Резонансный блок питания своими руками

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

Нашёл только одну статью на тему об резонансных компьютерных блоках питания, но даже в ней не указывается модель. Наверняка рынок предлагает много таких моделей, прошу посоветовать. Как их различить от обычных?

Вот интересно .
А если параллельные емкости ?
Формирование 2 различных полуволн?
На СВЧ печке вроде видел .
.

На некоторых правильных форумах за ссылку на ресурс, требующий обязательной регистрации для просмотра, - банят.

А обязательно именно резонансных? У меня, например, 2 фазовых. Они делают из HV +12, а остальные DC получаются индивидуальными DCDC из +12. В этом смысле есть несколько интересных пластов АТХ, на которые особо не смотрят (нам в Дубае вообще с трудом удалось купить АТХ при том, что портативных ПК и всяческих питателей к ним на каждом углу навалено). Я говорю об АТХ без выравнивающего дросселя и/или о безвентилляторных версиях.

Мне АТХ были интересны в один международный проект, где питание может быть любым (от Японии, до Бразилии). И мне казалось самым правильным применить БП, который можно купить в местной лавке. В крайнем случае привезти свой БП, а провод купить на месте. В общем-то, все получилось. Но чуть сложнее, чем я думал. У меня есть хороший специалист по преобразователям до 100кВт. Разрабатывал все, от LED токовых драйверов без пульсаций, до БП для лазеров и рентгена. И топологии самые разные пробовали. Включая резонансные с применением экзотических ключей. Мне не удается загружать его задачами и на досуге он чинит АТХ для местной лавки. По 1000 руб за штуку. За день штук 5-10 успевает. Поэтому было очень логично попросить его выбрать модели, наиболее удачные для моего проекта, т.к. у меня нагрузка по 5В не гарантирована, а навешивать ТЭНы некрасиво.

Где-то был файлик со ссылками на рекомендуемые модели. Все оказались труднодоступными в России и все с ценником выше 100 долларов. Если интересно, поищу. Но последний прибор у меня купили пару лет назад и, возможно, информация уже неактуальна. Но, повторюсь, в поиске с позиции пользователя можно ориентироваться на отсутствие выравнивающего дросселя и активного охлаждения. Есть большая вероятность, что это высокоэффективный БП с синхронным выпрямителем, квазирезонансом и прочими топологиями с малыми потерями.

А зачем оно вам вообще надо? Типа, меньше греется? Как показывает опыт , далеко не всегда. Периодически имею дело с квазирезонансниками в БП кинескопных ТВ - обычно это на микросхеме от Sanken/Allegro. Дерьмо ещё то. Греются как все, дохнут - часто. Никаких таких преимуществ в кпд, надёжности и проч - нет. Есть св/аппараты на резонансе - "легендарные" "Линкоры" - видеть их не хочу, их можно ремонтировать всю оставшуюся. Обладаете необходимой квалификацией и идеями как это сделать хорошо - флаг в руки. Только здесь советчики не очень, за Вас точно ничего не сделают - только Вы сами.

Georg77, ой линкор это ваще жопа из всех жоп. Его наверно обезьяны проектировали. Такого кала я не встречал больше.
Схема на рассыпухе плеять это ваще как и зачем.
У меня был один очень давно.
Привез на дачу, включил и угадайте что.
Он моментально сгорел выпустив обильный столб дыма.
Попробуйте сжечь ибп на uc3845. Правильно старичок написал - оно не сгорает даже если их транса сердечник вынуть

Начинаем цикл публикаций, посвященных LLC-преобразователям. В данной статье содержится вводная информация по теме LLC-преобразователей, рассматриваются особенности LLC-схемы, обещающей огромные преимущества, начиная от уменьшения или даже устранения потерь при переключениях.

Недавно мне довелось разбираться со схемой резонансного полумостового LLC-преобразователя, и я подумал, что этот опыт можно использовать для создания серии статей: начать с описания основ и постепенно углубляться в тему. Мне потребовалось достаточно много времени для ознакомления с публикациями, диссертациями и руководствами, прежде чем я разобрался с работой этой схемы. Вышло так, что изучение источников информации, приведенных в списке литературы, заняло больше времени, чем написание самой статьи. Обратите внимание, что ни в одном из приведенных источников не сделан полный анализ работы этого преобразователя, имеющего много различных режимов и условий работы. Надеюсь, вы сможете получить общее представление о работе схемы с моей помощью. Эта помощь будет заключаться в фильтрации информации и акцентировании внимания на наиболее важных ключевых моментах предлагаемых документов.

DC/AC резонансный преобразователь

Рис. 1. DC/AC резонансный преобразователь

DC/AC резонансный преобразователь с трансформаторной развязкой

Рис. 2. DC/AC резонансный преобразователь с трансформаторной развязкой

LLC-преобразователи являются разновидностью импульсных преобразователей напряжения (Switched Mode Power Supply, SMPS). Большинство публикаций по данной теме начинается с описания основных принципов работы LLC. Я же начну с того, что объясню, чем LLC отличается от других типов импульсных преобразователей.

  • Работа обычного импульсного преобразователя состоит из двух фаз. В первой фазе происходит запасание энергии в индуктивности. Во второй фазе накопленная энергия расходуется для поддержания тока. Вы наверняка помните, что, согласно законам коммутации, ток в индуктивности не может измениться скачком (в случае корректной коммутации), точно так же, как и напряжение на конденсаторе. Этот принцип является основой работы большинства импульсных преобразователей.
  • Работа LLC-преобразователя основана на создании синусоидального тока, который выпрямляется и запасается в большом конденсаторе. Индуктивность используется не для простого накопления энергии, а выступает в качестве резонансного элемента. Она выполняет функцию фильтра, который помогает преобразовать прямоугольный сигнал в синусоидальную форму, тогда как индуктивность намагничивания все еще работает с традиционным током треугольной формы. Это одна из особенностей, которая нуждается в дополнительном пояснении.

С рабочими режимами в LLC-преобразователях все оказывается еще сложнее, поскольку они имеют множество отличий:

  • вместо того чтобы работать с фиксированной частотой коммутаций и изменять коэффициент заполнения ШИМ, LLC-преобразователи изменяют частоту, а коэффициент заполнения ШИМ постоянен и составляет 50%;
  • передача энергии в LLC-преобразователях основана на рабочей точке индуктивности намагничивания;
  • в LLC-преобразователях используется переменная скорость изменения напряжения в зависимости от тока нагрузки;
  • в них есть две резонансные частоты, которые влияют друг на друга;
  • режим непрерывного тока (Continuous current mode, CCM) для LLC-преобразователей относится к току выпрямителя, а не индуктивности, поскольку традиционная индуктивность в схеме отсутствует.

Большая часть сказанного выше может показаться сложной и непонятной, особенно для тех, кто только начинает знакомиться с силовой электроникой. Во второй части данной публикации будут рассмотрены основные источники информации, а также некоторые ключевые моменты, которые я считаю полезными. Однако рассказ о резонансных преобразователях требует рассмотрения некоторого базового вводного материала.

Импульсные регуляторы произвели революцию в области преобразования постоянного напряжения и преобразования мощности в целом. Инженеры быстро поняли, что комбинация из силового ключа, выпрямителя, индуктивности и конденсатора может с высокой эффективностью выполнять конвертацию напряжения даже при большой разнице между уровнями напряжения на входе и выходе (рис. 1). Кроме того, трансформаторы могут решить проблемы гальванической развязки и согласования большой разности уровней напряжения (рис. 2).

В идеальном мире преобразователей мощности все было бы хорошо, но, как часто бывает в реальной жизни, решение одной проблемы в конечном итоге создает проблемы в других областях. Например, геометрические размеры импульсного преобразователя во многом определяются рабочей частотой коммутаций, поэтому, если требуется уменьшить габариты электроники, то необходимо поднимать частоту. Кроме того, от преобразователей напряжения требовалось постоянное увеличение выходной мощности. Повышение частоты переключений в сочетании с ростом импульсных токов и напряжений приводили к хаосу из-за появления звонов, которые, в свою очередь, были вызваны паразитными составляющими самой схемы при работе с прямоугольными импульсами.

Для борьбы с описанными явлениями были созданы резонансные схемы с переключениями при нулевых токах (Zero Current Switching, ZCS) и нулевых напряжениях (Zero Voltage Switching, ZVS). Они оказываются менее чувствительными к паразитным составляющим. Однако главная проблема резонансных схем заключается в том, что резонанс ограничивается определенной частотой, которая приравнивается к части ширины импульса или времени включения/ выключения преобразователя. Увеличение входного напряжения или колебания тока нагрузки приведут к работе вне настроенной резонансной частоты.

Используемые в схемах компоненты также имеют собственные паразитные составляющие, которые могут варьироваться в зависимости от конструкции, рабочей точки и проводящего рисунка платы. В этом смысле LLC-преобразователи дают больше свободы, хотя они также имеют ограниченный диапазон рабочих частот и теряют эффективность при работе на частотах, отличных от настроенной частоты f1. Вы можете спросить: о какой частоте f1 идет речь?

Теперь, когда приведены базовые особенности работы импульсных резонансных преобразователей, дадим краткое описание используемых источников информации.

Лучшим способом облегчить себе жизнь при изучении работы LLC-схем будет ознакомление с руководством от компании ON Semiconductor [2]. Это руководство начинается с уравнения делителя напряжения, с помощью которого, используя значения импеданса двух катушек индуктивности LL и конденсатора C в сочетании с сопротивлением нагрузки, объясняется принцип работы LLC-преобразователя (рисунки 3, 4). Обратите внимание, что две индуктивности представляют собой индуктивности утечки и намагничивания трансформатора. Они образуют резонансную цепь накопителя с дополнительной последовательной емкостной составляющей. В случае с LLC величина паразитной выходной емкости MOSFET (или Coss) не играет большой роли в отличие от обычных резонансных преобразователей с ZVS и ZCS.

Делитель напряжения

Рис. 3. Делитель напряжения

Делитель переменного напряжения с резонансным элементом

Рис. 4. Делитель переменного напряжения с резонансным элементом

Первая ссылка в списке литературы указывает на докторскую диссертацию Бо Янга "Topology Investigation for Front End DC/DC Power Conversion for Distributed Power Systems" [1]. В ней можно найти ссылки на другие публикации, которые помогут разобраться с темой LLC и самой диссертацией. Обратите внимание, что в первой ссылке есть подссылки на четвертую часть диссертации, а также на Приложение B, где приводится важный график напряжения (эта ссылка содержит Приложения от A до D и дополнительные ссылки). Хотя этот график приводится в большинстве источников, его создание потребовало от меня напряженной работы и заполнения некоторых пробелов в знаниях (рис. 5).

Зависимость коэффициента усиления преобразователя от величины fs/fr

Рис. 5. Зависимость коэффициента усиления преобразователя от величины fs/fr

Ссылки 3 и 4 оказали мне решающую помощь при построении графика усиления преобразователя, поскольку в них отмечалось влияние емкостной составляющей на коэффициент передачи и объяснялось, почему отрицательный импеданс вносил неразбериху в графики. Более подробно мы поговорим об этом в одной из последующих статей данного цикла.

Ссылка 5 – руководство от Infineon, которое содержит подробное описание наиболее полезных шагов, выполняемых при проектировании. В этом документе сравниваются особенности переключений и выпрямления в мостовой и полумостовой схемах, а также - связанные с ними компромиссы. Я использовал мостовую и полумостовую схемы для объяснения, как связанны напряжение и ток. В мостовой схеме полевые МОП-транзисторы каскадируются для получения требуемого напряжения. Параллельное включение транзисторов необходимо для увеличения нагрузочного тока. Обычным требованием для импульсных регуляторов напряжения является исключение постоянной составляющей подмагничивания, чтобы не допускать насыщения трансформатора. Как упоминалось ранее, LLC-преобразователи отличаются тем, что мост им нужен для создания положительной и отрицательной полуволн сигнала, который, проходя фильтрацию, принимает синусоидальную форму.

Ссылка 6 от Fairchild – единственная среди найденных мной ссылок, в которой уравнение усиления также включает вторичную индуктивность рассеяния. Обратите внимание, что вторичная индуктивность рассеяния, а также сопротивление нагрузки отражаются через трансформатор и, таким образом, могут быть подстроены за счет изменения соотношения числа витков обмоток. В данном руководстве содержится ряд ключевых советов, которые помогут в разработке реальной схемы.

В документации от Infineon/Fairchild также подробно описывается конструкция трансформатора. Поскольку резонансная настройка LLC основывается как на индуктивности рассеяния, так и на намагничивающей индуктивности трансформатора, эта информация в нашем случае оказывается бесполезной.

Наши университетские друзья в Колорадо поделились некоторыми сведениями о преобразовании мощности. В частности, в курсе электротехники ЕЭК 562 Colorado State можно найти множество примеров моделирования, выполненных в MATLAB.

Говоря о моделировании, стоит отметить, что во многих источниках приводятся ссылки на модели SPICE. Я не отдаю предпочтение какой-либо конкретной ссылке и считаю, что, изучив их, можно убедиться в существовании различных режимов работы LLC-конвертера. Но стоит вновь отметить, что у LLC есть множество отличий от традиционных импульсных преобразователей.

Опытный образец, с которым я работаю, создан компанией Texas Instruments. Благодаря корректору коэффициента мощности эта система обеспечивает стабильную работу со входным напряжением 400 В DC. Исследование образца показало допустимость больших колебаний тока нагрузки и продемонстрировало влияние тока на рабочую точку и резонансную частоту.

В заключение хочется отметить, что если вы думаете, что сможете в разных статьях найти одинаковые уравнения для определения коэффициента усиления, то вы ошибаетесь. Использование переменной M позволяет учитывать факторы, отличающиеся в каждой конкретной статье, руководстве, диссертации, учебном курсе. Если у меня будет время, я составлю сравнительную таблицу, чтобы показать, чем они отличаются.

Данная статья могла показаться длинной и неконкретной. В ней содержится только вводная информация по теме LLC-преобразователей. Но теперь у вас есть ссылки для ознакомления с особенностями LLC-схемы, обещающей огромные преимущества, начиная от уменьшения или даже устранения потерь при переключениях. Вы также можете исключить огромную катушку индуктивности, поскольку она уже включена в трансформатор. Потребуется несколько статей, чтобы рассмотреть все эти преимущества.

Обычно я придерживаюсь принципа, что чем меньше в схеме деталей, чем она проще, тем она надежнее. Но данный случай - исключение. Те, кто проектировал и собирал схемы мощных повышающих преобразователей напряжения с 12 / 24 вольт на 300 (например), знают, что классические подходы тут работают плохо. Слишком велики токи в низковольтных цепях. Использование схем с ШИМ приводит к возникновению коммутационных потерь, которые моментально перегревают и выводят из строя силовые транзисторы. Внутреннее сопротивление силовых ключей является серьезной помехой применению схем с конструктивным ограничением коммутационных потерь, таких как мостовые и полумостовые схемы.

Приведенная схема основана на разделении функции повышения напряжения и его стабилизации в разных каскадах. При таком подходе мы получаем возможность самый проблемный блок - инвертор - заставить работать в резонансном режиме при минимальных потерях на силовых ключах и выпрямительном мосте в высоковольтной части схемы. А стабилизация выходного напряжения осуществляется в блоке СТ, который собран по простой повышающей топологии. Сейчас его схема не приводится, о нем будет отдельная статья. С его выхода снимается стабильное нужное напряжение.

Принципиальная схема резонансного преобразователя напряжения

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Ф - фильтр импульсных помех. Он снижает радиочастотные помехи от работы устройства. Так как инвертор работает в резонансном режиме, то эти помехи и так невелики. Можно попробовать использовать его без фильтра. Об устройстве и расчете таких фильтров будет отдельная статья.

Конденсатор C1 - Батарея конденсаторов общей емкостью 88 000 мкФ. Четыре электролитических конденсатора по 22 000 мкФ 25 В и керамический конденсатор на 4 мкФ, соединенные параллельно. Соединение надо выполнять так, чтобы ток равномерно распределялся между конденсаторами. Длины проводников к каждому из них должны быть равны.

Конденсатор C2 - Электролитический конденсатор 1 000 мкФ 25 В.

Микросхема D2 - Интегральный стабилизатор напряжения на 10 вольт с малым внутренним падением напряжения.

Диод VD1 1N4001 - например, или любой другой выпрямительный маломощный диод на 25 вольт, защищающий стабилизатор от обратного напряжения при выключении питания, которое возникает за счет разряда конденсатора C2.

Конденсатор C3 - 0.1 мкФ керамический конденсатор.

Конденсатор C4 - 1 - 2 нФ керамический конденсатор. Подбираем для получения нужной частоты.

Резистор R1 - Подстроечный резистор 100 кОм.

Микросхема D1 - ШИМ контроллер (1156ЕУ2 или UC1825, или UC2825, или UC3825). Мы его используем немного нестандартно - в качестве формирователя сигнала и драйвера силовых ключей.

Диоды VD2, VD3, VD4, VD4 - Диоды Шоттки. 1N5818 или 1N5819. Эти диоды установлены, так как эксперименты показали, что в некоторых критических случаях, вероятно, за счет внутренних емкостей силовых полевых транзисторов на выводах 14 и 11 контроллера возникает напряжение выше напряжения питания или ниже нуля, что приводит к сгоранию микросхемы. Для повышения надежности установлены эти диоды, шунтирующие выбросы на шины питания и земли.

Резисторы R2, R4 - 20 Ом 1 Вт. Резисторы R3, R5 - 100 Ом 1 Вт.

Диоды VD6, VD7 - Диоды Шоттки 1N5822

Конденсатор C5 - Нужно подбирать под индуктивность рассеивания трансформатора. Можно начать с 0.1 мкФ 2000 В. В результате резонанса на этом конденсаторе может возникать напряжение, в разы превосходящее выходное. Так что по напряжению лучше иметь запас.

Трансформатор - Для 12-вольтового варианта первичная обмотка содержит две половинки по 3 витка, вторичная - 64 витка. Для 24-вольтового варианта первичная обмотка содержит две половинки по 4 витка, вторичная - 42 витка. Подробнее о его изготовлении читайте далее.

Мост М - мост из мощных быстродействующих диодов на 600 В. Мы собираем этот мост на диодах 30EPF06.

Конденсатор C6 - Электролитический конденсатор 100 мкФ 400 В.

Полевые транзисторы VT1, VT2 - IRFP2907

Приветствую! Как я понял со схемы, все лимитеры ИС отключены. Схема совсем не защищена от перегрузок? Как схема реагирует на перегрузки по току в нагрузке? Заранее благодарю за ответ. Читать ответ.

Здравствуйте! для питания Катушки Теслы использую блокинг генератор на строчнике. Но транзистора хватает максимум на 30 сек сгорает даже при радиаторе 300кв.см и куллере,Что можно предпринять для того чтоб транзисторы не грелись (хотя ясно что они будут так как первичка 8 витков 4кв.мм) или посоветуете другую схему использовать? Читать ответ.

Добрый день! Продумываю применение Вашей схемы для ситуации построения мощного DC/DC (Uвх.=12В / Uвых.=22-24в), Iн - 100-150А. Если правильно понял, изменится количество витков вторичной обмотки и будет = числу витков для случая с низковольтным входом = 24В? Так как ток в нагрузке нужен 100-150А при U = 24В, необходимо параллельное соединение блоков по вышеприведенным реком Читать ответ.

Здравствуйте! Обращаюсь к вам с необычной просьбой: не могли бы Вы помочь разобраться с функциональной схемой и подобрать что-нибудь из Ваших практических? (Вообще-то это диплом студентки-вечерницы) С уважением, Валентин Читать ответ.

Цитата: 'В итоге транзисторы закрываются в такие моменты времени, когда ток равен нулю'. Насколько я помню физику этой галактики, ток будет равен нулю в одном и только в одном случае! Если напряжение тоже будет равно нулю! То есть глядя на вашу схему принцип работы такой: Заряжаем С1 (90 000мкф О_о. ), включается допустим верхний по схеме ключ. и ждем пока напряжение н Читать ответ.

Здравствуйте! Для увеличения мощности Вы советуете набирать блоками, но если сделать один блок управления, один трансформатор на максимальную мощность, а первичку разделить на две секции и каждую запитать своим транзистором, поставив при этом переключатель на одну пару транзисторов по затвору, получив при этом мощность Р из Р/2 Читать ответ.

Здравствуйте! Я хотел бы спросить, у вас нет печатной платы в программе Sprint-Layout6. Если есть, сбросьте, пожалуйста. И насчет обмоток трансформатора, не могли бы нарисовать, как будут укладываться обмотки. И если можно посмотреть на фото готового трансформатора. Читать ответ.

Здравствуйте! Не подскажете, при входном питании 29-30 вольт надо пересчитывать трансформатор или подойдет вариант 24в? И еще вопрос - сердечники нашлись у меня без зазора, материал не известен - это принципиально? . Читать ответ.

Здравствуйте. После удачного повторения генератора синуса на 40кГц, постепенно подбираюсь к повторению резонансного инвертора с генератором синуса. На данный момент идет подбор деталей. Начали возникать вопросы. На входе инвертора стоит фильтр. Нужен ли он вообще, при питании от АКБ? При силе тока, к примеру 100А провод необходим приблизительно диаметром 4.5мм. Это ж какое кол Читать ответ.

Здравствуйте! Нагрузка лампочка 25Вт, надеюсь, что получил резонанс. Высылаю Вам картинки, посмотрите. Вопрос по схеме 'Импульсный преобразователь, источник синусоидального напряжения. ' в место UC3823 можно поставить UC3825? Как изменения в схеме. Читать ответ.

Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная.
Расчет и применение колебательных контуров. Явление резонанса. Последовательные .

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Повышающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Расчет силового резонансного фильтра. Рассчитать онлайн, он-лайн, on-l.
Как получить синусоидальное напряжение на выходе при входном напряжении сложной .


Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.


Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.


Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:


2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:


Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:



3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.



Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:


Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:


Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.


При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317


или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).


Вот и корпус будущего бп уже практически готов:



Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже


Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.


Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.


Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:


2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:


Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:



3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.



Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:


Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:


Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.


При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317


или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).


Вот и корпус будущего бп уже практически готов:



Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже

Читайте также: