Сверхединичный трансформатор своими руками

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

Каркас делают из стеклотекстолита или ему подобного материала.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см2.

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм2, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.












Что представляет собой трансформатор Зацаринина

Согласно официальной электродинамике и ее модели магнитного поля проводник, по которому протекает ток, создает векторное магнитное поле, которое выглядит как замкнутые круги. Внутри проводника оно концентрируется на поверхности, в центре и снаружи интенсивность ниже.

воплощение трансформатора Зацаринина в реальности

Если на тот же проводник надевается ферромагнитный цилиндр или несколько колец, магнитное поле сосредоточится в них при условии, что индукция выше напряженности магнитного поля проводника. Магнитное поле останется замкнутым, но усиливается благодаря относительной магнитной проницаемости ферромагнетика.

При замене однородного проводника цилиндрическим внутри него магнитного поля нет, оно сосредотачивается в ферромагнетике, не выходя за его пределы. Согласно Фарадею в подобных условиях нет причины для возникновения индукции, однако на самом деле в такой системе есть Э.Д.С. (электродвижущая сила). Если ферромагнетик заменить магнитом, в проводнике Э.Д.С. нет до того момента, когда магнит начинает двигаться.

Использовалась медная трубка длиной 8 см с диаметром 1,6 см. На нее была намотана первичная обмотка с обычной индуктивностью. Роль вторичной обмотки выполнял медный стержень. Зацаринин считал эту конструкцию силовым трансформатором, в котором коэффициент передачи мощности из первичной обмотки на цилиндрический стержень (вторичную обмотку) равен единице.

Изготовление каркаса катушки трансформатора своими руками

Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

Как протестировать устройство

У Зацаринина коэффициент трансформации был 95-99, то есть, выходное напряжение мало отличалось от входного. Такие же показатели по мощности, так как в этой конструкции нет вихревых токов. Можно считать, что домашний генератор получился качественный, если параметры соответствуют тем, которые опубликовал Зацаринин.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Генератор свободной энергии: схемы, инструкции, описание, как собрать

Сверхединичный трансформатор своими руками

Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

Что представляет собой свободная энергия?

Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой.

Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя.

Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в бестопливных генераторах. Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, ветрогенераторы, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

Проблема сохранения энергии

Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности.

Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора.

С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

Схема и конструкция генератора Теслы

Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

Рис. 1: Генератор свободной энергии Тесла

Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

  • диаметр намотки;
  • сечения провода для каждой из обмоток;
  • расстояние между катушками.

Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в магнитных двигателях. А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.

Окончание изготовления трансформатора своими руками

Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

Особенности схемы Дона Смита

Она взята из книги, написанной другим изобретателем – Патриком Келли. Главное – нарисовать правильную схему, применимую для конкретного случая. Ведь всегда есть вероятность, что сами учёные ошиблись. Можно привести в пример основные параметры, на которые идёт упор.

  • 160 кВт – мощность выхода, для входа – 80 Вт.
  • Итог – возрастание показателя в 2 тысячи раз.
  • Процесс повышение мощности проходит в два этапа.
  • Сначала происходит увеличение в 40, затем – в 50 раз.

Соединение земляного заряда с высоким сопротивлением происходит за первый этап. В это же время происходит образование нескольких других явлений: разрядник, колебания трансформаторного первичного контура.

Схема Дона Смита

На втором этапе мощность увеличивается внутри передающего трансформатора, у которого нет сердечника. Вторичная обмотка образует индукцию за счёт первичной. Последняя при таких обстоятельствах не ведёт к появлению сил с противо-ЭДС. Каждое 300-500 колебание приводит к потенциалу энергии с соответствующей долей, который появляется на трансформаторном выходе. Эта доля затем переходит к накопителям, на следующем этапе – к полезной нагрузке.

Пример как сделать самодельный трансформатор

Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

Вывод

Хоть все и заинтересованы созданием новых видов трансформаторов, но вытеснить классические преобразователи энергии пока не удается. Еще в прошлом разработчики выдвигали смелые теории по поводу того, как можно удешевить электроэнергию, преобразовывая реактивную мощность в активную. Но для достижения этих целей не хватало техники, оборудования или параметров элементов, которые смогли бы обеспечить подобный эффект. Но научно-технический прогресс помогает человечеству получить все новые изобретения, среди которых и трансформатор Кулдошина.

Это устройство уникально тем, что первичная обмотка выполняется с использованием ленточного конденсата, а вторичная осуществляется по стандартной схеме с использованием круглого провода. Но есть возможность и выполнения вторичной обмотки из ленточного конденсатора. Данное изобретение может быть экономически выгодным при условии его правильного составления.

Расчет трансформатора

Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

В недалёком 2016 году на одного молодого, но очень впечатлительного четверокурсника факультета энергетики оказала влияние статья, в которой автор весьма популярно показал что такое в день сегодняшний высокотемпературные сверхпроводники (далее ВТСП). Ослеплённый желанием оживить в своей душе довольно однообразную и предельно консервативную электроэнергетику, пробираясь сквозь пелену противоречий и острую нехватку финансов, молодой бакалавр вместе со своими коллегами всё же построил трансформатор с обмотками из высокотемпературного сверхпроводника.

Приятного чтения!

Зачем делать трансформаторы сверхпроводящими?

Нынешние продукты трансформаторостроения воистину достигли в некотором смысле идеала. Крупные силовые трансформаторы, те самые, которые стоят в кирпичных или железных трансформаторных подстанциях (ТП-ушках) у вас во дворе, а также более крупные представители имеют КПД порядка 99%. Огромное количество нормативных документов регулирует работу, диагностику, способ установки и создания таких трансформаторов, а на конференциях и выставках появляются всё новые и новые представители с инновационной гайкой в остове магнитопровода или революционным маслом с пониженной концентрацией растворённых в нём газов.


Типичный представитель силовых трансформаторов

Преимущества трансформатора с ВТСП обмотками перед обычным:

— Практически полное отсутствие потерь энергии в обмотках (провода ведь сверхпроводящие, они не греются);
— Взрыво- и пожаробезопасность (жидкий азот, в отличие от трансформаторного масла, не выделяет взрывоопасных газов);
— Меньшая масса и габариты (плотность тока в сверхпроводящем проводе может в 10 раз превышать аналогичную в медном, при равном напряжении);
— Возможность ограничивать токи короткого замыкания.

Несмотря на сильную составляющую первых трёх преимуществ, все они блекнут перед гнётом огромной цены, которую приходится платить за сверхпроводимость. Поэтому, боюсь коммерческий успех ВТСП трансформаторов может состояться, разве что в особо требовательных видах военной и космической техники или на особых по уровню пожаробезопасности объектах. Однако четвёртое свойство может резко изменить картину и лично мне уже оно одно кажется достаточным, чтобы не только обратить внимание на ВТСП парадигму, но и провести какие-нибудь исследования. Собственно что и сделали многие мои коллеги по всему миру, взять хотя бы работы 2.
В чём же тут фокус?

О физике токоограничения

В настоящий момент, говоря о ВТСП проводах в контексте электроэнергетики, мы почти всегда говорим о композитных ВТСП лентах на основе керамических соединений. Как видно из изображения ниже, сверхпроводник (слой YBCO) нанесённый на металлическую подложку, покрывается со всех сторон некоторым защитным слоем. Этим защитным слоем могут выступать некоторые металлы и их сплавы, например медь. Естественно эти материалы не обладают сверхпроводящими свойствами при температуре жидкого азота, а значит в случае, если сверхпроводимость по каким-то причинам у YBCO-керамики пропадает, то весь ток распараллеливается между этими слоями, сообразно их резистивному сопротивлению.


Всякий ток пропорционален напряжению, приложенному к данному сопротивлению, а значит, если вдруг откуда ни возьмись в цепи появилось сопротивление там где его раньше не было (сверхпроводимость разрушилась), то ток (при неизменном напряжении) уменьшится. Притом степень этого уменьшения зависит от сопротивления материалов окружающих, ВТСП-слой. Но как разрушить сверхпроводимость? Есть на самом деле 2 фундаментальных способа: поднять температуру свыше критической, при которой сверхпроводимость не может существовать или подействовать на ВТСП магнитным полем выше критического. Притом, если по сверхпроводнику протекает ток, то он также создаёт магнитное поле, которое старается проникнуть в этот сверхпроводник, и если ток создаёт слишком большое поле, то сверхпроводимость начинает постепенно разрушаться. Ток, при котором сверхпроводимость начала разрушаться, принято называть критическим.

Строим трансформатор!

Ну всё! Теперь, уверен, вы понимаете достаточно для того чтобы приступить к постройке трансформатора, и, поверьте, для меня это было действительно увлекательным путешествием, поскольку если намотка провода для обычного трансформатора (привет тем, кто мотал) представляет собой весьма скрупулёзное и довольно нудное дело, то у ВТСП трансформатора сложность вырастает в разы. Особенно, когда подобное устройство собирается из подручных материалов. Разбираемся почему!

Каркасы обмоток

Одним из серьёзных недостатков ВТСП трансформатора есть то, что сердечник не является и не может являться сверхпроводящим. Поэтому у нас есть два варианта как поступить, тепло- и гидроизолировать сердечник от обмоток, увеличивая расстояние между им и обмотками и уменьшая КПД, или засунуть сердечник в азот вместе с обмотками, создавая большой кипятильник для азота, поскольку потери на холостой ход трансформатора никуда не деть. Мы решили пойти по первому пути, сделав криостат в виде полого цилиндра. Для чего в качестве каркаса для вторичной обмотки (которая ближе к сердечнику) выбрали это:



Труба из полипропилена и бумага обёрточная подле неё

Труба внутренним диаметром 100 мм. из полипропилена является идеальным гидроизолятором, но не очень хорошим теплоизолятором. Более того некоторые виды пластика имеют свойство усаживаться при низких температурах, из-за чего обмотка намотанная непосредственно на такую трубу может быть деформированна вместе с трубой. Поэтому было принято решение дополнительно армировать данную трубу обмотав её поверх бумагой, пропитанной эпоксидной смолой. С бумагой проблем не возникло, такую в достатке можно раздобыть у выхода из различных (крупных) строительных магазинов (аля Леруа), там она бесплатная. С компаундом потяжелее. У нас не было опыта работы с самодельными текстолитами на основе бумаги, и мы не знали, как поведёт себя бумажно-пропитанный каркас при -196 градусов Цельсия. Посоветовались и решили взять первую попавшуюся эпоксидную смолу марки ЭД-20. При покупке смолы нас предупредили, что отвердитель (второй компонент, с которым смешивается смола, после чего затвердевает в ходе хим. реакции) срабатывает за 20 минут. Отчего сразу стало понятно, что медлить будет нельзя и пропитывать бумагу нужно будет быстро. Для этого верные соратники предстали в образе человеческого конвейера.



Импровизированный конвейер по пропитке бумаги эпоксидной смолой

Запах был, прямо скажем, не очень. А ещё берегите руки при работе с компаундами!



Процесс пропитки бумаги

Второй каркас (для наружной обмотки) делался уже по образу и подобию первого и прямо поверх него. Чтобы каркасы не слиплись, подложили немного случайного материала, который впоследствии можно было бы отодрать. В итоге получилось:



Готовые каркасы для обмоток

Резюмируя эту часть скажу, что более дешёвого способа сотворить два немагнитных, неметаллических, криостойких и достаточно прочных каркаса, наверное просто нету. Самый дорогой элемент в создании каркаса оказался конечно же компаунд ~500 р./кг., за ней следует ПП труба, ну а далее кисточки, перчатки — это опционально.



Ослепительно дорогая часть описываемого проекта

Помимо дороговизны ВТСП лента ещё и очень прихотливый материал. Она не любит сильных перегревов (свыше 500 градусов), у неё большой предельный радиус изгиба (около 20 мм, при превышении начнётся деформация сверхпроводника), её также нельзя скручивать, мять, бить. Всё это превращает работу с ВТСП проводами в подобие ювелирного искусства. Как будем наматывать?

Честно говоря, способ намотки ленты на каркас выбран наверное самый примитивный. Лента покрывается повдоль с одной стороны каптоновым скотчем, а выступающие за пределы ленты края скотча приклеиваются вместе с лентой к каркасу. В результате в процессе намотки мы получаем два фактора, удерживающие обмотку на каркасе: адгезия скотча и поверхности текстолита и сила трения ленты о ту же поверхность. В итоге, на удивление, получилось довольно надёжно.



Процесс намотки наружной (первичной) обмотки

Мотали, собственно, трансформатор с числом витков 50:25, на практике получилось немного меньше, но не суть. Первичная обмотка (наружная) была однозаходная (одна спиралька по всей высоте), вторичная обмотка (внутренняя) была двухзаходная (две спиральки идут, чередуясь). Что собственно даёт критический ток первичной = 80 А и для вторичной 160А. Если учесть что сетевое напряжение (под которое делался трансформатор) = 220 В. То получается около 10 кВт передаваемой мощности практически без потерь, в довольно небольшом объёме. Итоги намотки:



Первичная (слева) и вторичная (справа) обмотки ВТСП трансформатора

Мы добрались до самого нервного процесса в изготовлении трансформатора. Как было сказано выше, сверхпроводник не любитель высоких температур. Когда мы говорим о медном проводе, способном длительно нести 60-80 Ампер не особо перегреваясь, то мы имеем ввиду сечения 16 или 25 мм^2. Это довольно массивные и непослушные провода, которым тяжело придать нужную изящную форму для удобного спаивания с 4 миллиметровой ВТСП лентой. Если брать достаточно мощный паяльник и незатейливый припой, то можно перегреть ленту. Поэтому лучше взять Индий-Оловянный припой с температурой плавления ~103 град. С. А ещё лучше растопить его в паяльной ванне, покрыть ленту и провод паяльной кислотой и получить сказочный отблеск самообожания от хорошо проделанной работы в отражении горячего металла.

Нюанс. Токовые контакты лучше припаивать, не жалея площади ленты, для лучшего токоввода. Мы брали 3 см. ленты по поверхность касания с токовым контактом, но можно и больше. Контакты напряжения мы удалили от токовых на несколько сантиметров, чтобы не мерить падение напряжения на точке контакта, а непосредственно на обмотке. К сожалению, сохранилось только фото финала этого действа.



Обмотки с контактами

Финальная и самая кустарная часть нашего производства. Криостат выполнялся из пенопласта и акрилового герметика. И всё. К сожалению, не каждая марка пенопласта подойдёт. Пенопласт с крупными гранулами при попадании на него азота немедленно самоуничтожится с треском и грохотом.



Неправильный пенопласт (слева) и правильный пенопласт (справа)

Что же до герметика, то, кроме шуток, взяли самый дешёвый из тех, что был. Не знаю, в чём тут фокус. Главное, чтобы герметик был именно акрилловый, а не силиконовый, ибо последний (как нас заверили в магазине) может разъесть пенопласт.

Криостат был сборным, вырезались квадраты с круглыми отверстиями, такими, чтобы вся конструкция в итоге уместилась внутри, при этом снаружи криостата торчала труба, в которую в будущем предполагается поместить магнитопровод. Иначе говоря:



Сборный криостат

Как видно на фото, стыки всей этой конструкции жирно промазывались и пропитывались герметиком. На руку нам то, что герметик застывая при азоте, на ощупь напоминает сильно густой сыр, и выполняет свои функции крайне здорово. На последнем этапе, под трубу-каркас вырезается специальное дно, на которое он устанавливается и, наконец, вся эта конструкция собирается в единый ВТСП трансформатор.



ВТСП трансформатор

В итоге мы получили:

ВТСПТ-10000, 220/110 В, 50/100 А, ОХЛ

ВТСП Т — последняя буква означает трансформатор
10000 — мощность в ВА
220/100 — номинальные напряжения первичной/вторичной обмоток
50/100 — номинальные токи первичной/вторичной обмоток
ОХЛ — работа при очень холодных условиях

Эксперименты

Здесь же я покажу главный опыт, ради которого и делался трансформатор. Замкнём накоротко вторичную обмотку и с помощью выключателя подадим на первичную обмотку напряжение от сети (220 В). Поскольку сопротивления первичной обмотки и магнитно связанной с ней (через воздух) вторичной обмотки малы, то в цепях будут протекать достаточно большие токи. Эти токи будут превышать критический уровень в 80 А и, следовательно, разрушать сверхпроводимость, из-за чего ВТСП обмотка начнёт постепенно обретать конечное электрическое сопротивление, что в свою очередь вызовет ограничение тока. Что мы зафиксируем в виде искажённой синусоиды тока. И появления на осциллограмме напряжения некоторых конечных значений (вместо нулевых в нормальном режиме). Измерения будут проходить с помощью неожиданного для данного опыта устройства: анализатора качества электроэнергии. Неожиданный он потому, что частота дискретизации данного устройства в режиме осциллографа оставляет желать лучшего. Но что поделать. Тем не менее давайте взглянем на качественную картину происходящего.



Осциллограммы токов (точки на графиках соответствуют реальным снятым данным)

На осциллограммах слева (для сравнения) приведён режим короткого замыкания в случае, если не заливать трансформатор жидким азотом: мы видим слегка искажённую, но спокойную синусоиду тока короткого замыкания, который спустя период (на рисунке приведено полпериода) отключается автоматическим выключателем. Справа приведён режим короткого замыкания если криостат предварительно заполнен жидким азотом: мы видим сильный начальный рост тока, который постепенно (уже начиная со 150 А) загибается под действием прирастающего сопротивления. Однако из-за большего значения тока короткого замыкания автоматический выключатель срабатывает уже на первом полупериоде.

Увы пока довольствуемся лишь этими качественными результатами, но в скором времени обязательно сделаем много других.

Конечно, ВТСП трансформатор оставляет после себя уйму противоречий. Эти противоречия проявляются даже в кустарном способе изготовления такого непростого устройства. Чего говорить о реальных действующих образцах, с которыми вы можете ознакомиться по [1,3]. Реальная ВТСП электроэнергетика далеко ускакала вперёд с разработками кабелей и токоограничителей, претерпевая трудности даже в этих более развитых её подразделениях. С ними довольно популярно можно ознакомиться не покидая этот сайт, например здесь.

Тем не менее, сколь противоречива бы ни была эта область инженерного знания, прав в конечном итоге останется тот, кто свою правоту сможет обосновать, так что будем стараться.

И в любом случае, это жутко интересно!

Благодарю за внимание!
Искренне Ваш DOK.

Также выражаю благодарности:

Высоцкому Виталию Сергеевичу и команде ВНИИКП за помощь и консультирование в этом нелёгком пути.
Павлюченко Дмитрию Анатольевичу за гигантскую поддержку и желание развивать это направление с нуля!

1. Dai S. et al. Development of a 1250-kVA superconducting transformer and its demonstration at the superconducting substation //IEEE Transactions on Applied Superconductivity. – 2016. – Т. 26. – №. 1. – С. 1-7.
2. Манусов В. З., Александров Н. В. Ограничение токов короткого замыкания с помощью трансформаторов с высокотемпературными сверхпроводящими обмотками //Известия Томского политехнического университета. – 2013. – Т. 323. – №. 4.
3. Lapthorn A. C. et al. HTS transformer: Construction details, test results, and noted failure mechanisms //IEEE Transactions on Power Delivery. – 2011. – Т. 26. – №. 1. – С. 394-399.

Для повышения переменного тока необходимо через магнитное поле создать тактовые импульсы постоянного тока, и тогда переменный ток возрастёт. В дополнении есть так называемая обратная связь - я так понял, она выполняет роль частичного самозапита. А именно - добавляет мощности в систему.

Есть внутренняя и есть внешняя обратная связь. Я так понял, эту связь можно назвать самозапитом или самонасыщением.

Я так понял, что в обычных БТГ, где мотают катушку, как раз используют принцип этого Ф образного магнитопровода.
То есть, берут и наматывают катушку в две стороны как минимум - это как вторички.
И индуктор мотают отдельно.

Далее делают обратную связь и подают на индуктор(на первичку) импульсы постоянного тока для того, чтобы увеличить напряжение переменного тока во вторичке.

И в итоге, когда это получается, на выходе появляется добавочная мощность, если я не ошибаюсь.

Главное с магнитным полем всё учесть верно т.к. от направления магнитного поля зависит и гашение ОЭДС и добавочное магнитное поле в магнитопровод

А сердечники собаки дорогие, особенно квадратные и Ф-образные. Поэтому видимо многие используют простую трубу пластиковую и мотают на неё провод, соблюдая и планируя направление будущего магнитного поля.


Оказывается сердечники, если их использовать, можно и использовать круглой формы, если не ошибаюсь.

В общем если взять переменку и пустить её на катушку вторичку, а на первичку(на индуктор) , как я понял, подать постоянный ток импульсами, то во вторичке появиться умножение тока переменного. Что собственно и создаст увеличение мощности на выходе вторичной обмотки. Вот как я это понимаю. Если кто в теме, подакайте если это так. =)

На сколько я понял, ПУШ-ПУЛ это и есть схема подачи импульсов в индуктор(первичку).
А вторичку называют гранатой. Но там надо исследовать магнитное поле и его поток.
А если просто намотать витки в одну сторону, а после поверх в другую, то наверно ОЭДС будет гаситься.

В общем надо поэкспериментировать. Надо только понять, где какой провод(сечение) использовать, чтобы хоть какое-то магнитное поле и магнитный поток были бы.
+Наверно нужен калькулятор индуктивности типа Coil32. Не наверно, а точно. =)


Как я понял теперь принцип БТГ Кулабухова.

1) Он создаёт катушку типа "граната" как вторичку и индуктор как первичку.
2) Он вычисляет индуктивность и правильно направляет магнитное поле, чтобы происходило гашение ОЭДС и потоки магнитные накладывались бы друг на друга, усиливая друг друга.
3) Он подаёт переменку на вторичку, на "гранату" через трансот постоянки.
4) Он подаёт на индуктор(на первичку) сигналы( пульсацию) постоянного тока, с определённой частотой и паузой, что увеличивает силу тока на вторичке на "гранате".
5) Т.к. на "гранате"(на вотричке) мощность увеличивается он делает самозапит через обратную связь на индуктор и на транс для вторички.
6) Остаточную мощность он подаёт на лампочки на 220В.

Просто я привёл возможную аналогию схемы со схемой магнитного усилителя.
Магнитный усилитель в данной публикации, с которого я начал этот подпост является, по моему, умножителем мощности(умножителем тока и напряжения).

Ну вот осталось проверить мои гипотезы теоретически и экспериментально.

Сегодня мы от всего сердца благодарим Бога и Вселенную за всѐ то доброе и хорошее, что у нас у всех вместе было и есть.

Всем привет, на форуме вроде такого невидел, вот создал тему, кто что скажет?


использовать выбросы от корочения вторички трансформатора.
Вот у Реда, я так понимаю близкая по смыслу схема, по крайней мере первичка.


В видео нарисовано, что нужно ,,тупо,, коротить вторичку в определенное время. Я думаю, что во время перехода синусоиды через ноль. Проблема в том что это нужно как то проверить. В патенте Тесла там механически и контактами, а как переменку коротить транзистором?

В видео нарисовано, что нужно ,,тупо,, коротить вторичку в определенное время. Я думаю, что во время перехода синусоиды через ноль. Проблема в том что это нужно как то проверить. В патенте Тесла там механически и контактами, а как переменку коротить транзистором?


Всем привет, на форуме вроде такого невидел, вот создал тему, кто что скажет?

SADA, опять лечит слышу новых словей набрался, ни как инциклопопию по ночам почитывает
Нынче поля уже не модно крутить, послушал чутка, улыбнуло

Сразу оговорюсь что я не очень шарю в переменном токе
Не спорю, вполне возможно что все это хрень, но Тесла делал именно так! Выяснил для себя что есть два режима работы этой схемы , 1я это когда в контуре есть резонанс с синусом и немерянным потреблением при этом, и 2й режим - когда на катушку приходят однополярные импульсы, как Чип в видео рисует, большой амплитуды с минимальным потреблением в то время когда вторична практически накоротко закорочена!

TESLA не хватило малости для создания сверх-регенеративного Резонансного двух обмоточного трансформатора для миниатюрных и портативных генераторов Бесплатной Электрической энергии - Трансформаторной стали изготавливаемой в СССР.
Именно симметричные двух контурные ОП образные трансформаторы оказались способными входить в трансформаторный резонансный транс с конденсаторами Тесла имеющими три Полюса.

Всем хорошо известно, что подавая на трансформаторную вторичную обмотку ток даже от батарейки, на первичной обмотке можно получить более высокое напряжение чем на входе, А , значит часть этой энергии можно расходовать на поддержание автоколебаний в первичном запускающем контуре. Связь можно было бы осуществить и с помощью простого двух полюсного конденсатора, но тогда фаза поддерживающего напряжения была бы противоположна основным колебаниям и привела бы к гашению резонансных колебаний первичного контура.

Именно трехполярный конденсатор Тесла с изоляцией из Галовакса способен привести фазу в нормальное положение и таким образом не гасить, а наоборот раскачивать колебания на резонансной частоте. Увы, встретить такое устройство невозможно, так как технология держится в тайне , а любые разработки замалчиваются.

Посмотрите на шквал критики псевдо специалистов в комментариях - это они старательно стирают полезную и нужную людям информацию, утаивая простые и доступные каждому источники электрической энергии в угоду Энергетическим магнатам. Но человеческую мысль не остановишь и рано или поздно знания вырвутся на свободу и Свободная Бесплатная Энергия в неограниченном количестве будет доступна каждому!

Читайте также: