Солевой теплоаккумулятор своими руками

Обновлено: 05.07.2024

  • Как сделать теплоаккумулятор для твердотопливного котла из цистерны
  • Как подключить буферную ёмкость в систему отопления с твердотопливным котлом
  • Опыт использования теплоаккумулятора

Самодельный теплоаккумулятор для ТТ котла из цистерны от пожарной машины

Пользователь FORUMHOUSE

Для начала покажем схему системы отопления Sjawa .

Схема, после введения в эксплуатацию теплоаккумулятора, претерпела небольшое изменение, о чём мы расскажем ниже.

Схема, после введения в эксплуатацию теплоаккумулятора, претерпела небольшое изменение, о чём мы расскажем ниже.

А теперь покажем, как пользователь сделал тепловой аккумулятор. Основа ТА — б/у бочка — цистерна на 1.5 м³ от пожарной машины.

Проще и дешевле изготовить теплоаккумулятор из готовой ёмкости, чем самостоятельно варить бак с 0 из стали.

Проще и дешевле изготовить теплоаккумулятор из готовой ёмкости, чем самостоятельно варить бак с 0 из стали.

Важно. Если в качестве самодельной ёмкости под ТА используются бочки/цистерны от ГСМ (горюче смазочных материалов), то, во избежание несчастных случаев, т. к. пары сохраняют горючесть много лет, нужно соблюдать повышенную осторожность при работе , особенно сварке.

Пользователь FORUMHOUSE

Я как-то разговорился с одним бензовозчиком, и он мне рассказал, как у них, на нефтебазе, варят цистерны. Наливают в бак под завязку воду. Ставят вверху плотик с горящей свечой и медленно сливают воду. Вода постепенно вытекает, и всё, что может гореть, тихо выгорает по мере опустошения емкости.

От цистерны, размером 2 (высота)х1.35х0.75 м отрезали всё лишнее.

Стяжки из труб можно использовать как гильзы для установки в ТА термометров или датчиков температуры.

Стяжки из труб можно использовать как гильзы для установки в ТА термометров или датчиков температуры.

Люк цистерны используется как ревизионный и для врезки ТЭНов (трубчатых электронагревателей) со встроенными магниевыми анодами 3 шт. по 2 или 3 кВт.

Дно цистерны ТА усилено профильными трубами сечением 4х4 см.

Вварены патрубки для обвязки ТА с котлом и системой отопления.

Верх ТА также усилен, иначе его выпучит от давления при нагреве воды.

Сварен самодельный коллектор.

В люк вварены муфты под ТЭНы.

Основание под ТА сделано из фанеры и бруса сечением 100х100 мм с прорезями, чтобы трубы, приваренные к низу ёмкости, не давили на основание.

Основание под теплоаккумулятор утеплено пенопластом.

Параллельно с изготовлением ТА для системы отопления пришли комплектующие. Термостатический вентиль.

ТЭНы с магниевыми анодами.

Уплотнение крышки Sjawa сделал по оригинальной технологии. Сначала пользователь уплотнил крышку герметиком. Закрутил крышку на 16 болтов, но, при испытаниях ТА давлением на 2 бар, из-под крыши стала сочится вода. Вырезать прокладку из резины самодельщик не стал. Слишком сложно, да и гарантий герметичности нет. В итоге Sjawa изготовил силиконовую прокладку.

Пошаговая инструкция по её изготовлению.

  • Место, где ставится прокладка покрашено, т. к. силикон при контакте с незащищённым черным металлом активизирует коррозию.
  • При помощи термоклея по окружности крышки приклеены буртики.

Потом пользователь, предварительно рассчитав объем прокладки, взял баллоны с силиконом, и заполнил всё пространство между буртиками, постепенно разглаживая силикон старой кредитной карточкой.

Сразу предупреждаю, что силикон высыхает около недели. Буртики я снял на четвёртый день. Когда все засохло, получилась упругая силиконовая масса. Отверстия я просверлил потом, на больших оборотах инструмента. Болты входят с натягом, и, когда зажимаются гайками, то дополнительно уплотняют место соединения. Бюджет инженерного решения — 3 баллона сантехнического силикона (реально ушло 2,5 баллона).

Кольца (2 шт.) для крышки самодельные, сваренные из скатанных по окружности двух металлических уголков.

Узел — бак-кольцо-крышка-кольцо сначала собран на прихватки и только потом просверлены все отверстия. Это обеспечило высокую точность сопряжения деталей.

Схема горловины крышки теплоаккумулятора.

Итак, самодельный теплоаккумулятор готов. Далее пользователь приступил к рутинным работам — обвязке ТА с котлом и его подключению к системе отопления. И вот, что получилось.

Узлы крупным планом.

Схемы подключения буферной ёмкости к твердотопливному котлу и системе отопления

Тема Sjawa вызвала живой интерес на портале. Пользователи стали обсуждать схему присоединения ТА к котлу.

Пользователь FORUMHOUSE

Посмотрел схему системы отопления. Появился вопрос, а почему вход в ТА находится чуть выше середины бака? Если вход сделать сверху буферной ёмкости, то горячий носитель от ТТ котла сразу подаётся к выходу, без смешивания с более холодным носителем в ТА. Ёмкость постепенно заполняется горячим теплоносителем сверху-вниз. А так, пока не прогреется верхняя половина ТА, а это примерно 500 л, горячий носитель в ТА перемешивается и охлаждается.

По словам Sjawa, ввод в теплоаккумулятор сделан так для лучшей ЕЦ (естественной циркуляции, если отключат электричество) и для уменьшения лишнего перемешивания теплоносителя в момент, когда СО не отбирает тепло или отбирает его мало. Т. к. выложенная в начале схема системы отопления с ТА общая, то пользователь набросал более подробные варианты работы ёмкости.

Преимущества — если свет выключат, то работает естественная циркуляция. Недостаток — инерционность системы.

Преимущества — если свет выключат, то работает естественная циркуляция. Недостаток — инерционность системы.

Аналог первой схемы, но, если в системе отопления закрылись все термоголовки, то верхняя часть теплоаккумулятора самая тёплая и нет интенсивного перемешивания. При открытии термоголовок теплоноситель сразу подаётся в СО. Тем самым уменьшается инерционность. Также есть ЕЦ.

Аналог первой схемы, но, если в системе отопления закрылись все термоголовки, то верхняя часть теплоаккумулятора самая тёплая и нет интенсивного перемешивания. При открытии термоголовок теплоноситель сразу подаётся в СО. Тем самым уменьшается инерционность. Также есть ЕЦ.

Теплоаккумулятор стоит параллельно системе. Преимущества - быстрая подача теплоносителя, но естественная циркуляция в системе под сомнением. Возможно подкипание теплоносителя.

Теплоаккумулятор стоит параллельно системе. Преимущества - быстрая подача теплоносителя, но естественная циркуляция в системе под сомнением. Возможно подкипание теплоносителя.

Развитие третьей схемы при закрытых термоголовках. Недостаток — происходит полное перемешивание всех слоев воды в теплоаккумуляторе, что плохо при естественной циркуляции если нет электричества.

Развитие третьей схемы при закрытых термоголовках. Недостаток — происходит полное перемешивание всех слоев воды в теплоаккумуляторе, что плохо при естественной циркуляции если нет электричества.

Как видно, при открытии и закрытии кранов можно реализовать разные варианты включения, но я настроен на вариант 1 и 2. Низ теплоаккумулятора выше низа котла на 700 мм. Патрубки, входящие в ТА 1 1/2 ', а выходящие в СО 1'. Вариант с верхним размещением патрубком годится для ТА со змеевиками внутри, для косвенного нагрева теплоносителя.

В итоге пользователь немного доработал схему поставив байпасы между входом в теплоаккумулятор из твердотопливного котла и подачей в систему отопления и на обратку.

Это дало возможность менять схему подключения теплоаккумулятора с параллельной на последовательную. Например, закончился отопительный сезон и теплоаккумулятор остыл, но резко похолодало, то, не грея теплоаккумулятор, можно быстро протопить дом котлом.

Эксплуатация теплоаккумулятора с твердотопливным котлом: личный опыт

Интересны выводы пользователя от эксплуатации ТА:

1. Котел выходит на режим +80-85 °C за 10-15 минут. В результате нет копоти и дыма. После двух-трёх топок выгорели смоляные отложения и потеки от прошлогоднего конденсата. Поле двух недель работы в оптимальном температурном режиме, топка котла стала почти как новая, внутри теперь только пепел. Дрова в котле сгорают полностью, с максимальным выделением тепла, а теплогенератор не загоняется в режим тления.

Если опустить температуру теплоносителя ниже 60-65 °C, то в камере сгорания ТТк создаются условия для появления конденсата (вредных кислот).

2. Твердотопливный котел в тандеме с теплоаккумулятором работает с максимальным КПД как зимой, так и в межсезонье, при уличных температурах 0 °C — -5-10 °C. Избыток тепла от хорошо раскочегаренного котла просто сбрасывается в теплоаккумулятор, а потом, по мере необходимости, расходуется теплоноситель.

Это уменьшает количество топок ТТк и повышает комфортность его использования. С ТА не нужно вставать ночью и подбрасывать топливо в твёрдотопливный котёл.

  • Верх — +80 °C.
  • Середина — +65-70 °C.
  • Нижняя часть — +50-60 °C.
  • Термостат установлен на выходе потока из теплоаккумулятора в систему отопления. По его команде, если температура воды опускается до + 40 °C, на догрев включается газовый котел.

При полностью открытом в котле поддувале температура на подаче мах +90 °C. Обычно температура держится + 80-85 °C. Теплоаккумулятор заряжается слоями. Сперва растет температура верха, а потом середины и низа. Например, когда верх нагревается до температуры подачи, начинает расти температура теплоносителя в середине ТА (верх так и остается 80-85 °C), далее температура растёт вниз.

Теплоаккумулятор следует хорошо утеплять и ставить вертикально, т.к. горячая вода концентрируется в верху емкости.

Возникают вопросы, а хватает ли такого объёма ТА на дом в морозы? По расчетам Sjawa на его коттедж, при температуре -25 °C, нужен теплоаккумулятор на 5000 л. Чтобы быстро нагреть такой объём воды потребуется котел мощностью 50-100 кВт. Но тратится на дорогостоящую систему , с большим запасом теплоносителя, только из-за сильных морозов , которые могут продержаться всего несколько дней в году (в худшем случае пару недель), а может и вообще не быть, нерентабельно .

Для объёма моего теплоаккумулятора, по правилам, нужен котел мощностью 20-40 кВт. У меня котел на 20 кВт. 30 кВт было бы идеально, но довольствуюсь тем, что уже куплено. Пусть лучше котел работает на 100%, выдавая свой максимальный КПД, чем брать слишком мощный теплогенератор и гонять его на пониженной мощности.

Узнать все подробности эксплуатации самодельного теплоаккумулятора можно в теме - тепловой аккумулятор из бочки пожарной машины .

Более высокий КПД и степень автоматизации у твердотопливных пеллетных котлов . В преддверии отопительного сезона узнайте, как правильно чистить дымоход . В видео отопление без газа.

Тосол, что ли подогревать в авто собираетесь?
Самая распространеная соль для этих грелок ацетат натрия с добавками каких-то стабилизаторов.
Если речь идет о двигателе, то попадание содержимого грелки в тосол приведет к сильной коррозии системы охлаждения. Не мгновенно, конечно. Но слив, промывка тракта и замена тосола потребуется.

Система охлаждения для серверного оборудования, требуется высокая надежность и охлаждение от аккумулятора холода при температуре +10С. Если в результате взаимодействия этиленгликоля с гидратом натрия (или ацетатом) произойдет осадок или на насосе прокладки съест это будет катастрофа просто.

Стенки теплоаккумулирующих устройств достаточно прочные, у вас скорее электроника(кондеры и т.п.) на сервере гикнется.
Застрахуйте штоле свою систему на сурьезную сумму.

О-па, я был невнимателен. Решил, что речь идет о химической "грелке".
А почему именно именно аккумуляторы холода планируете использовать? Ведь малоэффективно это и неудобно, по-моему. Не проще криотермостат поставить? Ведь не автономная работа предполагается, сеть же доступна.

все дело в том что требуется автономия на 20 мин после обрыва сети электроснабжения, от аккумулятора будет насос прокачивать антифриз через эти теплоаккумуляторы холода. Криотермостат это не те масштабы, здесь холодильная установка на несколько сотен киловат.

Ну, ежели за время присутствия электричества в сети наморозить пару кубометров пресного (желательно - дистиллированного) льда в качестве "теплоаккумулятора", то при обрыве сети этот теплоаккумулятор может и мегаватты поглотить на процессах "отогрев льда до нуля - плавление - нагрев воды до +10°C". Ну, в крайнем случае, эти же пару кубометров просто заполнить тем же антифризом - тогда можно прямо его качать, без теплообменника. Вариант?

вариант конечно, просто температура в контуре +10С и заморозить воду в лед не получится без дополнительной отдельной холодильной установки, а если просто запас антифриза держать как буфер то получаются огромные баки, смотрится как ракеты на космодроме, Байконур просто какой то))))

Так Вам "шашечки или ехать"? Температура в контуре регулируется скоростью циркуляции теплообменника (см. идею в автомобильном термостате). Отдельная холодильная установка - не такая уж большая цена для действительно важного сервера (а я еще не упомянул элементы Пельтье, которые, впрочем, будут бесполезны в отсутствие электричества). А пара кубометров антифриза. Ну вот квасная бочка - кубометр, например.

вот мне один умный химик ответил что это могут быть Na2SO4*10H2O, CaCl2*6H2O, NaCH3COO*3H2O или еще какой кристаллогидрат.

Ок, я не против просто не очень понимаю химию поэтому могу сморозить что нибудь), я из другой области специалист. Но пришлось столкнуться с вопросом ответ на который требует понимание химии.
Скажите как гидраты солей взаимодействуют с моноэтиленгликолем и водой? что будет при смешении? Резиновые уплотнения в системе не пострадают?

SkydiVAR писал(а): Так Вам "шашечки или ехать"? Температура в контуре регулируется скоростью циркуляции теплообменника (см. идею в автомобильном термостате). Отдельная холодильная установка - не такая уж большая цена для действительно важного сервера (а я еще не упомянул элементы Пельтье, которые, впрочем, будут бесполезны в отсутствие электричества). А пара кубометров антифриза. Ну вот квасная бочка - кубометр, например.

мне только шашечки) вариант с отдельной установкой заказчик сразу отверг. Цена не большая но сложно проектировать, теория надежности требует исключить доп элементы .И автоматику взаимодействия проектировать и систему переключения трубопроводов и много разного еще.

Проблема в том, что эти аккумуляторы холода надо замораживать при температуре ниже 0 оС. Только тогда они будут давать эффект.

Шуша писал(а): Проблема в том, что эти аккумуляторы холода надо замораживать при температуре ниже 0 оС. Только тогда они будут давать эффект.

Ну тогда, возможно.
При попадании солей в тосол ничего особенного произойти не должно. Но не факт, что они полностью растворятся. Ну и коррозия металлических деталей усилится.

Шуша писал(а): Ну тогда, возможно.
При попадании солей в тосол ничего особенного произойти не должно. Но не факт, что они полностью растворятся. Ну и коррозия металлических деталей усилится.

Если есть спецы которые могут обосновать слова "коррозия металлических деталей усилится" и "не факт, что они полностью растворятся" напишите плиз. за мной не заржавеет)

Шуша писал(а): Проблема в том, что эти аккумуляторы холода надо замораживать при температуре ниже 0 оС. Только тогда они будут давать эффект.

отдельная установка на охлаждение аккумуляторов и отдельная на охлаждение серверного оборудования не приемлемый вариант. Охлаждать все (и оборудование и аккумулятор) нужно одной если нравится тоже отдельной холодильной установкой с температурой в контуре +10С.

А почему Вы уперлись в +10? И зачем именно солевые аккумуляторы? Охладите одно-двухкубовый танк с тосолом до -40 - он и будет аккумулятором. Температуру в охлаждающем контуре, если действительно критично иметь хладагент с температурой именно +10, регулировать добавлением "холодного" хладагента из танка к "теплому", возвращающемуся из системы. Вариант?

Я что-то не понял, чем изначальный вопрос вызван. Ну, не смешивайте свой аккумулятор с антифризом, делов-то. (Ведь опасения обоснованы: свойства обоих могут измениться непредсказуемо.) Если разрушится - значит, разрушится. Надо будет чинить. А Вы чего хотели: чтобы система при этом продолжала работать как ни в чём не бывало?

Аккумулирование тепла: за этим - будущее?

Статьи об энергетике

Аккумулирование тепловой энергии (АТЭ) происходит благодаря широкому спектру технологий. В зависимости от конкретной технологии, оно дает возможность хранить и использовать избыточную тепловую энергию в течение нескольких часов, дней или даже нескольких месяцев в масштабах, характерных для использования отдельными пользователями, строительства (в том числе – крупномасштабного), использования в рамках округа, города или региона. Примеры использования – балансировка спроса на энергию между дневным и ночным временем, хранение летнего тепла для отопления зимой или зимнего холодного воздуха для кондиционирования воздуха. Среди средств хранения – емкости для хранения воды или льда, массы материнской почвы или коренная порода, связанная с теплообменниками с помощью буровых скважин, глубоколежащие водоносные горизонты, находящиеся между непроницаемыми слоями; мелкие ямы, заполненные гравием и водой и изолированные в верхней части; также средствами хранения могут быть эвтектические растворы и солевые грелки.

Другими источниками тепловой энергии для хранения могут быть тепло или холод, произведенный тепловыми насосами во внепиковые периоды производства дешевой электроэнергии, практика, известная как ограничение пика нагрузки; тепло от теплоэлектроцентралей; тепло, произведенное возобновляемыми источниками энергии, превышающими потребности электросетей, и бросовое тепло от промышленных процессов. Как сезонное, так и кратковременное хранение тепла считается важным средством для дешевого балансирования высокой доли разнообразных возобновляемых источников энергии и интеграции электроэнергетического и теплоэнергетического секторов в энергосистемах для достижения 100 % доли возобновляемой энергии.

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Технология расплава солей

В разработке находится единый бак с разделительной плитой для сохранения и холодного, и горячего расплава солей. Гораздо более экономичным будет достижение на 100 % большего количества хранения энергии на единицу объема в сравнении со сдвоенными емкостями, так как емкость для хранения расплава солей достаточно дорога из-за сложной конструкции. Солевые грелки также используются для хранения энергии в расплавах солей.

Накопление тепла в емкостях и пещерах в скалах

Паровой аккумулятор состоит из изолированного стального резервуара высокого давления, содержащего горячую воду и пар под давлением. В качестве метода для хранения тепла он используется для того, чтобы уравновешивать производства тепла изменчивыми или стабильными источниками при изменяющемся спросе на тепло. Паровые аккумуляторы могут стать действительно необходимыми для накопления энергии в проектах, связанных с тепловой солнечной энергией.

Крупные накопители широко применяются в Скандинавии для хранения тепла в течение нескольких дней, разделения производства тепла и энергия и помощи в удовлетворении пикового спроса. Исследовалось (и оказалось экономически выгодным) межсезонное аккумулирование тепла в пещерах.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Электротермические накопители

Электроаккумуляционные печи – обычное дело для европейских домов с регистрацией электропотребления с учетом времени суток (чаще всего использующие более дешевое электричество ночью). Они состоят из керамических кирпичей высокой плотности или феолитовых блоков, нагретых электричеством до высоких температур, которые могут иметь или не иметь хорошую изоляцию и контролируют высвобождение тепла через определенное число часов.

Технологии с использованием льда

Разрабатывается ряд технологий, где лед производится во внепиковые периоды и позднее используется для охлаждения. К примеру, кондиционирование воздуха может быть экономичнее за счет использования дешевого электричества ночью для заморозки воды и последующего использования холодильной мощности льда днем для уменьшения количества энергии, требуемой для поддержания кондиционирования воздуха. Аккумулирование тепловой энергии с применением льда использует высокую теплоту плавления воды. Исторически лед перевозили с гор в города, чтобы использовать его, как охладитель. Одна метрическая (= 1 м3) тонна воды может хранить 334 миллиона джоулей (Дж) или 317 000 Британских термических единиц (93 кВт*ч). Относительно небольшой накопитель может хранить достаточно льда, чтобы охлаждать крупное здание целый день или неделю.

Помимо применения льда для прямого охлаждения, он также используется в тепловых насосах, на которых работают системы отопления. В этих сферах изменения энергии фазы обеспечивают очень серьезный теплопроводный слой, близкий к нижнему порогу температур, при котором может работать тепловой насос, использующий теплоту воды. Это позволяет системе переносить серьезнейшие отопительные нагрузки и увеличивать промежуток времени, в течение которого элементы источников энергии могут возвращать тепло в систему.

Сверхпроводящий накопитель энергии

В этом процессе используется разжижение воздуха или азота, как способ хранения энергии.

Первая система накопления энергии при сверхнизких температурах, использующая жидкий воздух в качестве накопителя энергии, а низкопробное бросовое тепло – для запуска повторного теплового расширения воздуха, работает на электростанции в городе Слау (Великобритания) с 2010 года.

Технологии на основе горячего кремния

Твердый или расплавленный силикон предлагает гораздо более высокие температуры хранения, чем соли, а значит – и большие емкость и КПД. Он был исследован, как, возможно, гораздо более эффективная технология хранения энергии. Кремний способен хранить более 1 МВт*ч энергии на м3 при температуре в 1400C.

Накопление электричества после накачки теплом

В случае накопления электричества после накачки теплом (НЭПНТ) двухсторонняя теплонасосная система используется для сохранения энергии за счет разницы температур между двумя накопителями тепла.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

Молекулярные химические связи

На данный момент исследуется возможность хранения энергии в молекулярных химических связях. Уже достигнута плотность энергии, эквивалентная ионно-литиевым батареям.

Аккумулятор холода

Холодильники

Когда за окном жаркое лето, а на выходных запланирован пикник, остро встает вопрос сохранности свежести продуктов и прохлады напитков. Отличным решением станет термосумка, наполненная хладагентами, которые увеличат ее функциональность. Если устройство, изготовленное промышленным способом, дома отсутствует, вполне можно создать аккумулятор холода своими руками – он без проблем сохранит свежесть салатов, охладит напитки и не даст мороженому растаять. Также с помощью самодельного хладагента получится существенно сэкономить семейный бюджет. Главное правило при его изготовлении одно – делать все по инструкции.

Принцип работы

Аккумуляторы холода – пластмассовая, обязательно герметичная, емкость прямоугольной плоской формы, внутри которой содержится специальная жидкость – обычно это раствор карбоксиметилцеллюлозы. Вес одного контейнера – примерно 0,5 кг, рассчитан он на 6-10 л объема термосумки, позволяя до 10 часов поддерживать постоянную температуру. По сути, приспособление напоминает лед, но обладает особыми свойствами – быстро замерзает и медленно тает.

Устройства, аккумулирующие холод, многофункциональны: пригодятся туристам, дачникам, автомобилистам в дороге. Кроме того, они продлевают срок службы стационарного холодильника, снижая нагрузку на компрессор, становятся настоящим спасением при отключении электроэнергии, когда содержимое морозилки начинает таять. Используют хладагенты также и в медицине – для перевозки ряда препаратов, вакцин, биологических тканей и прочего.

Принцип функционирования такого устройства прост: контейнер помещают в морозильную камеру, где он за 6-8 часов полностью замерзает. После этого аккумулятор готов к работе – нужным количеством пакетов обкладывают бока и дно термосумки, а затем плотно загружают туда продукты. Срок эксплуатации хладагента не ограничен, после использования его можно промыть водой, вытереть насухо и повторно заморозить.

Аккумуляторы нельзя класть в обычные дорожные сумки – их содержимое может повредить подкладку и ткань изнутри.

Аккумулятор холода Frizet T 200

Синий аккумулятор холода

Аккумулятор холода Ice Block 750

Аккумуляторы холода c отверстием посередине

Разновидности

Существует несколько видов аккумуляторов холода: силиконовый, гелевый, водно-солевой. Разобравшись в их различиях, получится понять, какой эффективнее, и подобрать для себя оптимальный вариант:

  1. Силиконовый. Такой аккумулятор холода дольше всех поддерживает низкую температуру – от 0 до +5 градусов на протяжении недели. Выглядит он как пленочный прямоугольный пакет. Внутри него специальная силиконовая смесь, которая быстро замерзает и медленно тает.
  2. Гелевый. Такой аккумулятор холода самый распространенный. На вид – плотный, герметичный пакет прямоугольной формы. Внутри него содержится гелеобразное вещество, которое поддерживает прохладу внутри сумки. Его можно использовать и как аккумулятор тепла. Он поддерживает широкий температурный режим, работает до 16 часов. Если наполнитель протечет, можно не беспокоиться – поверхность просто протирают салфеткой или промывают водой. Гель не испортит продукты, он полностью безопасен и не вредит организму.
  3. Солевой аккумулятор холода. Внешний вид – прямоугольный пластиковый ящик. Внутри него содержится водно-солевой раствор, который при необходимости можно подливать (но не все производители предусмотрели такую возможность). Аккумулятор поддерживает низкую температуру, примерно до -10°, на протяжении всего дня.

Самый эффективный аккумулятор – силиконовый. Он держит температуру около недели. С ним можно перейти пустыню Сахара, и мороженое останется холодным. Есть обратная сторона: производитель не гарантирует, что силикон безопасен. Если он попадет на продукты питания без упаковки, может вызвать отравление.

Силиконовый аккумулятор холода

Силиконовый аккумулятор холода

Силиконовый аккумулятор холода

Силиконовый аккумулятор холода

Гелевый аккумулятор холода

Гелевый аккумулятор холода

Солевой аккумулятор холода

Солевой аккумулятор холода

Солевой аккумулятор холода PM0941

Солевой аккумулятор холода PM0941

Этапы самостоятельного изготовления

Многие создают аккумуляторы холода своими руками. Преимущества такого решения очевидны:

  • устройства делают из подручных средств, имеющихся в каждом доме, – их себестоимость крайне низкая;
  • изготовление требует минимум времени и усилий – подготовка займет не более 10-15 минут, остальное время – это уже заморозка самодельного хладагента.

Для начала нужно собрать базовый набор сырья и материалов – пластиковые бутылки объемом 0,5 и 1 л, поваренную или глауберову соль, обойный клей или желатин. Нюансы изготовления в каждом из вариантов будут слегка отличаться.

С поваренной солью

Понадобятся: 1 л обычной воды, 450 г поваренной соли, пластиковые емкости нужного объема.

Такой аккумулятор холода сохранит продукты при температуре -15° на протяжении 11-13 часов.

Поваренная соль

Вода

Растворяем соль в воде

Заполняем солевым раствором пластиковые бутылки, не доходя до края

Отправляем емкости на несколько часов в морозилку

Обматываем готовые аккумуляторы холода махровым полотенцем для термоизоляции

С глауберовой солью

Мирабилит широко применяется в холодильном деле, поэтому и для изготовления самодельного хладагента отлично подойдет. Понадобятся: 1 л воды, 200 г непосредственно соли, 10 г желатина или обойного клея.

Пошаговый алгоритм мало чем отличается от первого варианта:

  1. Готовится солевой раствор, затем он загущается желатином (клеем).
  2. Готовую смесь заливают в пакет или бутылку, помещают в морозильную камеру на 6-9 часов.
  3. Емкость оборачивают махрой и помещают в пакет, который будет собирать конденсат.

Вода

Желатин

Поваренная соль

Упаковка глауберовой соли

Форма для аккумулятора холода

С обойным клеем

Для приготовления понадобятся пластиковый контейнер, 1 л воды, 40 г сухого обойного клея. Пошаговое приготовление:

  1. Воду и сухую смесь соединяют, хорошо размешивают до получения гелеобразной консистенции.
  2. Раствор заливают в подготовленный контейнер, замораживают в морозильной камере.

Хладагент сохранит продукты в термосумке до 11 часов при температуре ниже 0.

Примерное соотношение обойного клея и воды для создания аккумулирующего холод устройства – 4:100.

Вода

Клей обойный

Развести клей в воде до гелеобразной консистенции

Перелить смесь в форму. Убрать в морозильную камеру

С желатином

Для создания желатинового хладагента подготавливают 4 л воды, поваренную соль, 10 г желатина, пластиковую емкость.

  1. В 1 л воды высыпают соль в пропорции 10:3, тщательно размешивают. Хлорид натрия должен полностью раствориться.
  2. Затем разбавляют смесь оставшимися 3 литрами воды, высыпают желатин. Снова хорошо размешивают – жидкость должна немного загустеть.
  3. Раствор выливают в пластиковую емкость, кладут ее в морозильную камеру до полной заморозки.

Большая бутылка воды

Крупная соль

Пакетик желатина

Смешать воду, соль, желатин

Самодельный хладагент из подгузников

Хладагент из детских подгузников – на первый взгляд странный, но на деле действенный аккумулятор холода. Он отлично заменит промышленное приспособление, поддержит нужную температуру на протяжении всего дня. Класть непосредственно подгузник в термосумку, чтобы сохранить холод, не понадобится, достаточно извлечь из него внутреннюю гелеобразную смесь.

Чтобы изготовить необычный хладагент для сумки-холодильника своими руками, нужно взять:

  • памперс – 1 штука;
  • соль – 2 чайные ложки;
  • воду – 250 мл;
  • полиэтиленовый герметичный пакет – 1 штука.
  1. В 250 мл воды высыпают 2 чайные ложки соли, перемешивают до полного растворения.
  2. Полученную смесь понемногу льют на внутреннюю сторону памперса, ожидая, пока вода впитается.
  3. Верхнюю часть подгузника разрезают, достают гелевую массу, которая образуется сразу же после впитывания воды.
  4. Ее отправляют в герметичный пакет с застежкой Zip Lock и разминают там для равномерного распределения.

Для повышения эффективности аккумулятора холода его дополнительно замораживают на протяжении нескольких часов.

При изготовлении хладагента в воду можно добавить любой пищевой краситель, получив в итоге не только полезный, но и эстетически привлекательный аккумулятор холода.

Ложка соли

Подгузники

Герметичный пакет

Вода

Все необходимое (вода, подгузники, стакан, герметичный пакет)

Налить воды, развести в ней краску

Вылить цветную воду на памперс

Когда подгузник впитает, разрезать ножом ткань

Содержимое переложить в герметичный пакет

Аккумулятор холода

Правила использования

Принцип работы аккумулятора тепла или холода одинаковый – перед использованием хладагент нужно зарядить. Охлаждающее приспособление помещают в морозильную камеру на 8 часов. Зарядка аккумулятора тепла проводится в микроволновой печи, для этого достаточно 4 минут и мощности в 280 Вт.

Нельзя греть аккумулятор тепла с помощью горячей воды – это может привести к деформации упаковки.

После зарядки генераторы тепла или холода кладутся в специальные карманы термосумки или между продуктами питания. Так устройства лучше сохраняют температуру, не принося вреда самой провизии. После каждого использования нужно очищать накопитель от конденсата, который часто приводит к загрязнению поверхности емкости.

Когда в устройстве нет необходимости, аккумуляторы хранят в холодном и сухом месте. Генераторы не терпят скачков температуры, а вот постоянная прохлада продлевает срок их службы. Перед каждым новым применением аккумулятор нужно промывать обычной водой, а после высыхания помещать в морозильную камеру или микроволновую печь. При соблюдении этих нехитрых правил даже сделанный своими руками хладагент можно эксплуатировать неограниченный период времени.

Аккумулятор холода для термосумки

Аккумулятор холода для бутылок

Форма для аккумулятора холода IceAKKU

Разноцветные аккумуляторы холода

Силиконовый аккумулятор холода Ezetil

Видео

Читайте также: