Стабилизатор напряжения для усилителя своими руками

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

Стабилизированное питание УМЗЧ

Про стабилизированное питание выходного каскада здесь была ветка с месяц назад - общий смысл, что нужно стабилизировать питание вых.каскада, когда нет общей оос. А входные каскады лучше всегда стабилизировать, да это и не представляет особых сложностей.

[ADDED=Olegyurich]1111227615[/ADDED]
Да и про стабилизированные БП было несколько веток.

Это дело (стабилизация) нужное, но неблагодарное. Например, мостовые (да и не только) микросхемки - в даташите указываются параметры при стабилизированном питании, а когда к плохому источнику подключают, удивляются, почему неискаженная мщность 3 Вт, а не 18.
Однако цена, габариты и КПД такого блока растут здОрово, поэтому стабилизаторы мало кто ставит, пытаются схемотехникой обойти.
ИМХО (как разработчика) - стабилизаторы ставим на действительно высококачественную систему, а в просто хороших не экономим на конденсаторах фильтра (емкость, количество, размещение, шунтирование керамикой).

Тут еще мнения были, стабилизатор, по сути, тот же усилитель (усиливает опорное напряжение ) поэтому если решено его использовать - его качество должно быть как минимум не хуже качества запитываемого им девайса.

Есть и более простой и экономичный способ запитки выходного каскада для усей без ООС, транзисторный фильтр - пульсации недофильтрованные уберет, но напруга будет все равно будет плавать.

Разумеется, интересует прежде всего стаб. питание выходного каскада. По входным вопросов нет.

В том-то и парадокс, что стабилизатор на 5-7А сделать несложно, да и по стоимости он в некоторых случаях оказывается дешевле, чем куча сглаживающих емкостей. Все мои эксперименты в этой области однозначно говорят в пользу стабилизаторов. Но почему-то повсеместно преобладает нестабилизированное питание. Вот и хотелось бы узнать, может, есть какие-то глубинные, не лежащие на поверхности, аргументы против стабилизации.
Почему, например, даже очень именитые фирмы питают выходные каскады своих High-End УМЗЧ непосредственно с выпрямителей?

С другой стороны, наверняка есть отработанные и эффективные решения стабилизаторов на напряжение 30…50 Вольт с различными варантами защит, и т.п. Было бы интересно с ними ознакомиться.

Если нетрудно, ссылочку-другую бы, плиз, на ветки с обсуждением данной темы.

Эти слова наиболее точно обьясняют то, почему именитые
фирмы не применяют стабилизаторы для оконечных У.М.

Ведь стабилизатор это система авторегулирования с характеристиками по току и быстродейсвию подчас
превышающими само запитываемое устройство.

Со своей А.Ч.Х и Ф.ЧХ и это всё вплетается в А.Ч.Х самого У.М.Н.Ч.

Вот поэтому создание хорошего стабилизатора для хорошего У.С.
становится достаточно недешовой проблемой.
И технически непростой задачей.

А плохой стабилизатор только ухудшит характеристики самого У.С.

Самое простое решение это энергоёмкий фильтр состоящий
из быстродействующих диодов, электролитов зашунтированных
высокочастотной керамикой или пластиком.

Надо помнить что Усилитель звучит так как позволяет ему
блок питания.

Получается, что без стабилизатора лучше, чем с ним?
Значит, если на входе усила (по питанию) скачки напряжения нестабилизированного БП 30В - это высокий конец, а если 0.03 - это ширпотреб?
Кто мешает улучшить бп, просто подняв напряжение транса, потом установить кондеры (меньше, т.к. напруга возросла), потом обычный параметрический стаб, а в конце, на самой плате, еще кондеры небольшой емкости, которые будут уменьшать внутреннее сопротивление бп почти до нуля. В итоге имеем тот же принцип, что и в нестабилизированном но пульсации на 2-3 порядка меньше! Кроме того, это позволяет знчительно снизить емкость сглаживающих конденсаторов, т.к. она должна быть обратно пропорциональна квадрату напряжения, при том же уровне пульсаций. Тоесть поднять напругу в 2 раза и кондеры можно ставить в четыре раза меньшей емкости. А на самом деле еще на много меньше, т.к. допустимый уровень пульсаций (до параметрического стабилизатора) увеличивается в несколько раз. В сумме можно сократить емкости кондеров на порядок (ставить, допустим не по 2х20000, а по 2х2000 на канал). Особенно это подойдет для интегральных усилителей, т.к. у них допустимое напряжение питания жестко ограничено, к тому же приходится делать запас - на случай скачков в сети. У усей на дискретных элементах тоже этот параметр не бесконечный и приходится выбирать: транзистор с лучшими характеристиками или с большим Uec.

тороидальные трансформаторы

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Мне оставалось только рассчитать напряжении и количества витков для вторичных обмоток с последующей их намоткой.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Размеры железного сердечника для тороидального трансформатора

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2 ) * Площадь сечения (см 2 )
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Челнок для намотки тороидального трансформатора

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

схема источника питания для самодельного усилителя мощности НЧ

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L78012, LM317

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 22В - схемы задержки включения и защиты акустических систем
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности, схемы термоконтроля, вентиляторы, подсветка;
  • 14В - электронные регуляторы тембра.
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Одна половинка платы источника питания

Рис. 4. Одна половинка платы источника питания.

Другая половинка платы источника питания

Рис. 5. Другая половинка платы источника питания.

Готовые компоненты блока питания для самодельного усилителя мощности

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Самодельный резак из ножовочного полотна, изготовленный на точильном станке

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD: Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Печатная плата стабилизаторов напряжения на +22В и +12В

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Схема стабилизатора напряжения

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

Схема стабилизатора напряжения

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Схема стабилизатора напряжения

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

Схема стабилизатора напряжения

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

Схема стабилизатора напряжения

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

Схема стабилизатора напряжения

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

Типовая схема блока питания приведена в статье Блок питания усилителя и показана на рис. 1. Это отличный блок питания, реализованный в подобном виде в огромном количестве устройств. Трансформатор разделяет его на две части: слева от трансформатора находится высоковольтная часть, подключаемая в сеть переменного тока, а справа – низковольтная часть, подключаемая к усилителю.

блок питания усилителя

Рис. 1. Схема блока питания усилителя.

Высоковольтная часть блока питания должна обязательно содержать предохранитель и выключатель питания. Крайне желательно также использовать сетевой фильтр. Обычно применение помехоподавляющего конденсатора даёт достаточно хорошие результаты. Более того, я очень рекомендую его применять.

О хороших сетевых фильтрах поговорим в другой раз. А сейчас обойдёмся одним помехоподавляющим конденсатором, которого обычно вполне достаточно.

Поэтому займёмся той частью, которая находится справа от трансформатора – низковольтной. Работа этой части является более важной.

К левым контактам (~, Gnd, ~) подключается трансформатор, с правых контактов (+, Gnd, -) постоянное напряжение питания подаётся на усилитель.

Диоды VD1-VD4 образуют выпрямитель. Почему именно такой – это самый лучший, я уже об этом писал. В выпрямителе используются диоды Шоттки. Не потому, что они более волшебные. И даже не потому, что они более быстрые. А потому что:

Кстати, чем более быстрые диоды используются в выпрямителе, тем больше шансов возникновения ударной осцилляции, которую приходится подавлять снабберами.

Каждый из диодов зашунтирован конденсатором (С3…С6). Эти конденсаторы также как и снабберы снижают помехи коммутации, но уже каждого диода по отдельности. Интересно, что шунтирующие конденсаторы образуют мост, рис. 3. Трансформатор включается в одну диагональ этого моста, а нагрузка – в другую. Поэтому при идеальном балансе моста высокочастотные помехи, поступающие из сети через трансформатор, в нагрузку не попадают. Для этого конденсаторы должны иметь одинаковую ёмкость. Но подбирать их по ёмкости нет необходимости. Достаточно использовать конденсаторы одинакового номинала. Дело в том, что эта их функция вторична: помехи в сети должны подавляться ещё до трансформатора, поэтому небольшой разбаланс моста, вызванный разбросом ёмкостей конденсаторов, совершенно не страшен. Да и разбаланс моста будет небольшим, так что помехи будут подавляться достаточно хорошо.

мост из конденсаторов

Рис. 3. Мост из шунтирующих конденсаторов.

Электролитические конденсаторы большой ёмкости С7…С12 запасают энергию и являются фильтром питания. Они заряжаются короткими импульсами тока, поступающими от выпрямителя, и отдают эту энергию усилителю в паузах, когда напряжение в сети переходит через ноль. Если рассмотреть их работу с другой стороны, то эти конденсаторы сглаживают пульсации напряжения питания. Главное то, что от этих конденсаторов усилитель получает энергию в течение 90% времени своей работы. Так что конденсаторы должны быть качественными. Но никаких волшебных свойств от этих конденсаторов не требуется. Гораздо важнее правильно их выбрать и подключить. Об этом смотрим ниже.

Плёночные конденсаторы С13, С14 помогают электролитическим конденсаторам работать на высоких частотах. Дело в том, что все конденсаторы имеют определённую максимальную рабочую частоту, выше которой их свойства заметно ухудшаются. А у электролитических конденсаторов эта максимальная рабочая частота находится в звуковом диапазоне. То есть, на высших звуковых частотах электролитические конденсаторы большой ёмкости работают недостаточно хорошо.

Конденсаторы

Типичная зависимость импеданса (модуля полного сопротивления) электролитического конденсатора ёмкостью 10000 мкФ от частоты показана на рисунке 4 (по данным компании Nichicon, красные точки на графике поставил я). Пунктирными прямыми линиями на графике показано поведение идеального конденсатора (линия Xc) и идеальной катушки индуктивности (линия XL).

Рис. 4. Зависимость импеданса (модуля полного сопротивления) электролитического конденсатора от частоты.

Так что конденсатор, характеристика которого показана на рисунке 4, хорошо работает на частотах примерно до 1 кГц, а на частоте 20 кГц он является практически резистором. На более высоких частотах он является индуктивностью. Конденсаторы с большей ёмкостью имеют ещё более низкую максимальную рабочую частоту.

На самом деле не всё так плохо, как кажется. Даже на этих высоких частотах конденсатор способен запасать и отдавать энергию. То есть, он работает и делает своё дело. Но вот то, что конденсатор проявляет свойства индуктивности, может вызвать неустойчивую работу усилителя. Иногда в усилителях возникают высокочастотные колебания (усилители самовозбуждаются) из-за индуктивного характера цепи питания. Поэтому параллельно электролитическим конденсаторам подключаются плёночные конденсаторы достаточно большой ёмкости. У них максимальная рабочая частота намного выше, и они сохраняют ёмкостный режим работы в звуковом и ультразвуковом диапазоне, компенсируя индуктивный характер электролитических конденсаторов.

Этот блок питания для усилителя содержит три пары электролитических конденсаторов. А сколько пар конденсаторов должно быть? При параллельном соединении ёмкости конденсаторов суммируются. Три конденсатора по 10000 мкФ, соединённые параллельно, имеют эквивалентную ёмкость, равную 30000 мкФ. Можно ли вместо трёх этих конденсаторов применить один конденсатор ёмкостью 30000 мкф? Можно! Почему же я так не сделал? Тут несколько причин:

  • конденсаторы большой ёмкости дефицитные и дорогие;
  • конденсаторы большой ёмкости имеют большие габариты, поэтому их не всегда удобно размещать в корпусе;
  • для наиболее эффективной работы конденсатора, его реальное физическое подключение (подключение, показанное на принципиальной схеме, является условным) должно быть правильным. Крупногабаритные конденсаторы обычно располагаются вне печатной платы, и подключаются проводами. В этом случае правильное подключение обеспечить сложнее, рис. 5. Да и сопротивление соединительных проводов будет больше.

Подключение конденсаторов

Рис. 5. Правильное подключение конденсаторов.

Сколько пар конденсаторов можно использовать? Обычно от одной до четырёх-пяти. Но чаще всего две-три. В этом случае конструкция блока питания получается наиболее удобной. Кстати, использование нескольких конденсаторов меньшей ёмкости вместо одного большого может оказаться удачным решением ещё и потому, что чем ёмкость конденсатора меньше, тем лучше у него высокочастотные свойства (см. рис. 4).

Массив конденсаторов

Встречается мнение, что если использовать массив конденсаторов – несколько десятков конденсаторов небольшой ёмкости, включённых параллельно, то в результате получится эквивалентный конденсатор с хорошими высокочастотными свойствами. Это не так. Индуктивность и активное сопротивление монтажа будут слишком велики, и уничтожат всю выгоду от такого решения. Это я показал в статье Массив конденсаторов – мифы и реальность. Есть ещё один вариант включения массива конденсаторов, я его обязательно рассмотрю чуть позже, и опубликую результаты.

Иногда в выходную цепь постоянного тока (параллельно конденсаторам фильтра) также подключают снабберы. Например, подобное решение есть в руководстве Application Note 1849 компании National Semiconductor. На самом деле в них тоже нет необходимости.

  1. Чтобы в этом месте схемы возникли высокочастотные колебания, должно произойти нечто фантастическое.
  2. Снабберы служат для отвода высокочастотной энергии. Когда к блоку питания подключён усилитель, он отбирает столько энергии, что никакие колебания и не возникнут.
  3. Электролитические конденсаторы имеют довольно большое внутреннее сопротивление (ESR), на котором эффективно рассеивается энергия этих возможных колебаний.

Итак, как необходимые, так и просто полезные конденсаторы в нашей схеме есть, от бесполезных мы отказались.

Другие узлы и соединение с корпусом

Резисторы R3 и R4 служат для полного разряда конденсаторов фильтра при выключении питания. Без них вполне можно обойтись. Необходимость разряда конденсаторов фильтра не является насущной, но есть некоторые причины, чтобы так поступать. Их описывать довольно долго, поэтому я воздержусь. Использование разрядных резисторов я рекомендую, хоть и не очень настойчиво, а вы, если не хотите, не используйте. Имейте в виду, что на холостом ходу, когда к блоку питания ничего не подключено, длительность полной разрядки конденсаторов фильтра (при номиналах элементов, указанных на схеме) составляет около одного часа.

Светодиоды используются в качестве индикаторов. Ток через светодиоды заранее выбран очень маленьким, и яркость их свечения невелика. Эти светодиоды устанавливаются не на переднюю панель усилителя для индикации питания, а на печатную плату блока питания. Их назначение – показать вам, что всё в порядке, всё работает. Но если хотите, эти светодиоды можно установить и на переднюю панель. Тогда ток через них следует увеличить, уменьшив сопротивления резисторов R5 и R6 примерно вдвое.

Резистор R7 соединяет землю схемы с корпусом усилителя.

Важно! Земля схемы должна соединяться с корпусом усилителя только в одной точке! Все другие элементы, соединённые с землёй схемы, должны быть изолированы от корпуса.

И вполне разумно, если эта точка находится в блоке питания. Но соединение производится не напрямую, а через резистор небольшого сопротивления. Гальваническая связь при этом сохраняется, а сам резистор выполняет функцию предохранителя. При коротком замыкании на корпус он:

  • ограничивает ток;
  • сгорает и прерывает короткое замыкание.

Если в вашей электрической сети есть настоящее качественное заземление, и розетки оборудованы третьим контактом, реально соединённым с землёй, то рекомендуется заземлить корпус усилителя, как показано на рис. 6. Оба резистора мощностью 0,125 Вт.

Заземление

Рис. 6. Заземление.

Но такое подключение можно делать, только если вы уверены в качестве заземления. Иначе оставляйте средний контакт сетевого разъёма никуда не подключённым.

Соединять корпус усилителя с другими сетевыми проводами кроме заземления нельзя!

Раздельное питание?

Так есть ли необходимость в раздельном питании стереоканалов усилителя? В принципе да. Ведь просадки напряжения питания, вызванные работой одного канала усилителя, попадают в другой канал. Но давайте разберёмся, что происходит на самом деле. Экспериментальное исследование данного вопроса описано в статье Раздельное питание каналов стерео усилителя.

Взаимное влияние усилителей через общий источник питания происходит двумя путями:

Начнём со второго пункта. Чем лучше усилитель (это закладывается в его конструкцию), тем меньше на него влияют помехи, приходящие по питанию. Существует даже такой параметр усилителя: коэффициент подавления пульсаций (нестабильности) напряжения питания (PSRR, или kSVR) .

У хороших усилителей этот коэффициент довольно большой. То есть, у хороших усилителей помехи, приходящие по питанию, практически не воздействуют на усиливаемый сигнал. Поэтому их можно не бояться (если всё делать правильно). А вот у плохих усилителей с маленьким значением PSRR помехи из цепи питания вполне могут заметно повлиять на сигнал.

Но тогда получается, что раздельное питание в большей степени необходимо именно плохим усилителям!

Действительно, в высококачественных усилителях помехи в цепи питания подавляются настолько хорошо, что то их количество, которое попадает в сигнал, никак не влияет на качество звука. Взаимные помехи стереоканалов по цепи питания настолько малы, что теряются на фоне других видов помех и искажений. Естественно, это происходит только при грамотной конструкции всего устройства в целом. Так что с этой стороны проблем мы не получим.

Гораздо важнее первый пункт – влияние просадок напряжения, вызванных одним каналом на другой канал усилителя. Ведь если напряжение питания уменьшается, уменьшается и максимальная выходная мощность усилителя. Появляется возможность для возникновения клиппинга. Но на самом деле, один общий блок питания для нескольких каналов ничуть не хуже, а иногда даже лучше двух отдельных блоков.

Рассмотрим один из двух крайних случаев. Подадим в оба стереоканала этого усилителя один и тот же монофонический сигнал. Не будет никакой разницы, работает ли два канала усилителя от двух раздельных блоков питания или от одного блока питания удвоенной мощности. Все напряжения – максимальное, минимальное, среднее, а также величина пульсаций будут одинаковыми. Потому что мы с одной стороны удвоили число каналов, а значит и потребляемый ток, а с другой стороны, точно также удвоили мощность блока питания. Так что в этом случае разницы никакой нет, используется один общий блок питания, либо два отдельных.

Другой крайний случай. Теперь подадим на входы нашего усилителя стереосигнал. Он отличается от монофонического тем, что в каждом из каналов свой звук. Так вот, крайний случай состоит в том, что в одном из каналов звук есть, а в другом нет. Такое иногда бывает в начале или конце музыкальной композиции. Как ведут себя наши стерео усилители, один из которых оснащён раздельными блоками питания, а второй общим блоком питания для двух каналов?

Усилитель с раздельными блоками питания работает так: один их каналов простаивает, а второй работает в стандартном режиме. Его питание обеспечивают накопительные конденсаторы ёмкостью 10000 мкФ в его отдельном блоке питания. Соответственно напряжения и пульсации имеют заданную величину.

Усилитель с общим блоком питания работает в улучшенных условиях: в его распоряжении находятся ресурсы обоих каналов питания! То есть для получения того же сигнала мы пользуемся трансформатором мощностью 100 Вт и накопительными конденсаторами ёмкостью 20000 мкФ. В результате пульсации будут вдвое меньше, а минимальное напряжение питания несколько больше, чем у усилителя с отдельными блоками питания.

Действительно, пока один из отдельных блоков питания простаивает, общий блок питания работает в полную силу на другой канал усилителя.

Свойства реального стереосигнала находятся примерно посередине. Громкость музыки больше то в одном канале, то в другом. Когда громкость в одном из стереоканалов меньше, соответствующий усилитель потребляет от блока питания меньшую мощность. И каждый раз общий блок питания высвободившиеся ресурсы отдаёт тому стереоканалу, который в них нуждается больше. Это эквивалентно увеличению мощности блока питания примерно на 5…15%. Раздельные блоки питания на такое неспособны.

Я это вижу особенно хорошо, когда пользуюсь своим AV ресивером. Он имеет пять каналов с общим блоком питания. Когда я слушаю стереозвук, вся мощность этого блока питания поступает на два усилителя фронтальных каналов. И эти два усилителя никогда не испытывают недостатка в энергии, поступающей от блока питания, расчитанного на пять каналов.

Таким образом, делать отдельные блоки питания для каждого из каналов усилителя нет смысла.

Но иногда всё же используют раздельные блоки питания. В этих случаях всегда существуют достаточно веские причины другого характера. Например, один трансформатор большой мощности не помещается в корпус. Либо два трансформатора устанавливают так, чтобы создаваемые ими магнитные поля взаимно компенсировались. Либо конструктивно удобнее разместить в корпусе два небольших блока питания вместо одного большого. Либо каждый из каналов усиления должен быть отдельным независимым модулем с возможностью оперативного наращивания количества каналов. Либо что-то ещё.

Как самому рассчитать блок питания для усилителя

Блок питания для усилителя можно рассчитать по специальной программе. Но только в том случае, если речь идёт о воспроизведении записанной музыки. Для исполнения музыки, например в составе рок-группы, программа не годится. К блокам питания таких усилителей предъявляются совсем другие требования.

Я разработал платы для описанного здесь блока питания, и скоро они будут доступны. Ожидайте соответствующую публикацию.

Читайте также: