Термометр галилея своими руками

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Понятие температуры, история изобретения и виды термометров, термоскоп Галилея

Понятие температуры вводится для характеристики различной степени нагретости тел. Представление о температуре, как и представление о силе, вошло в науку через посредство наших чувственных восприятий. Наши ощущения позволяют различать качественные градации нагретости: теплый, холодный, горячий и пр.

Все испытывали неприятное ощущение холода при медленном вхождении в холодную воду во время купания, быстро исчезающее и сменяющееся чувством бодрости и удовольствия после того, как в результате полного погружения в воду тело купающегося немного охладится. Чувственная оценка температуры сильно зависит от теплопроводности тела.

Чувственная оценка температуры применима только в весьма узком температурном интервале. Она не годится в случае очень горячих и очень холодных тел. Ничего хорошего не получится при попытке определить на ощупь степень нагретости расплавленного железа или жидкого воздуха.

Температура – это мера относительного нагрева тела по сравнению с другими телами. Мы неосознанно делаем сравнения с температурой нашего тела, или с температурой воздуха, или с точками кипения или замерзания воды.

Современный электронный термометр

Первый термометр

Нет более красивого способа измерить температуру, чем термометр Галилея. Хотя это не самый точный прибор, он, безусловно, один из самых привлекательных. Этот прибор основан на термоскопе, изобретенном Галилео Галилеем.

В отличие от обычного стеклянного ртутного термометра, который представляет собой узкую колбу, сделанную из ртути, которая расширяется и сжимается, термометр Галилея намного сложнее.

Он состоит из нескольких стеклянных сфер, каждая из которых заполнена цветной жидкой смесью, которая часто содержит спирт, но может быть даже просто водой с добавлением пищевого красителя. Эти плавающие шары тонут или плавают в окружающей воде.

Термометры Галилея

Ассортимент термометров (термоскопов) Галилея различных размеров, чем больше размер, тем точнее инструмент

Современная наука считает Галилео Галилея основоположником термодинамики, а также первым человеком, изобретшим термометр. Непосредственно, в его сочинениях нет ни одного упоминания о технологии создания термометра, но ученики Галилея, Нелли и Вивиани, подтвердили то, что в 1597 году Галилей создал прибор, подобный термобароскопу (термоскопу).

Целью Галилея было придумать такое устройство, которое позволяло бы измерять степени тепла. Во время создания он вдохновился идеями Герона Александрийского, который в своих работах описал похожую технологию для поднятия уровня воды путем нагрева. В те времена термоскопом называлась следующая конструкция: маленький шарик из стекла, припаянный к стеклянной трубке.

Принцип его действия достаточно прост. Сначала шарик нагревали на несколько градусов, а конец трубки погружали в емкость, наполненную водой. По истечении некоторого времени, давление в шарике уменьшалось, а вода в трубке меняла свою высоту из-за атмосферного давления. Затем, когда температура повышалась, давление в шарике вырастало, а уровень воды в трубке уменьшался.

У созданного термоскопа было несколько отрицательных сторон:

1. Во-первых, он не позволял измерить точную температуру, так как на приборе не имелось никаких шкал.

2. Во-вторых, нужно было учитывать атмосферное давление, которое действовало на уровень воды в трубке, и только 60 лет спустя, в небольшом итальянском городке Флоренции, который славится выдающимися личностями, ученые смогли модернизировать термоскоп.

Из бусинок изготовили шкалу, способную показывать температуру, и создали в шарике и трубке безвоздушное пространство, путем простой откачки воздуха. Такие новшества позволили измерить разность температур различных тел.

Интересен тот факт, что создателями первого термометра могли оказаться такие гении мысли, как: Фрэнсис Бэкон, Роберт Фладд или Саломон де Каус. Последний, известен тем, что лично знал Галилея и находился с ним в приятельских отношениях. Придуманные ими термометры были воздушными, а значит, показания термометра зависели от температуры и атмосферного давления.

Ртутные термометры на стене дома

Коллекция стеклянных ртутных термометров

Температура, как физическая величина

Температура принадлежит к таким физическим величинам, которые не поддаются непосредственному измерению. Поэтому для измерения ее всегда преобразуют в какую-либо другую измеряемую физическую величину.

С этой целью (в зависимости от диапазона измеряемых температур и условий измерения) используют то или иное термометрическое свойство тел, т. е. зависимость от температуры соответствующим образом выбранной физической характеристики тела.

Чаще всего температуру преобразуют в какую-либо электрическую величину. Термоприемник, осуществляющий преобразование температуры в другую физическую величину, иногда называют преобразователем.

Электронный термометр с термопарой

Используемые для измерения высоких температур термометрические свойства тел весьма разнообразны. Этому обстоятельству способствует то, что при изменении температуры меняются многие физические свойства тел, что дает широкую возможность выбора термометрических свойств, удобных для использования в определенных условиях. В зависимости от выбранного термометрического свойства используют тот или иной метод измерения высоких температур.

Кухонный термометр

Самые известные температурные шкалы: Фаренгейта, Реомюра, Цельсия, Кельвина.

Абсолютная термодинамическая шкала (шкала Кельвина) является основной температурной шкалой в физике.

До революции 1917 г. в России была принята шкала Реомюра, поэтому термометры Реомюра использовались повсеместно. И лишь в начале 30-х годов прошлого века они были вытеснены термометрами Цельсия.

До середины прошлого века шкала Фаренгейта широко использовалась в англоязычных странах в промышленности, медицине, метеорологии и др. Приоритетной шкала Фаренгейта по-прежнему остается в США.

История развития температурных шкал была ранее описана в статье Бориса Аладышкина - Датчики температуры

Сравнение шкал Фаренгейта и Цельсия

Термометры Фаренгейта и Цельсия

Ковертер температур в Excel

Простой конвертер температур (Шкалы Цельсия, Реомюра, Кельвина, Фаренгейта, Ренкина) перевод из одной шкалы в другую.

Виды термометров

Термометр - прибор, предназначенный для измерения температур.

Сегодня различают следующие виды термометров:

1. Жидкостные

Принцип их действия состоит в том, что при повышении температуры, изменяется объем налитой в емкость термометра жидкости (спирта или ртути). Ртутные термометры способны измерять температуру от -30°С до +500°С, а спиртовые от -130°С до +60°С. Однако, сейчас действует запрет на использование ртути в бытовых условиях, поэтому ученые активно занимаются разработкой новых жидкостей для наполнения таких термометров.

2. Механические

Основа действия таких термометров - это явление теплового расширения тел. Такие термометры бывают дилатометрическими и биметаллическими.

3. Электрические

Такие термометры сокращают время на измерение температуры, а их принцип действия - изменение сопротивления проводника при повышении или понижении окружающей температуры.

4. Оптические (пирометры)

Их работа основывается на изменении параметров тела при повышении или понижении температуры. Используют такие термометры в жарких местах.

5. Инфракрасные

Такие термометры измеряют излучение тепла объекта. Такие термометры безопасны в использовании, имеют очень низкую погрешность измерения, температура ими измеряется за доли секунды, и что самое главное – они позволяют собирать данные сразу с нескольких объектов одновременно.

В электрической группе в качестве термометров чаще всего используются:

термометры сопротивления (измерение электрического сопротивления) ;

термопары (термоэлектрический эффект ).

В литературе можно найти подробную классификацию методов и приборов для измерения температур по принципу действия, а также по структурному и функциональному признакам, и классификацию контактных методов и приборов для измерения высоких температур.

Задачи пирометрии

Свое наименование пирометрия получила от греческого слова "Пиро" — огонь. По установившимся современным представлениям под пирометрией понимают область измерительной техники, задачей которой является разработка и внедрение в различные области науки и промышленности методов и приборов для измерения высоких температур.

Наука начинается там, где начинаются измерения.

Д. И. Менделеев

Одна из задач пирометрии — создание такого арсенала методов и приборов для измерения высоких температур, которые в своей совокупности смогли бы охватить все разнообразие объектов, условий и режимов измерения.

Вторая задача пирометрии — обеспечение единства измерений высоких температур различными приборами и методами. Только при единстве измерений можно добиться, чтобы разные методы измерения, применяемые на одних и тех же объектах и в тех же условиях, давали одинаковые (в пределах точности методов измерения) числовые значения измеряемых величин температур.

Наконец, третья задача пирометрии — изучение источников погрешностей измерения различными методами на разных объектах и в разных условиях их применения. Сложность и разнообразие условий, в которых осуществляют измерение, часто делает решение этой задачи настолько трудным, что оно становится предметом специальных, широко поставленных исследований.

Таким образом, в широком смысле слова, задача пирометрии состоит не только в изучении методов и приборов для измерения высоких температур, но и в изучении условий их применения с целью оценки и снижения погрешностей измерения, определения достоверности результатов измерений и повышения этой достоверности.

Измерения температуры в промышленности

В настоящее время во многих отраслях промышленности применение высоких температур является неотъемлемой частью технологического процесса и качество продукции в большой степени определяется надежностью результатов измерений или регулирования температур.

Аналогичное положение наблюдается во многих областях научных исследований, где надежность результатов измерений высоких температур — один из факторов, определяющих успех исследований.

Чрезвычайное разнообразие объектов исследования, условий измерения температур в этих объектах, различие требований к диапазону и точности измерения высоких температур — все это исключает возможность создания универсальных методов и приборов.

Важнейшими задачами современного приборостроения и современной измерительной техники являются разработка надежных методов измерения температуры применительно к различным производствам.

Измерение температуры с помощью термопар в автоматических процессах

Термопары на производстве

Термоэлектрические термометры раньше других термоэлектрических устройств получили промышленное внедрение. Известный французский физик А. Ле-Шателье создал термопару, одна ветвь которой изготавливалась из платины, вторая из платинородиевого сплава. Эти тугоплавкие материалы позволяли использовать термопару для измерения высоких (до 150 о C) температур.

Термопара Ле-Шателье считалась лучшим термоэлектрическим термометром, на ее основе была разработана промышленная технология изготовления термопар, и в конце XIX века несколько германских фирм специализировались на выпуске термоэлектрических приборов для измерения температур.

В стандартной термопаре Ле-Шателье одна из проволочных ветвей помещалась в капиллярную фарфоровую трубку, которая вместе с другой ветвью монтировалась в фарфоровый цилиндрический корпус. В комплект устройства входил один из наиболее точных приборов того времени — гальванометр д'Арсонваля.

Термография

Инфракрасная термография – это наука использования электронно-оптических устройств для регистрации и измерения излучения и сопоставления его с температурой поверхностей

Тепловое излучение – это передача тепла посредством электромагнитных волн. Основное отличие между различными волнами их длина.

Все объекты, обследуемые с помощью тепловизора, испускают энергию в инфракрасной области спектра. По мере того, как объект нагревается, он испускает больше энергии. Очень горячие объекты испускают достаточно энергии, чтобы ее можно было увидеть человеческим глазом.

Тепловизоры чаще всего используются для проверки состояния электрических систем, поскольку они позволяют проводить обследование быстро и без непосредственного контакта.

Тепловизионное обследование высоковольтного электрооборудования должно производиться с безопасного расстояния.

Термометр Галилея: история про красивую науку


Фото: Flickr, Mugley

Галилео Галилей был знаменитым итальянским физиком, математиком, астрономом и философом, сыгравшим ключевую роль в развитии науки 16 века. Именно он впервые открыл, что плотность жидкости меняется в зависимости от снижения или повышения температуры.


Фото: Flickr, Tadek

Фото: Flickr, Gingko

Термометр, прозванный в честь великого ученого, сделан из запаянного стеклянного цилиндра. Емкость наполнена жидкостью, в которой плавает несколько буйков. К каждому из буйков привязана бирка. В зависимости от температуры воды эти поплавки либо опускаются на дно, либо поднимаются под потолок сосуда. Однако с эстетической точки зрения термометр Галилео намного привлекательнее своей функциональности – он прекрасен сам по себе!


Фото: Flickr, Tuchodi

Фото: Flickr, Kansas City Royalty

И хотя это устройство не было изобретено самим Галилео, его назвали в честь выдающегося итальянского ученого за то, что конструкция не существовала бы без открытий Галилео. Эти градусники начали делать в 17 веке как раз на основании научных трудов Галилео.

Термометр Галилея: история про красивую науку


Фото: Flickr, Steve 2.0

Напомним, что на всех буйках есть этикетки. На каждой из этих бирок выгравированы цифра и символ градуса. Вес каждого поплавка четко отрегулирован и откалиброван. Подкрашенная жидкость в буйках играет свою отдельную роль в уравнивании веса поплавков, но для простого обывателя это в первую очередь очень красивое зрелище.

Термометр Галилея: история про красивую науку


Фото: Flickr, Steve 2.0

Математический принцип, применяемый в термометре Галилео, действует в соответствии с правилом прямо пропорциональной зависимости. Узнать температуру по этому градуснику можно благодаря тому, что каждый буек наполнен жидкостью в разной мере, что влияет на среднюю плотность каждого поплавка. У предмета, плавающего выше всех, плотность ниже, чем у зависающего над самым дном. Но удельный вес этих буйков не сильно отличается от аналогичного параметра жидкости, в которой они пребывают.


Фото: Flickr, jhritz

Фото: Flickr, anujraj

Когда температура в комнате падает, охлаждается и вода в термометре. Жидкость в емкости сжимается, а ее плотность повышается. И, как известно, тела, чья плотность меньше плотности окружающей их среды, стремятся вверх. Поэтому когда вода нагревается, буйки тонут, а когда в комнате становится прохладнее, поплавки всплывают под потолок колбы. В итоге температура воздуха определяется по самому нижнему буйку с соответствующей биркой.


Фото: Flickr, daisee

Фото: Flickr, Rachel D

Фото: Flickr, Anna Ghislaine

На этом видео можно понаблюдать за происходящим в этом устройстве в режиме замедленной съемки:

Термометр Галилео – настоящий образец воплощения красоты в научном мире. И хотя актуальность такого устройства в современном мире уже давно утрачена, этот градусник все еще можно встретить в некоторых квартирах ценителей оригинального интерьера.

Термометр Галилея: история про красивую науку


Фото: Flickr, Matthew Boyle


Термометр Галилея представляет собой запаянный стеклянный цилиндр, наполненный жидкостью, в которой плавают стеклянные сферические сосудики-буйки. К каждому такому сферическому поплавку прикреплена снизу золотистая или серебристая бирка с выбитым на ней значением температуры. В зависимости от размера термометра количество поплавков внутри бывает от 3-х до 11-ти. В настоящее время термометр представляет эстетическую ценность в качестве эффектного предмета интерьера.

Содержание

История изобретения



Название происходит от имени итальянского физика Галилео Галилея, который в 1592 году изобрел термоскоп, ставший прародителем всех термометров. Согласно одним источникам, сам Галилей имел весьма косвенное отношение к созданию этого прибора, который чаще используется в качестве сувенира [1] , по другим данным, мир этим изобретением конца 16 века обязан именно Галилею [2] [3] [4] .

Принцип действия

Поплавки по-разному наполнены жидкостью таким образом, что их средняя плотность различна: самая маленькая плотность у верхнего, самая большая – у нижнего, но у всех близка к плотности воды, отличаясь от неё незначительно. С понижением температуры воздуха в помещении соответственно понижается температура воды в сосуде, вода сжимается, и плотность её становится больше. Известно, что тела, плотность которых меньше плотности окружающей их жидкости, всплывают в ней. При понижении температуры в помещении плотность жидкости в цилиндре увеличивается и шарики поднимаются вверх один за другим, при повышении - опускаются. Такой эффект достигается за счет очень высокой точности изготовления термометров. Все шарики калибруются по температуре всплытия в интервале 0,4 °С. Диапазон температур, измеряемых термометром, находится в районе комнатной температуры: 16-28°, шаг: 1 °С. Текущее значение температуры определяется по нижнему из всплывших шариков.

См. также

Примечания

  1. ↑Термометр Галилея
  2. ↑Histoire littéraire d'Italie, Volume 11 Par P. L. Ginguené,Francesco Saverio Salfi
  3. ↑Inventions
  4. ↑The origin of meteorology goes back to 350 BC
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.
  • Измерительные приборы
  • Интерьер
  • Дизайн

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Термометр Галилея" в других словарях:

Термометр — (греч. θέρμη тепло; μετρέω измеряю) прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров: жидкостные механические электрические оптические газовые инфракрасные Содержание … Википедия

Термометр — Термометр: 1 резервуар с ртутью; 2 капилляр, по положению ртути в котором отсчитывают показания; 3 шкала. ТЕРМОМЕТР (от термо. и греческого metreo измеряю), прибор для измерения температуры посредством его контакта с исследуемой средой. Первые… … Иллюстрированный энциклопедический словарь

Термометр* — 1) История T. Изобретателем Т. надо считать Галилея: в его собственных сочинениях нет описания этого прибора, но ученики Галилея, Нелли и Вивиани, свидетельствуют, что уже в 1597 г. он устроил нечто вроде термобароскопа. Галилей изучал в это… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Термометр — 1) История T. Изобретателем Т. надо считать Галилея: в его собственных сочинениях нет описания этого прибора, но ученики Галилея, Нелли и Вивиани, свидетельствуют, что уже в 1597 г. он устроил нечто вроде термобароскопа. Галилей изучал в это… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Галилей, Галилео — Галилео Галилей Galileo Galilei Портрет Галилео Галилея (1635) кисти … Википедия

Важнейшие открытия в физике — История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

научная революция — Общая характеристика Отрезок времени примерно от даты публикации работы Николая Коперника Об обращениях небесных сфер (De Revolutionibus), т.е. с 1543 г., до деятельности Исаака Ньютона, сочинение которого Математические начала натуральной… … Западная философия от истоков до наших дней

Развитие естествознания в Западной Европе в XVI и первой половине XVII в. — В XVI и особенно в первой половине XVII в. в развитии науки наступает . В ходе упорной борьбы со схоластикой и религиозным мировоззрением вырабатываются новые, научные методы исследования явлений природы и делаются открытия, заложившие фундамент… … Всемирная история. Энциклопедия

История физики — История науки … Википедия

Хронология изобретений человечества — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Нажмите, чтобы узнать подробности

В 1592 году Галилео Галилей, которому тогда было 28 лет, получил место профессора математики в престижном и богатом университете г. Падуя. Однако круг интересов Галилея отнюдь не ограничивался математикой. Он активно занимался вопросами астрономии, механики и именно его работы положили начало развитию физики как науки.

Что показывает жидкостный термометр?

Термоскоп Галилея и первые термометры

В 1592 году Галилео Галилей, которому тогда было 28 лет, получил место профессора математики в престижном и богатом университете г. Падуя. Однако круг интересов Галилея отнюдь не ограничивался математикой. Он активно занимался вопросами астрономии, механики и именно его работы положили начало развитию физики как науки.

Галилей был блестящим преподавателем и его лекции всегда проходили в переполненных аудиториях. Заинтересовать студентов Галилею помогал, в частности, талант изобретателя, позволявший ему создавать прекрасные наглядные пособия. Одним из таких пособий был термоскоп – прибор, предназначенный для демонстрации известного ещё древним грекам свойства воздуха расширяться при нагревании.

Главной частью термоскопа Галилея (см. Рис. 1) был стеклянный шар размером примерно с куриное яйцо с припаянной к нему и опущенной в окрашенную жидкость (обычно это было красное вино) тонкой стеклянной трубкой. Когда воздух в шаре разогревался ладонями профессора, уровень жидкости в трубке опускался на величину, пропорциональную отношению объёма шара к площади сечения трубки. В этом и состояла главная суть изобретения Галилея, использованная затем всеми создателями термометров, основанных на тепловом расширении – делая трубку достаточно тонкой, можно получить вполне ощутимое снижение уровня даже при незначительных изменениях объёма газа.


Рис. 1. Термоскоп Галилея

Позднее Галилей существенно упростил конструкцию термоскопа - он использовал трубку настолько малого диаметра, чтобы капиллярные силы могли удерживать каплю жидкости в подвешенном состоянии, установил эту трубку над шаром и ввёл в неё сверху каплю подкрашенной воды, перемещение которой свидетельствовало о расширении воздуха.

Демонстрации термоскопа на лекциях проводились Галилеем в первом десятилетии XVII века, а уже во втором десятилетии были сделаны попытки превратить его термоскоп в прибор, измеряющий нагретость воздуха, нанеся на трубку прибора шкалу – равноудалённые друг от друга метки.

/*Известны публикации на эту тему старшего по возрасту коллеги Галилея по университету в Падуе профессора медицины Санторио и жившего в Венеции друга Галилея математика Сагредо*/.

Авторы этих изобретений незаметно для себя дали первое количественное определение температуры воздуха – они предложили считать мерой нагретости объём фиксированной массы воздуха, находящегося в шаре и в прилегающей к нему части трубки, а величину объёма измерять положением уровня жидкости в трубке по шкале в некоторых условных единицах (градусах).

Как мы знаем теперь, такое определение температуры некорректно, т.к. объём воздуха в шаре прибора зависит не только от степени нагрева, но и от атмосферного давления, которое может вполне ощутимо меняться как во времени, так и в зависимости от места измерения. Однако, в начале XVII века, когда ещё даже не было отчётливого представления об атмосферном давлении, воздушные термометры Санторио и Сагредо не получили распространения из-за их громоздкости и неудобства использования, а не по каким-либо теоретическим соображениям.

Жидкостные термометры

Следующий важный шаг был сделан в 1641 году жившим во Флоренции естествоиспытателем и изобретателем Фернандо Медичи, который был учеником и почитателем Галилея, а также, по случайному стечению обстоятельств, Великим герцогом Тосканским Фердинандом II.

Медичи взял за основу главную находку Галилея, обеспечивавшую высокую чувствительность прибора – шар, соединённый с узкой трубкой. Как и в окончательном варианте термоскопа Галилея, трубка в приборе Медичи была расположена вертикально, шар подсоединялся к ней снизу, а верхний конец тубки был открыт в атмосферу. Главное же отличие изобретения Медичи от прототипа состояло в том, что шар наполнялся не воздухом, а специальной термометрической жидкостью, изменение объёма которой при нагреве определялось, как и в термометрах Санторио и Сагредо, с помощью равномерной шкалы, нанесенной на трубку.

Интервал температур, в котором может работать жидкостный термометр, ограничен снизу точкой замерзания жидкости, а сверху – точкой кипения при атмосферном давлении. Поскольку главным назначением своего прибора Медичи видел измерение температуры атмосферного воздуха, он выбрал в качестве термометрической жидкости винный спирт, точка кипения которого (78 °С) вполне устраивала, а точка замерзания (– 114 °С) была в то время недостижима, так что он считался незамерзающей жидкостью.

В термометрах, изготовлявшихся в принадлежащих Медичи мастерских, роль шкалы играли бусинки, припаянные к трубке, или точки, нанесенные на разогретую трубку расплавленной эмалью. Обычно шкала имела 50 делений, который выбирались так, что 10 примерно соответствовало таянию снега, а 40 – максимальному нагреву прибора на солнце.


Рис. 1. Жидкостной термометр Медичи

Заметив, что градуировка шкалы постоянно сбивается из-за испарения термометрической жидкости, Медичи в 1654 году решил верхний конец трубки запаять. Так появилась конструкция жидкостного термометра, широко используемая и в наши дни. Дальнейшие усовершенствования, проведенные во второй половине XVII и всего XVIII века касались исключительно способов построения шкалы и, в частности, выбору двух фиксированных контрольных точек, температуру которых можно считать постоянной и стабильно воспроизводимой в различных условиях эксперимента. После нанесения на шкалу рисок, соответствующих обеим фиксированным точкам, оставалось только разделить промежуток между ними на заранее обусловленное число равных частей, называемых градусами.

В дальнейшем различными исследователями был опробован целый ряд вариантов термометрической жидкости. Так, например, Исаак Ньютон проводил эксперименты с льняным маслом. Позднее, уже в XVIII веке, когда активно проводились работы по созданию и использованию паровых машин и понадобилось измерять температуры, превышающие точку кипения воды при нормальном давлении, в качестве термометрической жидкости стала широко использоваться ртуть, имеющая самую высокую температуру кипения (357 °С) среди всех веществ, находящихся в жидком состоянии при нормальных условиях. При этом точка замерзания ртути (– 39 °С) была достаточно низкой для использования ртутных термометров в метеорологических исследованиях, кроме редких случаев экстремально низких температур.

Почему жидкостный термометр является квазитермометром

Поскольку величиной, непосредственно измеряемой с помощью прибора Медичи, является выраженный в градусах соответствующей шкалы удельный объём термометрической жидкости, сделанное в дальнейшем объявление этого прибора термометром равносильно введению определения понятия градус теплоты, состоящему из двух частей:

 градус теплоты термометрической жидкости равна её удельному объёму, выраженному в градусах принятой шкалы;

 градус теплоты любого тела равна показанию жидкостного термометра, находящегося с ним в состоянии теплового равновесия.

Что же касается второй части определения, то оно предполагает возможность состояния теплового равновесия между термометрической жидкостью и объектом измерения. В этом состоянии градус теплоты термометрической жидкости должен быть одинаков во всём занимаемом ею объёме и совпадать с градусом теплоты стеклянной оболочки термометра и градусом теплоты измеряемого объекта во всех точках области, прилегающей к поверхности термометра. Однако, поскольку такое равновесное состояние в макроскопических объёмах никогда не достигается, вся вторая часть определения теряет какой-либо смысл.

Читайте также: