Семисегментный индикатор своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Этот относительно несложный прибор поможет проверить исправность диода, транзистора, резистора сопротивлением до 1.5 кОм, конденсаторов емкостью более 1000 пФ и даже ТТЛ микросхемы, причем на последние даже не придется подавать напряжение питания.

Пробник с семисегментным индикатором

Сердцем прибора является трансформаторный преобразователь, собранный по схеме симметричного мультивибратора на транзисторах VT1 и VT2. В качестве устройства отображения используется семисегментный светодиодный индикатор HG1, проверяемый прибор подключается к гнездам XS1, XS2.

На месте VT1, VT2 помимо указанных могут работать транзисторы серий МП39 – МП42 с любым буквенным индексом и даже более современные маломощные кремниевые транзисторы, к примеру, КТ361. Вместо АЛС324Б можно использовать практически любой светодиодный маломощный семисегментный индикатор с общим анодом (к примеру, АЛС321Б, АЛС334Б, Г, АЛС335Б, Г. Подойдут и индикаторы с общим катодом (к примеру, АЛС324А), но в этом случае придется сменить полярность включения всех диодов и источника питания, а транзисторы VT1 и VT2 взять обратной проводимости (n-p-n). К примеру, КТ315 или МП37.

АЛС321Б, АЛС334Б, Г, АЛС335Б, Г

Диоды можно использовать любые из серии Д9, источник питания – два гальванических элемента или аккумулятора любой емкости. Трансформатор Т1 выполняется на ферритовом кольце типоразмера К10х6х5 (можно и большего размера) из материала 1000НН. Коллекторные обмотки (выводы 1, 2 и 3, 4) наматываются проводом ПЭТВ 0,2 и содержат по 50 витков, повышающая обмотка выполняется тем же проводом и содержит 130 витков. При подключении трансформатора необходимо соблюдать фазировку коллекторных обмоток, начало которых обозначено на схеме точками.

Семисегментный индикатор – прибор для показа определенной информации в цифровом виде. Для букв применяются более сложные устройства, например матричные или многосегментные. Семисегментный тип состоит из семи отдельных элементов, которые называются сегментами. Регулируя их включение и выключение составляется изображение цифры. Цифры могут быть наклонены, что нужно для показа точки.

Такие сегменты просты по своей конструкции и принципу работы. Это снижает их стоимость и позволяет использовать в самых различных сферах, в том числе и в домашней бытовой. В статье будет рассказано подробным образом о том, как они работают, как устроены и для чего они нужны. Бонусом к статье прилагаются два видеоролика и скачиваемый файл с практикой применения семисегментных индикаторов.

Простой семисегментный индикатор

История изобретения

В 1910 году американским изобретателем Фрэнком Вудом из Ньюпорт-Ньюс, штат Вирджиния, был запатентован индикатор сегментного типа. Его индикатор был восьмисегментным, с дополнительным косым сегментом для отображения цифры “четыре”. Однако, до 1970-х годов семисегментные индикаторы не получили распространение и для отображения цифр применялись вакуумные индикаторы тлеющего разряда.

Семисегментный светодиодный индикатор — устройство отображения цифровой информации. Это — наиболее простая реализация индикатора, который может отображать арабские цифры. Для отображения букв используются более сложные многосегментные и матричные индикаторы.

Подключение индикатора на панеле

Современные реализации семисегментного индикатора

В настоящее время, большинство одноразрядных семисегментных индикаторов сделаны на светодиодах. В обычном одноразрядном светодиодном индикаторе девять контактов: один общий и восемь – от каждого из сегментов. Есть схемы с общим анодом и с общим катодом. Многоразрядные семисегментные индикаторы чаще выпускаются либо по светодиодной технологии, либо на жидких кристаллах. Выводы всех одноимённых сегментов всех разрядов таких индикаторах соединены вместе, а общие выводы каждого разряда выведены отдельно.

Как устроен семисегментный индикатор и для чего он применяется

Для управления таким индикатором, управляющая микросхема циклически подает напряжение на общие выводы всех разрядов, одновременно на выводы сегментов выставляется код из семи нулей и единиц. Таким образом, например, восьмиразрядный индикатор, имеет всего шестнадцать выводов вместо шестидесяти четырех.

Устройство

В настоящее время для отображения информации всё чаще используются графические дисплеи, однако, семисегментные индикаторы также не утратили своего значения. Если требуется лишь отображение чисел, то они могут стать более предпочтительным вариантом, т.к. просты в управлении и могут использоваться совместно с любым микроконтроллером с достаточным количеством выводов. Жидкокристаллические семисегментные индикаторы обладают сверхнизким энергопотреблением (например, в электронных часах, вместе со схемой управления работают от одной батарейки в течении нескольких лет).

Рассмотрим пример разработки схемы дешифратора из двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Сигнал с этих выводов можно подать на десятичный индикатор. В простейшем случае над светодиодом можно просто подписать индицируемую цифру.Таблица истинности десятичного дешифратора приведена ниже.

Как устроен семисегментный индикатор и для чего он применяется

На этой странице будем вести речь о светодиодных семисегментных индикаторах. Они имеют предельно простую конструкцию, дёшевы, надёжны. Обеспечивают высокую яркость и контрастность отображаемой информации. Существует большое разнообразие индикаторов: с разным цветом свечения сегментов, разного размера, отличающиеся схемой подключения светодиодов (с общим катодом или общим анодом). При необходимости отображения нескольких разрядов можно установить несколько одноразрядных индикаторов рядом на печатной плате либо выбрать нужный вариант многоразрядного индикатора.

Своё название семисегментные индикаторы получили в связи с тем, что изображение символа формируется с помощью семи отдельно управляемых (подсвечиваемых светодиодом) элементов – сегментов. Эти элементы позволяют отобразить любую цифру 0..9, а также некоторые другие символы, например: ‘-‘, ‘A’, ‘b’, ‘C’, ‘d’, ‘E’, ‘F’ и другие.

Семисегментный индикатор из четырех элементов

Что такое семисегментный светодиодный индикатор

Семисегментный светодиодный индикатор, как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр. Сегменты обозначаются буквами от A до G; восьмой сегмент — десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел. Изредка на семисегментном индикаторе отображают буквы.

Семисегментные светодиодные индикаторы бывают разных цветов, обычно это белый, красный, зеленый, желтый и голубой цвета. Кроме того, они могут быть разных размеров. Также, светодиодный индикатор может быть одноразрядным (как на рисунке выше) и многоразрядным. В основном в практике используются одно-, двух-, трех- и четырехразрядные светодиодные индикаторы:

Отображение букв на семисегментном индикатореКроме десяти цифр, семисегментные индикаторы способны отображать буквы. Но лишь немногие из букв имеют интуитивно понятное семисегментное представление.

В латинице: заглавные A, B, C, E, F, G, H, I, J, L, N, O, P, S, U, Y, Z, строчные a, b, c, d, e, g, h, i, n, o, q, r, t, u.

В кириллице: А, Б, В, Г, г, Е, и, Н, О, о, П, п, Р, С, с, У, Ч, Ы (два разряда), Ь, Э/З.

Всего семисегментный светодиодный индикатор может отобразить 128 символов:

Схема подключения

Как работают

Многоразрядные светодиодные индикаторы часто работают по динамическому принципу: выводы одноимённых сегментов всех разрядов соединены вместе. Чтобы выводить информацию на такой индикатор, управляющая микросхема должна циклически подавать ток на общие выводы всех разрядов, в то время как на выводы сегментов ток подаётся в зависимости от того, зажжён ли данный сегмент в данном разряде.

Как устроен семисегментный индикатор и для чего он применяется

Токоограничительные резисторы могут присутствовать в схеме, а могут и не присутствовать. Все зависит от напряжения питания, которое подается на индикатор и технических характеристик индикаторов. Если, к примеру, напряжение подаваемое на сегменты равно 5 вольтам, а они рассчитаны на рабочее напряжение 2 вольта, то токоограничительные резисторы ставить необходимо (чтобы ограничить ток через них для повышенного напряжении питания и не сжечь не только индикатор, но и порт микроконтроллера). Рассчитать номинал токоограничительных резисторов очень легко, по формуле дедушки Ома. К примеру, характеристики индикатора следующие (берем из даташита):

  • рабочее напряжение — 2 вольта
  • рабочий ток — 10 мА (=0,01 А)
  • напряжение питания 5 вольт

Подключение на практике

Подключение многоразрядного семисегментного индикатора к микроконтроллеру

Схема подключения многоразрядного семисегментного светодиодного индикатора в основном та-же, что и при подключении одноразрядного индикатора. Единственное, добавляются управляющие транзисторы в катодах (анодах) индикаторов. Осуществление индикации разрядами осуществляется динамическим путем:

  • выставляется двоичный код соответствующей цифры на выходах порта РВ для 1 разряда, затем подается логический уровень на управляющий транзистор первого разряда
  • выставляется двоичный код соответствующей цифры на выходах порта РВ для 2 разряда, затем подается логический уровень на управляющий транзистор второго разряда
  • выставляется двоичный код соответствующей цифры на выходах порта РВ для 3 разряда, затем подается логический уровень на управляющий транзистор третьего разряда
  • итак по кругу

При этом надо учитывать:

  • для индикаторов с ОК применяется управляющий транзистор структуры NPN (управляется логической единицей)
  • для индикатора с ОА — транзистор структуры PNP (управляется логическим нулем)

При низковольтном питании микроконтроллера и маломощных светодиодных индикаторах, в принципе, можно отказаться от использования в схеме и токоограничительных резисторов, и управляющих транзисторах — подключать выводы индикатора непосредственно к выводам портов микроконтроллера, так как при динамической индикации ток потребления сегментами уменьшается. При этом следует учитывать, что разряды при применении индикаторов с ОК управляются логическим нулем, а индикаторы с ОА — логической единицей.

Статическая индикация

В том случае, если светодиоды в индикаторе имеют соединённые вместе аноды (схема с общим анодом), общий анод подключается к источнику напряжения +VDD, а катоды светодиодов – сегментов подключаются к схеме управления (например, микроконтроллеру), которая отвечает за формирование изображения на индикаторе. Зажигаются сегменты низким уровнем (логический 0) на выводе схемы управления.

По отношению к схеме управления ток светодиодов является втекающим, так что могут использоваться интегральные схемы, которые имеют выходы с открытым стоком. Изменяя величину питающего индикатор напряжения VDD, можно регулировать яркость свечения.

Как устроен семисегментный индикатор и для чего он применяется

Если в индикаторе соединены вместе катоды (схема с общим катодом), то общий катод подключается к общему проводу схемы, а аноды светодиодов подключаются к схеме управления.

В этом случае сегмент зажигается высоким уровнем на выходе схемы управления, для которой ток светодиода является вытекающим, что не позволяет использовать выходы с открытым стоком, необходим выход, выполненный по двухтактной схеме.

Регулировать яркость можно, подключив общий вывод индикатора к источнику смещающего напряжения 0..VDD, рассчитанного на втекающий ток, например к эмиттерному повторителю на транзисторе структуры p-n-p. Увеличивая смещение, будем уменьшать яркость свечения.

В спецификации на индикатор указывается потребляемый одним сегментом ток. Обычно это величина порядка нескольких мА и нагрузочной способности выводов большинства микроконтроллеров достаточно для управления индикатором. Если используется микроконтроллер с малым выходным током выходов или если используется индикатор с большим током (например, большого размера или рассчитанный на работу при ярком внешнем освещении), то подключение осуществляется через драйвер – интегральную микросхему, содержащую набор повторителей или инверторов с мощными выходами.

Как устроен семисегментный индикатор и для чего он применяется

Как и любой светодиод (также это относится и к обычным диодам), светодиоды сегментов имеют очень резкую зависимость тока от напряжения на светодиоде. Поэтому требуется стабилизация тока через эти светодиоды для обеспечения работы в номинальном режиме. Обычно используется простейший способ – последовательное включение задающих ток резисторов.

При выборе номинала резисторов следует учитывать падение напряжения на светодиоде в выбранном режиме работы. Эту величину можно уточнить в спецификации на индикатор. Падение напряжения на светодиоде существенно больше, чем на обычном диоде.

Например, для индикаторов FYQ-3641Ax/Bx падение напряжения на светодиоде в зависимости от материала, цвета свечения составляет от 1.6 до 2 В при токе 5 мА и от 1.8 до 2.4 В при токе 30 мА (30 мА – максимально допустимый ток через светодиод для данного индикатора в непрерывном режиме).

Так как возможен разброс значений для разных устройств даже одного типа (в меньшей степени, но есть разброс между характеристиками светодиодов и в пределах одного индикатора), а кроме того, падение напряжения зависит от температуры, поэтому параметры схемы должны обеспечивать достаточную стабильность тока при изменении падения напряжения на светодиоде.

Для случая, когда ток задаётся с помощью резистора это означает, что падение напряжения на резисторе должно быть много больше возможных отклонений напряжения на светодиоде от среднего значения. Предположим, что требуется обеспечить ток через светодиод 5 мА, при этом напряжение на светодиоде составляет в среднем 1.8 В.

При напряжении источника 3.3 В падение напряжения на резисторе составит 3.3-1.8=1.5 В; значит сопротивление резистора R1=1.5 В/5 мА=300 Ом. Если в результате разброса параметров или в результате изменения температуры, или по иным причинам, возможно отклонение напряжения на светодиоде в пределах 1.6..2.0 В (±0.2 В от расчётного значения 1.8 В), это вызовет отклонение тока от расчётного значения не более ±0.7 мА или не более 14%. В большинстве практических случаев это достаточная точность для питания цепей светодиодных индикаторов, хотя ещё следует учесть нестабильность питающего напряжения, неидеальность цифровых ключей, допуск резистора.

При напряжении источника 5 В падение напряжения на резисторе составит 5-1.8=3.2 В; значит сопротивление резистора R2=3.2 В/5 мА=640 Ом, выбираем 620 Ом – ближайшее значение из ряда E24. В этом случае отклонение напряжения на светодиоде ±0.2 В вызовет отклонение тока от расчётной величины порядка ±0.3 мА или не более чем ±7%. Получили точность заданного тока лучшую, чем в первом случае. Это вполне ожидаемый результат – увеличивая напряжение источника и его сопротивление, мы делаем его более близким к идеальному источнику тока.

семисегментный индикатор

Если задаться предельно допустимой точностью тока ±20%, можем получить, что минимальное питающее напряжение составляет 2.8 В, при этом сопротивление ограничивающего ток резистора равно 200 Ом. Для формирования изображения символа на индикаторе используют таблицу, которая ставит в соответствие коду символа набор отображаемых сегментов.

Набор сегментов, формирующих символ, рассматривается как двоичное число, сегменту A соответствует младший бит числа. Если бит числа равен 0, то соответствующий сегмент не зажигается при отображении символа, а если равен 1, то зажигается. В таблице также приводится запись числа, определяющего набор зажигаемых сегментов, в шестнадцатеричной форме.

Привет читателям Датагора! Мне удалось собрать вольтметр минимальных размеров с посегментной разверткой индикатора при довольно высокой функциональности, с автоматическим определением типа индикатора и выбором режимов.

Миниатюрный вольтметр на семисегментном LED индикаторе и PIC16F684

В это же мне потребовались вольтметр и амперметр для небольшого блока питания. Можно было собрать на PIC16F690 совмещенный вариант, а можно было собрать два миниатюрных вольтметра, причем габариты двух вольтметров получались меньше совмещенного варианта.
Свой выбор я остановил на микросхеме PIC16F684 и написал исходный код для посегментной развертки индикатора.
В процессе написания кода возникла идея программируемого переключения шкал и положения запятой, что и удалось реализовать.

Содержание / Contents

↑ Что умеет мой вольтметр

Питание измерителя осуществляется от источника 7,5 – 12 Вольт, при токе 15 – 25 мA, потребление тока зависит от индикатора. Более яркие индикаторы потребляют больший ток.

↑ Выбор шкал измерителя

производится таким образом, чтобы можно было измерить наибольшее значение напряжения или тока. В этом случае будет наибольшая точность при минимальном воздействии помех.

В измерителе программно реализована посегментная развертка индикатора, поэтому в каждый момент времени зажигается только один из сегментов в каждом из знаков. Это приводит к снижению нагрузки на выводы микроконтроллера по сравнению с поразрядной индикацией.

↑ Полная принципиальная схема измерителя


↑ Конструкция






Кнопка используется только перед установкой в конечное устройство, при эксплуатации ей не пользуются.

↑ Описание программы

Для отображения запятой выводов микроконтроллера не хватило, и поэтому запятая формируется переключением катодов или анодов через резистор R5. Величина этого резистора влияет на яркость свечения запятой и подбирается по отсутствию паразитной засветки незажженных запятых.

Сдвиг шкалы вычисляется автоматически по результатам измерения паразитного тока, протекающего по шунту блока питания, если это необходимо.

После установки нужных значений шкалы, положения запятой и сдвига показаний производится запись установленных значений в EEPROM и в дальнейшем эти данные вызываются из памяти при включении.

↑ Управление кнопкой

↑ Пример применения


Был собран малогабаритный блок питания, у него получились следующие параметры:
Напряжение 0 – 31,2 Вольта.
Ток 0 – 2,2 Ампера.


Как видно из блок-схемы, через шунт протекает ток, потребляемый измерителем напряжения, который сдвигает показания измерителя тока в сторону увеличения. Этот ток имеет постоянную величину, поэтому этот сдвиг можно учесть в программе измерителя.

После установки шкал в блоке питания были подобраны значения резисторов делителя R2, R3 и коэффициент усиления OP1 так, чтобы показания соответствовали контрольным.


Для проверки какой-либо идеи мне иногда приходится делать отладочные платы (или по-другому модули для Arduino) самому. При разработке очередного регулятора громкости мне понадобился 7ми сегментный двухразрядный дисплей, способный выводить значение громкости (число от 0 до 19) и знак "MUTE". Чтобы уменьшить количество используемых драгоценных выводов Arduino было решено использовать сдвиговый регистр 74HC595.


Китайская промышленность выпускает несколько видов таких индикаторов, как одноразрядных:




Но я решил не ждать месяц заказа из Китая и сделать такую плату самостоятельно. Мне понадобились:

1) Светодиодный цифровой индикатор. Я использовал оставшийся от старого телевизора LN5241GK. Вот даташит на него. Вообще-то подойдет любой с общим катодом:



2) макетная плата 3х7см. Я покупал на BangGood’e 40 штук за $8.99. Получилось в среднем 22 цента за штуку:





5) Провода для монтажа и припой.

Итого это удовольствие мне обошлось в:
индикатор (бесплатно) + макетная плата ($0.22) + резисторы ($0.09) + Пины ($0.01) = $0.32. Стоимость потраченного времени я не считаю, так как оно компенсировалось полученным удовольствием от сборки.


Немного теории:

Светодиодный дисплей с общим катодом (ОК) можно представить как 8 светодиодов соединенных в одну точку катодами. Схематически это выглядит так:



Железо:



Из которых следует, что наш дисплей действительно имеет общий катод и зеленый цвет свечения

2) Назначение и нумерация выводов:



Из первого рисунка узнаем про нумерацию выводов, расположение сегментов и разрядов на индикаторе (например, что первый разряд (разряд десятков) имеет обозначение D1, а разряд единиц D2. Из таблицы узнаем, что вывод катода второго разряда – это вывод 13 на индикаторе, а анодам сегментов a, b, c, d, e, f, g соответствуют выводы 11, 10, 8, 6, 5, 12, 7. Вывод первого катода – 14. Но анодов для него всего 2: это сегменты b и c (15 и 3 выводы соответственно). Это значит, что на первом разряде можно засветить только цифру 1. Остальные выводы неподключенные (это немаловажно, т.к. позже я через них буду проводить дорожки, не боясь что-либо закоротить).
3) И напоследок:



Убеждаемся, что ток 1 сегмента должен быть 20mA (это стандартная величина для подобных дисплеев и обычных светодиодов. На основе этой величины подбираем сопротивления, для ограничения тока.

Далее составляем принципиальную схему:





Программная часть:


Читайте также: