Сварочный инвертор своими руками схема бармалея

Добавил пользователь Morpheus
Обновлено: 17.09.2024

Продолжение темы Делаем сварочник, окончание которой расположено на старом форуме

как видно, точка пересечения находится на частоте 116КГц, правда, расчёт производился немного для другой схемы и для других ключей, но идея впринципе должна быть такая же?

valvolodin

Всё хорошо, но почему-то на этом графике потери проводимости падают с ростом частоты. На самом деле потери проводимости стабильны или даже возрастают с ростом частоты.

Multik

Да, так вот - дело в том, что для транзисторов, работающих в режиме hard switch выделяют 2 вида потерь: при переключении и потери в открытом канале. Я рассматриваю полный мост. расчёт производился немного для другой схемы и для других ключей, но идея впринципе должна быть такая же?

Нет, идея не такая. Валентин уже объяснил.
Но меня интересует другое. Где Вы собираетесь применять результаты исследования транзисторов, работающих в режиме hard switch?
В реальной схеме этот switch не такой уж и hard.
Если используются IGBT транзисторы, то включение будет мягким из-за наличия в трансформаторе индуктивности рассеивания. Если МОП, то выключение не будет жёстким из-за высокой выходной ёмкости, и определяется током через транзистор в момент выключения. То есть, нужно знать параметры конкретной схемы и рассчитывать для конкретного случая. Сегодня проще сделать Soft, и не париться с расчётами.
Помнится, у нас все депо были забиты паровозами, но всё равно пришлось их выбросить. КПД сделал своё дело.

Mister
Multik, так я ж и не против, что soft, просто я его так назвал.
На счёт потрерь проводимости - тут по идее если транзистор чаще переключается, то время нахождения его в насыщении за единицу времени будет уменьшаться, то есть, согласно закону Ватта, эта доля мощности тоже будет уменьшаться. Другое дело, как я уже написал, что расчёт проводился не именно для этого случая, там, даже, по-моему не учитывалось нагревание транзистора

Ceйчас буду даташит изучать, в котором полностью алгоритм приведён, там оказывается ещё какой то вид потерь присутствует .

GYGY
Mister
по вашей схеме моста.
1.Зачем такие навороты с раскачкой ?
2. посмотрите включение сигнального транса - все 4 ключа откроются одновременно и бабахнет.
3. мост в выходном выпрямителе - это лишние 200-300Вт тепла(применительно к сварочным мощностям)

А какие экперименты с частотой вы планируете провести (заполнение импульсов ЛЧМ)?

Mister
1. Потому, что боюсь, что можно драйверы спалить .
2. Как же это все 4 мосфета могут открыться одновременно, если у TL494 на вход OTC подаётся плюс и оба эммитера приподняты от земли резисторами, а входы драйверов соединены крест-накрест, посмотрите повнимательнее ещё раз схема впринципе классическая!
3. Согласен, тем более, что с ростом частоты эта цифра может достигнуть больших значений
4. И почему никто не написал, что в схеме неточность: токовй ТР3 должен стоять перед основным трансформатором

Эксперименты такие: расчитываю и делаю пару-тройку трансформаторов и дросселей под разные частоты вплоть до 100КГц, сравниваю потери на ключах, трансформаторе, дросселе и выпрямителе (на счёт последних 100% будет хуже), короче - чистый эксперимент.

Изображение

На счёт управления затворами, есть вообще такая идея: подключить управляющий трансфторматор прямо к выходам драйвера, что то типа этого:

где полевики - это уже мощные выходные транзисторы (или вместо них IGBT), которые подключаются к выпрямленному сетевому напряжению, то есть - надо опять 2 драйвера и 4 ключа, чтоб получить полный мост, как вам такая идея?

GYGY
Mister
к сожалению картинка с сайта Мужественных пензюков пропала. Поэтому - по памяти, я имел ввиду что в схеме затворы всех мощных ключей подключены к началам вторичных обмоток(несмотря на перекрещивания при рисовании), и следовательно открываиться и закрываться они будут синхронно.

Mister
А, да я понял что имелось ввиду, у драйверов на входах синфазные сигналы, потому, что их входы включены крест-накрест, а в выходном каскаде (на igbt) управляющий сигнал один, ну, достаточно поменять 2 нижние обмотки задом наперёд .

А может ну его к такой-то матери, подключить затворы IGBT прямо к выводам драйверов

Кстати, тут проблема посерьёзнее - я попытался найти ETD59, но так ничего и не нашёл, придётся обнести местные помойки в поисках телевизоров.

GYGY

Кстати, тут проблема посерьёзнее - я попытался найти ETD59, но так ничего и не нашёл, придётся обнести местные помойки в поисках телевизоров.

если у вас чистый эксперимент, то почему обязательно ETD59?
А другие варианты Ш(Е),кольцо(Например Большаков двойную колбасу замутил, на скромных колечках киловат на 10)

Mister
Вообще, у меня есть какое то кольцо: внешний диаметр 10см, ширина 2,5см, высота 3,5см (или наоборот - не помню), но я не знаю что это за феррит(маркировки на нём отсутствовала), но думаю, что у него проницаемость слишком маленькая, конечно, можно несколько витков намотать и померять индуктивность и пересчитать потом проницаемость.

У меня другой вопрос: подскажите, пожалуйста, ультрабыстрый диод для topswitch на 5-10А, и напругой до 50В в корпусе ТО220-J11

чтоб 1-я и 2-я ноги были КАТОДОМ, если, конечно, такие в природе существуют, потому, что согласно каталогу DACPOL на силовые компоненты, ультрабыстрые диоды в корпусе ТО220-J11 есть, но у них эти выводы - анодные.

Последний раз редактировалось valvol 13-07, 20:27, всего редактировалось 7 раз(а).

У меня другой вопрос: подскажите, пожалуйста, ультрабыстрый диод для topswitch на 5-10А, и напругой до 50В в корпусе ТО220-J11

чтоб 1-я и 2-я ноги были КАТОДОМ, если, конечно, такие в природе существуют, потому, что согласно каталогу DACPOL на силовые компоненты, ультрабыстрые диоды в корпусе ТО220-J11 есть, но у них эти выводы - анодные.

из очень быстрых, например MUR820

GYGY, спасибо за MUR820, на оффициальный сайт international rectifier я действительно стесняюсь заходить, потому, что у меня есть их диск за 2005-й год, но он время от времени пропадает из поля зрения, но вчера я его всё таки нашел.

Последний раз редактировалось Mister 15-09, 01:34, всего редактировалось 1 раз.

Кольцо я тоже сегодня нашёл, оно представляет собой двое склееных колец, каждое из которых имеет размеры 100х60х15мм. Маркировки на них нет, посмотрел по справочникам: действительно были такие кольца, выпускались м2000нм и м1000нм, то есть проницаемость надо будет измерять.


_________________
Внимание! В документации EPCOS на сердечник ETD29 допущена ошибка: на стр.2 в таблице "Gapped" для материала №87 при зазоре 0,2мм коэффициент индуктивности не 383 а 483!

MisterЗачем тебе проницаемость, это ж не дросель будет.
Потом померяешь индуктивность первички (если есть чем) для оценки намагничивания.
Просто не выбирай для отечественных ферритов dB>0.18, или если хочется съэконмить 1-2 витка воспользуйя методой практического определения индукции.


_________________
Внимание! В документации EPCOS на сердечник ETD29 допущена ошибка: на стр.2 в таблице "Gapped" для материала №87 при зазоре 0,2мм коэффициент индуктивности не 383 а 483!


В разделе
Статьи есть рекомендации по экспериментальному определению Bm ферритов для требуемой рабочей температуры.

Спасибо! И у меня ещё вопрос - как можно оценить мощность (энергию), необходимую для открывания и закрывания IGBT?

+1
Поставил MUR820, в качестве нагрузки поставил 4 кулера 80мм, включил минут на несколько: он почти не нагрелся.


_________________
Внимание! В документации EPCOS на сердечник ETD29 допущена ошибка: на стр.2 в таблице "Gapped" для материала №87 при зазоре 0,2мм коэффициент индуктивности не 383 а 483!


В справочных данных приводится параметр Qg (total gate charge) - заряд, который необходимо передать в затвор, чтобы зарядить его до требуемого напряжения. Умножаем требуемый заряд на частоту коммутации и получаем средний ток в цепи затвора. Умножаем ток на напряжение питания драйвера и получаем потребляемую мощность (без учёта собственного потребления драйвера).

Варил своим RytmArc от valvol раму под кондиционер. Осень, на дачах потребителей мало. Интересное получилось сочетание повышенного напряжения со слабой сетью. При включении сразу блокировка. Нагрузил сеть маслянным радиатором - включается нормально, но на поджиге блокируется (вероятно по мин.). Долго нагрузку подбирал Тестера не было - по наитию.


Верх знаю точно - 242В, низ получился автоматически, но менее 187В - примерно 175. 180В. А вообще слеповато как то. Я хоть индикатор включения поставил, а в оригинале только блокировка сетью. Неплохо иметь более полную картину о причинах блокировки: сеть больше/меньше, температура. Неплохо и кулер оптопарой контролировать с блокировкой. Есть чем заняться. А вообще с ним чувствуешь себя спокойно - все под контролем. Жгу уже не один и без оглядки, кулер еще ни разу не включился на полную (частичная подкрутка всегда). Спасибо. Выглядит фирменно. Последний вес после покраски кожуха и установки ручки для переноса от прибора 7,75кг. Об обязательстве помню, подморозит - ВАХ сниму.

Неплохо иметь более полную картину о причинах блокировки: сеть больше/меньше, температура. Неплохо и кулер оптопарой контролировать с блокировкой.

Неплохо иметь более полную картину о причинах блокировки: сеть больше/меньше, температура. Неплохо и кулер оптопарой контролировать с блокировкой. Есть чем заняться. А вообще с ним чувствуешь себя спокойно - все под контролем.


Что-то куда ни зайдёшь, везде народ уже думает не о том, чтобы хоть какой сварник слепить, а всё больше о его качестве. Микроконтроллеры вставляют. Вот ещё один созрел, кажется.
Растём, однако!


Ссылка по специализированному режиму ECCP, поддержки мостовых и полумостовых преобразователей, реализованному в PIC микроконтроллерах.

Часовой пояс: UTC + 4 часа

Кто сейчас на конференции

Представляю самый маленький, лёгкий и достаточно простой в повторении сварочный инвертор. Он позволяет проводить сварочные работы электродами диаметром до 3мм.

Простой миниатюрный сварочный инвертор, внешний вид
Простой миниатюрный сварочный инвертор, внешний вид

Простой миниатюрный сварочный инвертор, сравнение с заводскими
Простой миниатюрный сварочный инвертор, сравнение с заводским

Характеристики инвертора

  • Размеры (ДхШхВ) — 180х105х80;
  • Вес — 1100 грамм;
  • Ток — 80А, можно выжать до 100А;
  • Ток холостого хода — 170-200мА;
  • Напряжение холостго хода — 60 вольт.

Инвертор собран в корпусе компьютерного блока питания.

Простой миниатюрный сварочный инвертор, корпус
Простой миниатюрный сварочный инвертор, внутри корпуса

Из-за нехватки места в этом корпусе не удалось обеспечить хороший обдув радиаторов силовых компонентов, поэтому он не предназначен для долговременной работы, но спалить несколько электродов подряд с его помощью можно.

Делать инвертор с нуля достаточно дорого, хорошие оригинальные детали дорогие, нужен опыт работы с импульсными источниками питания и в силовой электронике в целом, лучше и выгоднее купить заводской инвертор, а если решили собрать - то делайте полноразмерный инвертор и не скупитесь на охлаждении.

Схема инвертора

Данный сварочный инвертор — это однотактный прямоходовый преобразователь построенный на ШИМ контроллере UC3844. Выход микросхемы через драйвер управляет IGBT транзистором. Схема снабжена плавным пуском, защитой по перегреву. Обратная связь по току реализована через токовый трансформатор.

Инвертор собран на трёх платах:

  1. все силовые компоненты, трансформатор, дроссель, выпрямители, силовой транзистор и входная цепь размещены на материнской плате;
  2. схема управления;
  3. дежурный источник питания.

Простой миниатюрный сварочный инвертор, внешний вид собранной платы
Простой миниатюрный сварочный инвертор, внешний вид собранной платы

Схема управления

Больше половины компонентов, которые есть на схеме находятся на этой компактной печатной плате

Простой миниатюрный сварочный инвертор, собранная плата управления
Простой миниатюрный сварочный инвертор, собранная плата управления

В авторской версии вся схема собрана на одной плате, в моем же случае чтобы аппарат был максимально компактным управление перенес на отдельную плату. Она получилась очень компактная, меньше сделать крайне трудно если использовать выводные компоненты, а не смд. Монтаж очень плотный, на плате всего одна перемычка.

После сборки плата была проверена. На вход стабилизатора или диода подается напряжение около 30 вольт. База и эмиттер транзистора VT1 замыкаем между собой имитируя замкнутый термовыключатель, иначе сработает защита по перегреву и реле замкнет регулятор тока и как следствие микросхема перестанет вырабатывать последовательность импульсов. К выходу драйвера подключаем щуп осцилографа и наблюдаем красивый меандр с частотой порядка 30 кГц и заполнением около 44-х процентов. Проверяем защиту, убрав ранее установленную перемычку. Должно сработать реле, засветиться красный светодиод и заблокироваться работа микросхемы ШИМ. Плата управления готова, в дополнительной наладке эта часть не нуждается, если все собрано правильно, компоненты исправны и нет соплей на плате.

Исходная схема работает на частоте в 30 кГц, изначально хотел поднять ее, а также изменением соотношения количества витков обмоток снять с сердечника большую мощность, но конечные расчеты показали, что с сердечника даже при 30-и килогерцах спокойно можно взять мощность около 2-2,2кВт, а это где-то 80-90 Ампер тока, если учитывать просадку напряжения при сварке, примерно до 24-х вольт.

С учетом этого аппарат без проблем справляется с электродами в 3мм, но в моем агрегате для страховки максимальный ток ограничен на уровне 80 Ампер.

Силовой трансформатор

Так как сварочный аппарат планировался на небольшой выходной ток в районе 80 ампер, трансформатор покажется маленьким, но его хватает, хотя и работает он почти на пределе своих возможностей.

Схема однотактная и между половинками сердечника нужен немагнитный зазор 0,1-0,2мм, такой зазор без проблем можно сделать если использовать сердечник из двух половинок, например Ш-образный. Но проблема заключалась в том, что у меня в наличии не было такого сердечника с необходимой габаритной мощностью, единственные более менее хорошие сердечники были колцевого типа размером 47х26,5х15,5мм. Такой сердечник отлично будет работать в двухтактной схеме, в однотактной же нужен зазор.

Сначала делаем разметки, затем пилим сердечник, не полностью, пол миллиметра сполна хватит.

Простой миниатюрный сварочный инвертор, сердечник силового трансформатора
Простой миниатюрный сварочный инвертор, разрезанный сердечник

Далее устанавливаем сердечник на деревянные бруски примерно так, как это показано, по центру на месте пропила ставим металлический прут и аккуратно, но сильно бьем по нему молотком. В итоге получаем две ровные половинки. Далее берем чек от банкомата, нарезаем две полоски и приклеиваем на одну из половинок с помощью суперклея, клея много не надо.

Простой миниатюрный сварочный инвертор, половинки сердечника
Простой миниатюрный сварочный инвертор, чек

Стягиваем половинки сердечника например каптоновым скотчем. В целом данный сердечник имеет изоляцию в виде краски, но дополнительная изоляция не будет лишней.

Простой миниатюрный сварочный инвертор, сердечник готовый к намотке обмоток
Простой миниатюрный сварочный инвертор, сердечник готовый к намотке обмоток

После мотаем первичную обмотку, в моем случае для намотки использован провод 1,2мм, расчет производился по программе, естественно в случае иных сердечников получим иные намоточные данные, поэтому количество витков указывать не вижу смысла. В данной схеме очень важно солблюдать начало намотки, на схеме они указаны точками, поэтому после намотки каждой из обмоток начала намотки желательно промаркировать.

Простой миниатюрный сварочный инвертор, первичная обмотка на силовом трансформаторе
Простой миниатюрный сварочный инвертор, первичная обмотка на силовом трансформаторе

Простой миниатюрный сварочный инвертор, первичная обмотка на силовом трансформаторе
Простой миниатюрный сварочный инвертор, первичная обмотка на силовом трансформаторе

Витки равномерно растянуты по всему кольцу, после намотки ставим изоляцию и мотаем фиксирующую обмотку.

Простой миниатюрный сварочный инвертор, слой изоляции на силовом трансформаторе
Простой миниатюрный сварочный инвертор, слой изоляции на силовом трансформаторе

Количество витков тоже самое, что и в случае первичной обмотки, но провод естественно тоньше, я использовал провод 0,3мм.

Простой миниатюрный сварочный инвертор, фиксирующая обмотка силового трансформатора
Простой миниатюрный сварочный инвертор, фиксирующая обмотка силового трансформатора

Мотать нужно так, чтобы витки фиксирующей обмотки находились между витками первичной обмотки.

После намотки фиксирующей обмотки опять ставим изоляцию и мотаем вторичную обмотку из 80 параллельных жил проводом 0,22мм. Жгут дополнительно изолирован каптоновым скотчем.

Простой миниатюрный сварочный инвертор, вторичная обмотка силового трансформатора
Простой миниатюрный сварочный инвертор, вторичная обмотка силового трансформатора

Трансформатор тока намотан на небольшом кольцевом ферритовом магнитопроводе, проницаемость сердечника 2400.

Простой миниатюрный сварочный инвертор, сердечник токового трансформатора
Простой миниатюрный сварочный инвертор, сердечник токового трансформатора

Сначала сердечник был изолирован каптоновым скотчем, затем намотана вторичная обмотка. Количество витков около 80, для намотки был использован провод с диаметром 0,24мм. Обмотка равномерно растянута по всему кольцу. Вторичная обмотка один виток двойным проводом по 1,2мм.

Для выходного дросселя в качестве сердечника взят тор размером 38,8х21х11,4 мм из порошкового железа. Кольцо имеет зелено синий окрас, специально предназначено для работы в качестве выходного дросселя.

Простой миниатюрный сварочный инвертор, сердечник выходного дросселя

Для намотки был использован жгут из 80 жил изолированных друг от друга проводов с диаметром 0,22мм каждая жила, то есть точно тоже самое, что и в случае вторичной обмотки трансформатора.

Простой миниатюрный сварочный инвертор, выходной дроссель
Простой миниатюрный сварочный инвертор, выходной дроссель

Индуктивность дросселя получилась около 35 микрогенри и этого мало, желательно индуктивность сделать в районе от 80 до 120 мкГн.

Простой миниатюрный сварочный инвертор, индуктивность выходного дросселя

Выводы обмотки дросселя были очищены от лака, залужены.

Несколько слов о комплектующих

Простой миниатюрный сварочный инвертор, электролитический конденсатор 470мкФ 450В

Реле в схеме плавного пуска полноразмерное 30-и амперное, как у больших инверторов, хотя плату изначально разрабатывал для установки более компактного реле.

Простой миниатюрный сварочный инвертор, реле SLA-24VDC-SL-A 30A

Силовой IGBT транзистор, диоды в высоковольтной цепи преобразователя те, что по схеме, никаких отклонений.

Простой миниатюрный сварочный инвертор, IRG4PC50KD

В выходном выпрямителе использованы быстродействующие диодные сборки STTH6003. В одной такой сборке 2 диода с током в 30 ампер, катод общий, аноды также включены параллельно, в итоге получаем аналог 60-и амперного диода, обратное напряжение сборки 300 вольт.

Простой миниатюрный сварочный инвертор, STTH6003

Сборки установлены на общий радиатор, подложки не изолированы, т.к. катоды общие, выходной плюс снимается с радиатора.

Простой миниатюрный сварочный инвертор, KBJ2510

Резистор в цепи плавного пуска на 5-10 ватт, сопротивление 10-30 Ом.

Дежурный блок питания

Это готовый источник питания универсального типа, который куплен на али и предназначен для работы в индукционных плитах в качестве дежурки, мощностью около 7 ватт.

Простой миниатюрный сварочный инвертор, дежурный блок питания
Простой миниатюрный сварочный инвертор, дежурный блок питания

Он выдает три напряжения: 5 вольт, 12 вольт и 18 вольт. Выходные напряжения задаются стабилитроном на 18 вольт. Этот стабилитрон я заменил на 24-х вольтовый, выкинул цепь 5 вольт, заменил некоторые конденсаторы на выходе на более высоковольтные и в итоге дежурка стала выдавать два напряжения: 15 вольт и 24 вольта.

Первое напряжение нужно для питания вентилятора, он у меня на 12 вольт, второе напряжение питает управление и реле. Такая дежурка имеет плавный пуск, защиту от коротких замыканий, построена всего на одной микросхеме.

Радиаторы охлаждения взяты от компьютерных блоков питания, с учетом наличия активного охлаждения и максимального тока сварки их хватает.

Простой миниатюрный сварочный инвертор, радиатор

После сборки аппарат заработал сразу, без каких-либо отклонений. Первый запуск делался через страховочную лампу на 100 ватт, на осциллографе форма импульсов на всех обмотках правильная, напряжение холостого хода около 60Вольт.

Проверяем работу системы ограничения тока. Для начала ставим регулятор тока на минимум, цепляемся осциллографом на затвор силового транзистора и делаем короткое замыкание на выходе, видим, что длительность управляющих импульсов резко уменьшается, ток ограничивается, если этого не происходит, меняем местами начало и конец вторичной обмотки токового трансформатора.

Силовые дорожки на печатной плате дополнительно армированы медными лентами.

Простой миниатюрный сварочный инвертор, армированы медными лентами силовые дорожки

Выходные клеммы от мощного преобразователя 12-220 Вольт.

Простой миниатюрный сварочный инвертор, выходные клеммы
Простой миниатюрный сварочный инвертор, выходные клеммы

Для надёжности трансформаторы, дроссель и пара вертикальных плат были дополнительно приклеены к материнской плате с помощью эпоксидной смолы.

Простой миниатюрный сварочный инвертор, внешний вид собранной платы
Простой миниатюрный сварочный инвертор, внешний вид собранной платы

Простой миниатюрный сварочный инвертор, внешний вид собранной платы
Простой миниатюрный сварочный инвертор, внешний вид собранной платы

На балласте инвертор выдал честные 80 ампер, минимальный ток сделал в районе 20 ампер, при этом имеем уверенный розжиг дуги. Благодаря малому значению минимального тока можно сваривать даже тонкую жесть.

Читайте также: