Супермаховик своими руками

Добавил пользователь Алексей Ф.
Обновлено: 07.10.2024

Солнечная электростанция Solana.

Солнечная электростанция Solana.

Solana изнутри: солевая грелка плюс водяной пар.

Solana изнутри: солевая грелка плюс водяной пар.

171013-3

Прорабатывая идею, он пришёл к мысли навивать маховик из графитового волокна (не забывайте, что фуллерены тогда только получили, а о графене и речи не шло), а то и более экзотических материалов вроде азота. Но даже 20-килограммовый супермаховик из углеродных волокон, технически возможный уже тогда, тридцать лет назад, был способен запасти энергию, достаточную для передвижения легкового автомобиля на 500 километров, со средней стоимостью стокилометрового броска в 60 американских центов.

Углеволоконный супермаховик.

Углеволоконный супермаховик.

В случае с супермаховиками нет смысла возиться со сравнительными оценками — будь то запасаемая на единицу массы энергия или эксплуатационные характеристики: теоретически они превосходят все имеющиеся альтернативные решения. И области применения напрашивались сами собой. Помещённый в вакуум, на магнитной подвеске, с КПД выше 90%, выдерживающий невообразимое число циклов заряда-разряда, способный работать в широчайших диапазонах температур, супермаховик способен вращаться годами и обещал фантастические вещи: автомобиль от одной зарядки мог бы бегать тысячи километров, а то и весь срок службы, электростанция с упрятанным в фундамент многосотметровым супермаховиком запасала бы энергию, достаточную для освещения всей Земли, и так далее, и так далее. Но вот вопрос: прошло тридцать лет, почему мы же не видим супермаховиков вокруг себя?

Сказать по правде, я не знаю ответа. Технические сложности? Да, и конструкция супермаховика, и плавный отбор энергии — задачи с большой буквы, но они вроде бы решены. Время от времени слышно о мелких, узконишевых применениях. Но именно там, где на него возлагались главные надежды — в энергетике и автомобилестроении — супермаховик массового применения не нашёл. Пару лет назад американская компания Beacon Power ввела в строй небольшую супермаховичную энергоаккумулирующую станцию под Нью-Йорком, но сегодня о проекте ничего не слышно, а сама компания перебивается с хлеба на воду.

P. S. Я попросил Нурбея Владимировича поучаствовать в дискуссии (хоть надежда, сами понимаете, слабая: на личном сайте его натурально одолевают поклонники).

МАХОМОБИЛЬ ФАНТАЗИЯ? РЕАЛЬНОСТЬ!

Небольшой коллектив энтузиастов — ученые и инженеры кафедры теоретической механики Курского политехнического института — работает над созданием необычного двигателя, действующего без горючего и электричества: их заменит… маховик. Об этих интересных поисках мы попросили рассказать руководителя группы доктора технических наук, профессора Нурбея Владимировича Гулиа, заведующего кафедрой теоретической механики института.

О нем сегодня говорят все чаще и чаще, называя одним из самых перспективных двигателей для автомобилей. Речь идет о маховике или супермаховике, который, будучи раскрученным, может потом длительное время служить приводом для различных машин. Надежды, возлагаемые на него, станут понятны, если вспомнить требования, предъявляемые к транспорту будущего: он должен быть экономичным, безвредным, бесшумным. Он не должен сжигать горючее, выделять ядовитые выхлопные газы, переводить в тепло и выбрасывать в воздух большую часть вырабатываемой энергии«

Идеальным в этом смысле мотором мог бы считаться такой, который способен запасать энергию от дешевого стационарного источника — например,- от электросети, — а затем с высоким КПД отдавать ее для движения автомобиля. То есть двигатель, служащий одновременно и аккумулятором энергии.

Однако единственным реальным типом аккумулятора для привода автомобиля до сих пор считался электрохимический — та самая батарея, что уже стоит на автомобиле. Обоймы их в сочетании с электродвигателем широко используются для создания машин,

А что же маховик? Может быть, про него не знали? История показывает, что попытки его использования велись еще в далеком прошлом.

1883 год. Американский адмирал Хауэлл создает маховичную самодвижущуюся торпеду, способную преодолевать расстояние более километра. Эта торпеда еще раз показала высокие энергетические возможности маховика для движения транспортных средств, в том числе и водных.

Проволочные супермаховики, полученные методом намотки на диски из органического стекла.

Проволочные супермаховики, полученные методом намотки на диски из органического стекла.

1909 год. Появляются маховичные однорельсовые двухколесные экипажи П. Шиловского, Л. Бреннана, А. Шерля. Здесь маховик использовался для сохранения равновесия машины (гироскопический эффект).

1918 год. Известный русский изобретатель-самоучка А. Г. Уфимцев создает инерционный аккумулятор с электроприводом и маховиком в виде диска. Он мечтает о широком его применении и, в частности, предлагает использовать инерционный аккумулятор для приведения в движение трамвая.

И наконец, наши дни можно назвать периодом второго рождения маховика. Практически одновременно у нас в стране, в Курском политехническом институте, и в США начала разрабатываться идея супормаховика из сверхпрочных нитевидных материалов. Создается научная теория таких маховиков, без которой немыслимы сколь-нибудь серьезные ‘работы, строятся первые опытные образцы.

Чем же объяснить, кроме явной безвредности для окружающей среды, возросшее внимание к маховику и стремительное нарастание поисков и экспериментов в этом направлении? Ответ на столь непростой вопрос может дать сравнение маховичного двигателя с другими, и в первую очередь с электроаккумуляторными, по их основным параметрам, Главный из них — удельная энергия, то есть сколько ее может быть накоплено в каждом килограмме массы аккумулятора. Обычный кислотный аккумулятор, который сейчас используется на электроавтомобилях, способен накопить около 0,1—0,15 мегаджоуля (МДж) энергии на каждый килограмм своей массы. Для самых сложных, но перспективных батарей, где электролит уже не кислота, а расплавленные щелочные металлы (литий или натрий), реагирующие при температуре 600—800° с серой или хлором (поистине картина, достойная дантова ада!), этот показатель может достигнуть 1 МДж на килограмм.

Примерно таков же он у обычного карбюраторного автомобильного двигателя с бензобаком, рассчитанным на пробег 400 км. Иными словами, если заменить бензиновый мотор электрическим с самыми перспективными электроаккумуляторами, то в лучшем случае ни масса автомобиля, ни его пробег не изменятся.

А как же обстоит дело с маховиками?

Доказано, что ори заданной форме маховика (например, в виде массивного обода) его удельная энергия зависит только от удельной прочности материала (отношение прочности к удельному весу или плотности). Действительно, чем прочнее материал и чем он легче, тем быстрее можно раскрутить маховик из такого материала, не опасаясь, что он будет разорван центробежными сипами. А чем выше скорость вращения маховика, тем больше (причем в квадратной зависимости!) запасенная им кинетическая энергия. Как это ни парадоксально, легкий маховик выгоднее тяжелого, алюминиевый выгоднее свинцового!

Маховик из обычной стали приближается по удельной энергии к кислотным аккумуляторам. Но известно, что стальная проволока в 10 раз прочнее того слитка, из которого ее сделали. Стало быть, если можно было бы изготовить маховик из проволоки, то его удельная энергия сразу приблизилась бы к этому показателе для самых перспективных электроаккумуляторов.

Возьмем еще один важный показатель для сравнения — удельную мощность, то есть мощность, приходящуюся на каждый килограмм массы двигателя. От его величины, например, зависит, сможет ли автомобиль быстро разогнаться, преодолеть подъем или совершить обгон, Для движения хорошей скоростью также нужен двигатель с большой удельной мощностью.

По этому показателю не только супер-, но и самым простым маховикам нет равных. Всем известно, что разогнанный маховик, если попытаться его быстро затормозить, скорее сломает вал, чем остановится. Развиваемая мощность, а стало быть, высокая скорость, хорошая приемистость машины теоретически безграничны, а практически могут в сотни и тысячи раз больше, чем у электроаккумуляторов.

С этим сочетаются такие плюсы, как быстрая, в считанные минуты, зарядка маховика.

А как сроки сохранения энергии? Почему-то думают, что, как бы ни был раскручен маховик, он все же быстро останавливается. Конечно, на воздухе из-за аэродинамических потерь даже супермаховик остановится в считанные часы. Ну а если в корпусе маховика создать вакуум? Да к тому же применить магнитные подшипники? Такой маховик будет вращаться недели и месяцы, а в идеальных условиях — годы. Ведь Земля — огромный космический волчок — тоже своего рода маховик в вакуумном окружении, И вращается-то она, как мы обычно говорим, вечно.

МАХОМОБИЛЬ ФАНТАЗИЯ? РЕАЛЬНОСТЬ!

Следующий сравнительный фактор — экономичность. И здесь маховик самый выгодный: и как аккумулятор Энергии, и как двигатель. Потребляет он дешевую электроэнергию; КПД самого маховика в вакууме близок к 100%. кроме того, он может восстанавливать энергию (скажем, на спусках). Это ценное свойство — рекуперация энергии — сохраняет около половины всей энергии и ставит маховик По экономичности значительно выше любого другого аккумулятора.

Свои преимущества у маховика и в долговечности, надежности. Подсчитано, что долговечность у него в шесть раз выше, чем у двигателя внутреннего сгорания, и значительно выше ресурса аккумулятора. Действительно, что маховику Сделается, особенно если он в вакуумной камере? Разве только иногда придется менять подшипники. А если они магнитные, то и этих забот не будет.

Если же говорить об экологической безвредности, то маховик — самый гигиеничный двигатель. Он ничего не выделяет в окружающую среду. В то же время публикации в печати о вреде выхлопных газов двигателей внутреннего сгорания для человека и окружающей среды носят уже массовый характер,

Оказывается, разрыв маховика и супермаховика совсем не одно и то же. Если при разрушении монолитного маховика действительно образуются опасные осколки, то супермаховик в этом отношении совершенно безопасен: куски проволок или волокон не могут пробить даже тонкого кожуха. Более того, супермаховики чаще всего не разрываются полностью. Разрушаются только внешние их витки и трением о корпус автоматически останавливают вращающуюся массу, Множество экспериментов подтверждает это.

Предвижу иронические реплики: почему же не останавливают выпуск двигателей внутреннего сгорания или электроаккумуляторов и не переходят на выпуск супермаховиков?

Электроаккумуляторы же вряд ли придется заменять маховиками, особенно в таких условиях работы машины, которые связаны с длительными простоями. К тому же симбиоз маховика и электроаккумулятора может оказаться в ряде случаев экономичнее, чем отдельно маховик или электроаккумулятор.

Сегодня же маховичные двигатели уверенно делают свои первые шаги. У некогда единственной в стране небольшой группы энтузиастов, всерьез занявшихся маховиками, растет число последователей и приверженцев. Немалый вклад в работу над супермаховиками вносят студенты кафедры теоретической механики Курского политехнического института. Очень плодотворно трудятся Олег Федосеев — наш теоретик, Иосиф Юдовский — изобретатель и конструктор, Станислав Слепухов — бессменный испытатель экспериментальных машин и опытных маховичных установок.

Сегодня уже проходит опробование в производственных условиях самосвал с таким двигателем. Аналогичную работу выполняем мы для алюминиевого завода в городе Братске и ряда других предприятий страны. Получено заданна на разработку маховичного самосвала-бетоновоза для Саяно-Шушенской ГЭС.

Большую помощь в создании маховичных средств транспорта могут оказать науке молодые конструкторы, моделисты, юные техники, для которых в этой области непочатый край увлекательных поисков и технического творчества. В том числе и в создании микромашин — скажем, для автогородков, конкурс на разработку транспорта для которых проводит журнал. Как пример доступных для юных техников конструкций мы приводим здесь описание построенного у нас маховичного микроавтомобиля.




Решение проблемы создания емкого, легкого, компактного аккумулятора можно назвать одной из самых востребованных задач в современном мире. И мнение профессора, изобретателя, доктора технических наук Нурбея Гулиа заметно отличается от общепринятого – не химические, электрические, термические, а механические накопители – вот за чем настоящее будущее!

Нурбей Гулиа
.

Нурбей Гулиа и один из его супермаховиков

Гибридный автомобиль Гулиа. Передние колеса имели привод от ДВС, а задние от вариатора и маховика

Первые испытания супермаховика Гулиа показали, что даже первая не самая совершенная конструкция, способна обогнать по плотности энергии свинцово-кислотные аккумуляторы при достаточной безопасности: разрыв ленты наступал при разгоне обода до 500 м/с (плотность составляла 100 кДж/кг). Тогда же было выдвинуто предложение использовать его на автомобиле и разработан первый гибрид на базе УАЗ-450Д.
.

Такими установками занимается, например, Beacon Power, где разработаны большие стационарные супермаховики. От модели зависит запасаемая энергия (от 6 до 25 кВт⋅ч) и мощность (от 2до 200 кВт). КПД, как уже говорилось – 98%. Нурбей Гулиа так же не стоит на месте: под его руководством российская компания Kinetic Power разрабатывает свой стационарный накопитель кинетической энергии на базе супермаховика, который может запасти до 100 кВт⋅ч и обеспечить до 300 кВт.
.

Сегодня супермаховик - это барабан из композитных материалов помещенный в кожух, где создается вакуум для уменьшения трения. В теории такое устройство может хранить до 500 Втч (1,8 МДж) на кг массы. Использование современных материалов способно творить чудеса: навитый не из стали, а из углеволокна, маховик повышает энергоемкость в двадцать раз, а если научиться применять алмазное волокно, то энергоемкость составит 15 МДж/кг!
.

Нанотехнологии еще больше увеличивают возможности сумпермаховиков, ведь теоретически дают возможность достичь фантастической плотности энергии: до 2500−3500 МДж/кг. Представьте, на минутку, – на одной раскрутке 150-кг супермаховика, обычный легковой автомобиль будет способен проезжать два миллиона километров.
.

Технологии супермаховика, по совершенно непонятной причине так и не могут заинтересовать крупных инвесторов. Нурбей Гулиа по-прежнему работает над улучшением своего изобретения, разрабатывает возможность изготовления графенового супермаховика (энергоемкость составит 1,2 кВт*ч/кг).
.

Видео с сайта проекта Beacon Power

Сегодня ученые со всего мира безуспешно пытаются создать недорогой, легкий, компактный и невероятно емкий аккумулятор. А между тем такой накопитель энергии уже существует.

Диски высокой энергии: маховичный накопитель

Мир электроники и электричества наступает! Милые поклонникам механики устройства все чаще уступают место машинам с электромоторами и электронными схемами. Однако мир будущего станет более механическим! Так считает профессор Нурбей Гулиа. За последние десятилетия механические накопители энергии заметно прибавили в энергоемкости, и именно их, по мнению ученого, будут использовать во многих устройствах вместо привычных электрохимических аккумуляторов.

Пружина, резина, конденсатор.

Супермаховик

В качестве накопителей энергии маховики применяют уже несколько столетий, однако качественный скачок в области их энергоемкости произошел только в 1960-е году, когда были созданы первые супермаховики. 1. Супермаховик в работе Супермаховик выглядит, как обычный, но внешняя его часть свита из прочной стальной ленты. Витки ленты обычно склеены между собой. 2. Супермаховик после разрыва Если разрыв обычного маховика разрушителен, то в случае супермаховика лента прижимается к корпусу и автоматически затормаживает накопитель - все совершенно безопасно.

Маховики на транспорте

Маховики на транспорте можно использовать как в качестве аккумуляторов энергии, так и в виде гироскопов. На фотографии изображен маховичный концепт-кар Ford Gyron (1961), а впервые гиро-кар был построен в 1914 году русским инженером Петром Шиловским.

Маховик на миллион

Маховик

Сегодня благодаря высокой энергоемкости супермаховики применяют во многих областях - от применения в спутниках связи в качестве аккумулятора энергии до использования в электростанциях для повышения их КПД. На схеме изображен маховичный накопитель, который применяют на американских электростанциях для повышения их КПД. Потери энергии в супермаховиках составляют всего 2% - это достигается, в том числе, за счет того, что он вращается в вакуумном кожухе на магнитных подшипниках.

Ученый принялся за работу: сначала поэкспериментировал с тросом, скатав из него маховик, а потом заменил проволочки тонкой стальной лентой такой же прочности — ее намотка была плотнее, а для надежности можно было склеить витки ленты между собой. Разрыв такого маховика уже не представлял опасности: при превышении предельной скорости первой должна была оторваться наиболее нагруженная внешняя лента. Она прижимается к корпусу и автоматически затормаживает маховик — никаких несчастных случаев, а оторванную ленту можно приклеить снова.

Первое испытание, когда ленточный маховик Гулиа раскручивался от скоростного электромотора пылесоса, прошло успешно. Маховик вышел на максимальную частоту вращения без разрыва. А затем, когда ученому удалось испытать этот маховик на специальном разгонном стенде, выяснилось, что разрыв наступал только при скорости обода почти 500 м/c или плотности энергии около 100 кДж/кг. Изобретение Гулиа в несколько раз превзошло по плотности энергии самые передовые на то время маховики и оставило позади свинцово-кислотные аккумуляторы.

Первый в мире гибридный автомобиль

Это возможно первый в мире гибридный автомобиль. Его передние колеса приводились от ДВС, тогда как задние от вариатора и маховика. Такой опытный образец оказался вдвое экономичней, чем УАЗ-450Д.

В мае 1964 года Гулиа первым в мире подал заявку на изобретение супермаховика, но из-за бюрократизма советской патентной системы получил необходимый документ только через 20 лет, когда срок его действия уже истек. Но приоритет изобретения за СССР сохранился. Жил бы ученый на Западе — давно бы стал мультимиллионером.

Через какое-то время после Гулиа супермаховик изобрели и на Западе, и спустя годы ему находят множество применений. В разных странах разрабатываются проекты маховичных машин. Американские специалисты создают беспилотный вертолет, в котором вместо двигателя используют супермаховики. Отправляют супермаховики и в космос. Там для них особенно благоприятная среда: в космическом вакууме нет аэродинамического сопротивления, а невесомость устраняет нагрузки на подшипники. Поэтому на некоторых спутниках связи применяются супермаховичные накопители — они долговечнее электрохимических аккумуляторов и могут долгое время снабжать аппаратуру спутника энергией. Недавно в США стали рассматривать возможность применения супермаховиков в качестве источников бесперебойного питания для зданий. Там уже работают электростанции, которые во время пика потребления энергии увеличивают мощность за счет маховичных накопителей, а при спаде, обычно в ночное время, направляют избытки энергии на раскручивание маховиков. В итоге у электростанции значительно повышается КПД работы. Кроме того, потери энергии в супермаховиках составляют всего 2% — это меньше, чем у любых других накопителей энергии.

Читайте также: