовки или пайки. В этом случае величина бумкоррекции максимальна (вариант1).
  2. Элементы проходят через середину металлического бума, но электрически изолированы от него, например с помощью пластмассовых вставок. В этом случае величина бумкоррекции составляет примерно 50% от значения первого варианта. На столько же уменьшается бумкоррекция и при монтаже элементов на траверсе сверху, что дает возможность выделить эти два способа монтажа в один отдельный вариант (вариант2).
  3. Элементы монтируются на диэлектрической траверсе (например на сосновом бруске) или вставлены в нее, либо на металлической, но отделены от нее диэлектрической прокладкой с толщиной не менее половины толщины траверсы. В этом случае влиянием бума можно пренебречь и величина бумкоррекции принимается равной нулю (вариант3).Поскольку вибратор должен быть изолирован от бума, он рассчитывается по второму варианту, если для остальных элементов имеет место первый вариант монтажа.

Можно ли заменить линейный разрезной диполь на петлевой? Этот вопрос в настоящее время является дискуссионным. Ясно, что все элементы антенны являются взаимозависимыми и механическая замена разрезного диполя на петлевой той же длины приводит к расстройке антенны и появлению высокой реактивности в ее входном сопротивлении. Коэффициент укорочения петлевого вибратора больше чем линейного и, по идее, его надо делать короче, но некоторые радиолюбители, в частности автор программы Yagi Calculator VK5DJ, предлагают при замене использовать петлевой вибратор примерно на 2% длиннее линейного. И это подтверждается анализом в MMANA моделей, которые выдает программа от VK5DJ, а также экспериментальными практическими измерениями самого DL6WU. Вывод из этих противоречивых советов? Для создания оптимальной Uda-Yagi с петлевым вибратором необходимо использовать MMANA с последующей бумкоррекцией длин элементов, а корректировку размеров самого вибратора - по методике RA6FOO (смотрите ссылки ниже). Однако лучшим вариантом следует признать оптимизацию результатов в HFSS, поскольку эта программа не имеет недостатков присущих MMANA и позволяет непосредственно учесть бкмкоррекцию.

Для владельцев смартфонов на операционной системе Андроид расчет антенны Uda-Yagi конструкции DL6WU доступен в мобильном приложении Canennator. Вы можете скачать его нажав на кнопку ниже или по QR-коду.

Читайте также: