Ремонт vp30 своими руками

Добавил пользователь Alex
Обновлено: 16.09.2024

В видео представлен разобранный ТНВД Bosch VP30 с номером 0470004004 (0470004012) от Ford Transit (Форд Транзит) .

В Бош-сервисе объявили цену в 15к. Решил попробовать сделать своими силами, вот что из этого вышло. Заходи в гости!

Подсосы воздуха. К чему они приводят и как с ними бороться. Ставим насос подкачки на Ford Transit 2002 2.0 D3FA.

Bosh VP-44 регулировка, bosh vp44 ремонт, ремонт тнвд bosch своими руками. На видео мы поговорим как грамотно .

Плюс у нас не очень она приспособлена под ремонт насоса ну мы сделаем своими руками там дома в гараже с друзьями .

Также осуществляем ремонт ТНВД Bosch VP30 / VP44 (Бош ВП30 и ВП44) в Санкт-Петербурге в кратчайшие сроки, .

Диагностика показала P1630 и P1651. транзистор IRLR2905 Лучше покупать в смд корпусе. Вацап 89510729999 по поводу .

Всем привет! Решил написать отчет по самостоятельному ремонту ТНВД Bosch VP44, номер 059 130 106D, авто Audi A8 D2 2.5tdi V6, но данный насос куда только не ставился, Audi A4, A6, VW, BMW, Opel, на фуры Часто ломается - поэтому я думаю информация не повредит.
Никакого опыта по ТНВД не имел - поэтому засыпал вопросами специалистов на разных форумах - спасибо всем, кто помог советом!
Большую роль сыграл Отчет владельца Опель Вектра - Митрофана (спасибо). Ход процесса разборки там отображен.
Хочу рассказать о своем опыте и собственных "граблях", чтоб по ним никто не прыгал лишний раз.

Итак, у вас после прокачки грушей или чем-либо с форсуночных трубок при прокрутке стартером ничего не давит - значит вам сюда, у вас проблемы с механикой: самый вероятный вариант - повреждение мембраны (либо рез. колец), второй вариант - дефект подкачивающего насоса. Все это увидите позже на фото.
У кого все исправно - тут вы сможете рассмотреть ТНВД со всех ракурсов, в т.ч. его самые интимные места

Для начала, пока насос на машине - выставляем ГРМ и ТНВД в "базовое" положение, чтоб отверстие под стопор совпало с отверстием на шкиве (фонариком светим), вращать ГРМ можно или за коленвал или за распредвал (но усилием не более 75 Нм (!), плавно, с паузами либо коробкой передач, вывесив морду, вращая колесо. Затем ослабляем гайку на 27мм зубчатого колеса, ставим четкую метку на валу и зубчатом колесе. Она нам может понадобиться при обратной сборке. Само зуб. колесо крепко сидит на "конусе" - оно даже без гайки не сдвинется ни на грамм, его пока что спрессовывать не надо, пока что нам нужна только метка шилом:


Решение о том, спрессовывать его или нет - примем позже (чтоб не делать лишней работы).
Затем откручиваем насос с авто - штуцера закрываем чем-либо и тщательно промываем "кёрхером", потом обдуваем местами очистителем карба и продуваем сжатым воздухом, чтоб меньше грязи было при разборке:



Откручиваем "мозги" и 2 эл. клапана (подробности у Митрофана), для этого нам понадобятся Torx 10,25,30 (позже еще Т20 возможно). Перед тем, как откручивать, постучите мелким молоточком в Torx, если не идет - лучше продолжить стучать, ибо когда сорвете грани - придется сверлить и вбивать биту "M".


При вытаскивании центрального клапана (отверткой как рычагом) нужно следить за тем, чтоб он выходил без перекоса, если перекашивает - назад заталкиваем и снова пробуем поддерживая снизу.

Затем подводим зубчатое колеса (которое пока крепко сидит на конусе) к метке, в которую вставляется стопор (или, как для колхоза, сверло 6мм), откручиваем T50 болт, убираем шайбу под ним и закручиваем до упора, тем самым блокируя перемещение вала, стопор вынимаем:


При этом задняя часть будет в таком положении:


Далее для извлечения распределительной головки по Митрофану распираем-раскачиваем отвертками, но я, чтоб не портить ал. корпус просто упирался отверткой и сбивал молоточком:


Извлекаем распределительную головку и видим тот самый дефект, из-за которого давление пропало - повреждение наружной пластиковой части мембраны:


Если вы увидели такую картину (либо просто трещинку) - то дальше разбирать не надо - меняем мембрану и резиновые кольца и собираем назад. Ремкомплект мембраны Bosch 1 467 045 032 . Но есть важные нюансы, читаем Здесь

Поскольку я сразу по неопытности не заметил - разобрал дальше:


Далее для извлечения подшипника по Митрофану - тянем толстой проволкой, я просто подстелил газету на пол и ударил корпусом - по инерции подшипник и 2 шайбы вышли:


Затем нужно открутить заглушку, завернуть верх бумагой или тряпкой и вырвать клещами:


Выколотками или чем сподручным поворачиваем кулачковую шайбу и поршень в то положение, при котором кул. шайба выдвинется вверх (на фото ее нужно повернуть чуть по часовой и она поднимется):


После извлечения кул. шайбы - вытаскиваем поршень - вот как он выглядит со всех сторон (если плохо выходит - его можно раскачивать выколотками за 2 отверстия, которые на фото слева вверху, только вглубь отверстия не сунуть):


Теперь спрессовываем зубчатое колесо с вала (при этом вал "поджат" Torx50, о котором упоминалось выше, иначе при снятии вал выстрелит, как пуля - можно повредить и вал и корпус). Понадобится ХОРОШИЙ съемник, усилие ОГРОМНОЕ, под лапы съемника подкладываем хорошие куски тряпок, чтоб не оставить "замятин".

После спрессовки ослабляем Т50 и достаем вал.


. и шайбу (что под ним). Остается в корпусе подкачивающий насос.
Теперь при помощи Т20 откручиваем болты (нужен длинный и тонкий Т20, желательно):


Его желательно "вытряхнуть" ударом корпуса о газету - тогда он выпадет "в сборе". Если пытаться подтолкнуть сзади пальцами - то скорее всего выпадет "по частям", это плохо:


Как говорят, что нежелательно путать местами лопасти, иначе могут подклинивать на оборотах.
Еще фото его:


Он исправен, единственное есть небольшой дефектик - выкрашивание, но это не криминально:


В корпусе теперь так:


Подкачивающий насос взял с запасного насоса-донора, он выпал "в сборе", промываем оч. карба:


Затем пустой корпус промыл "керхером" (не поднося вплотную к каналам), затем оч. карба по каналам и сжатым воздухом высушил. Чистота:



Подкачивающий насос (донорский) устанавливаем на место:


Ложим шайбу и вставляем вал (на фото шайба висит на валу):


Зубчатое колесо готовим к установке:


Совмещаем его по нашей отметке-царапине с валом, затем вращаем до совмещения отверстия под стопор и блокируем Т50:


Слегка (!) набиваем зуб. колесо на вал, слегка наживляем гайку на 27мм. Подкладываем на стол каталоги и демпфер зуб. колеса, чтоб расположить ТНВД удобно для дальнейшей сборки.
При этом картина такая, вал заблокирован в "базовом" положении:


Поршенек взят с донорского насоса, царапинки немного подшлифовал нождачками Р800, 1500, 2000. Желательно и саму втулку в корпусе ТНВД подшлифовать Р2000 (но это перед мойкой).


Как видно слева - поршневое кольцо мешает сборке - просто оборачиваем поршень пластиковой пленкой, сжимаем пальцами и сунем:



А вот и сама кулачковая шайба, вот эти 2 штырька и надо "ввести" в отверстия:


Вот и соединили:



Ложим шайбы (которые выпали вместе с подшипником в начале отчета) нижняя - надписями вниз, верхняя - надписями вверх:


Подшипник медленно забиваем по кругу на место выколоткой (конец замотать малярной лентой или чем смягчающим)


Затем надо поставить ролики с их держателями на место. Слева 2шт. с донорского, справа 2шт. с основного насоса, чуть отличаются внешне, но по размерам вроде как взаимозаменяемы:


Заводим 2шт. в пазы (до конца, на фото еще частично выглядывает):


Теперь нужно вставить распределительную головку - она донорская, с "правильной" старой цельнометеллической мембраной без пластика на краю, которую сложно сломать (по этому Бош и заменил ее на полу-пластиковую, чтоб потом ломалась и торговать г-ном). Промыта оч. карба, еще не высохла:


Дальше я ее вставил - и обнаружил что рукой вал крутиться лишь на 1/4 и клинит, пришлось достать и мучать мозг. Оказалось, что тут тоже подляна от Боша - в двух насосах с одинаковым номером - разной длины ролики, вот эти ролики (там 2 шт. в отверстии):


Примерно на 1мм больше:


Поставил "короткие" ролики - все стало крутиться легко.
Поэтому обращайте внимание на это при сборке. Кулачковую шайбу и ролики использовать с одного насоса или внимательно сравнивать.

Распр. головка мягко ставится на место последовательной подтяжкой болтиков:


Соединяем "мозги" Т10:


И 2 эл. клапана возвращаем в свои логова. Все резинки ТНВД при сборке смазать смазкой, чтоб не поджевало!
Блокировку Т50 не забываем убрать и вернуть шайбу! Вал можно еще чуть подбить головкой и слегка закрутить гайку на 27мм.

Ставим под капот, все подключаем, прикручиваем все на авто, вешаем ремень - Seric в помощь: раз и два. Нас интересует только то, что про ремень ТНВД.

Когда ремень натянули - зажимаем гайку 27мм окончательно, я 90Нм затянул.

Завел! (пусть и не сразу и с некоторой морокой), работает:


Потом когда кабель приедет (с Китая ) - подстрою параметры (цикловая подача и угол впрыска) по показаниям компьютера (VAG-Com). Ну а пока езжу, разгоняется ОК!


P.S. Когда-то давно по неопытности открутил штуцера с донорского насоса - абсолютно ненужная, бесполезная операция, но тогда я не знал и откручивал все, что вижу . А теперь его распр. головка пущена "в дело" и назад штуцера не затянуть на "продавленные" медные шайбы - будет протекать.



Пришлось взять 2 куска толстого железа, положить между ними мед. шайбу и на наковальне тисков легкими ударами молотка придать ей прямую форму. Затем шайбы зашлифовал нождачкой на бруске (с грубой и до Р800), чтоб убрать "след" от штуцеров. После гладкие и красивые шайбы по очереди вешаем на кусок толстой стальной проволки с загнутым концом, греем огнем до красного цвета и кратковременно несколько раз погружаем в холодную воду. Если погрузить на 1 раз и держать - ее сильно деформирует, а когда серией из нескольких максимально коротких погружений - остается прямой (или почти прямой).
После отжига:


Затянул штуцера усилием 65Нм, лучше зажать головку в тиски, ухватившись за чугун ибо немного страшно было тянуть, опираясь на 4 болтика, вкрученных в ал. корпус. Со своей задачей отожженые шайбы - справляются, не подтекают.

Еще раз спасибо всем за помощь! Хотелось бы дополнить отчет различными нюансами (моменты затяжки, информацией про транзистор и т.д.) - постепенно я думаю дополним и если нужно, подправим отчет.

Всем желаю поменьше поломок ТНВД, а уж если случится - то успешного, по-возможности бесплатного ремонта своими руками без лишних операций!

Petrovi4

  • Ответы 38
  • Создано 8 г
  • Последний ответ 2 г

Лучшие авторы в этой теме

Petrovi4 13 публикаций

капер 5 публикаций

biligor 5 публикаций

Borman1971 5 публикаций

Популярные дни

Популярные публикации

biligor

Да не за что Петрович . Людям может понадобится мой опыт по ТНВД . Шестерни Крутил не долго Торцевик на 41 - метки главное совместить с с с и через зеркало смотреть совмещение бешенной шестеренки

biligor

День добрый ! Перебрал ТНВД - Собрал не правильно . Подкачивающий насос перевернул наоборот . Будьте внимательны ! Вынул насос , поставил его правильно . Установил на дизель , завел . Работает - ошиб

peppers

peppers


Система EPIC фирмы Lucas с роторным ТНВД - наиболее совершенная, сложная и оригинальная система с электронным управлением фирмы Lucas (EPIC - Electronicaly Programmed Injection Control) . Она разработана фирмой в конце 70-х годов и изначально нацеливалась на снижение эмиссии ВВ. Она применяется на легковых автомобилях, микроавтобусах и вседорожниках с числом цилиндров 3,4 и 6 и рабочим объемом одного цилиндра менее 0,75 л. На дизелях с открытой камерой сгорания система появилась с 1987 г. (2,5 - литровый четырех цилиндровый дизель Ford Transit).

Система управления собирает информацию от датчиков давления наддува, температуры воздуха, температуры охлаждающей жидкости, частоты и положения коленчатого вала, положения педаль акселератора, педали торможения, положения клапана рециркуляции, скорости автомобиля, хода иглы, встроенных в ТНВД датчиков положения регулирующих элементов подачи и кулачковой шайбы, температуры топлива, частоты вала и положения вала ТНВД.

СУ включает два процессора со скоростью работы в 250 операций в секунду, один из которых управляет работой дизеля по заложенным многомерным характеристикам, а другой следит за работой первого. СУ выполняет следующие функции :

• управление УОВТ: он оптимизируется в зависимости от различных условий работы и записывается в память. УОВТ и частота холостого хода плавно повышаются при

снижении температуры охлаждающей жидкости. Управление УОВТ решающим образом влияет на эмиссию ВВ и надежность пуска;

• адаптивное управление подачей по цилиндрам в соответствии с неравномерностью допусков, износом цилиндров и ТА. Так, при n=750 об/мин до введения индивидуального дозирования подач колебания частоты составляли 12,5 об/мин, а после введения были снижены до 2,5 об/мин. В результате обеспечена устойчивость, снижены частота вращения, шум,вибрации;

• управление наддувом для снижения выбросов ВВ осуществляется по трем каналам: изменением геометрии проточной части, управлением клапаном байпаса охладителя, регулированием рециркуляцией ОГ;

• управление рециркуляцией ОГ в функции частоты вращения вала; температуры и нагрузки дизеля, при температуре охлаждающей жидкости 60. 110С и n

• обеспечение быстрого бездымного разгона автомобиля за счет алгоритма управления, допускающего кратковременный форсаж дизеля. Двухэтапное увеличение цикловой подачи обеспечивает отсутствие колебаний от первого этапа наброса нагрузки. На режиме принудительного холостого хода при n>1500 об/мин подача топлива в цилиндры прекращается;

• предпусковая подготовка и прогрев после пуска при повышенной частоте вала. Чем выше температура воздуха, тем меньше пусковая подача;

• круиз-контроль (поддержание скорости автомобиля); взаимодействие с системами ав-томобиля (с антиблокировочной и антипробуксовочной, автоматической трансмиссией, кондиционированием, антиугонным устройством и т.д.);

• самодиагностика СУ и контроль показателей периферийных устройств, контрольные лампа на щитке по серьезным неисправностям и диагностический разъем для работы с электронными мотор-тестерами. Все основные команды контролируются на выполнение, в случае неисправности включается аварийная программа управления, например, сигнал датчика частоты вала замещается сигналом хода иглы.

Для высокооборотных дизелей системы EPIC выпускаются в двух основных модификациях. Для дизелей с открытой камерой - EPIC-80 - имеет диаметр кулачковой шайбы 80 мм, 4 плунжера, обеспечивает давление впрыска Р=95 МПа. Для предкамерных дизелей EPIC-70 соответственно: 70 мм, 2 плунжера, 35 МПа.

Общий вид ТНВД систем EPIC представлен на рис. 1.1. Его корпус закрепляется на двигателе с помощью средних опор 17 и переднего адаптера 28, допускающих поворот ТНВД вокруг оси для предварительной установки УОВТ. Приводной вал 27 на подшипни­ках 26 и 20 приводит во вращение роторно-лопастной ТПН с четырьмя подпружиненными лопастями. Они обеспечивают уже при пусковой частоте коленчатого вала 180 об/мин дав­ление подкачки 0,3 МПа, а свыше 500 об/мин - 0,8. 0,9 МПа. Вал несет перфорированное кольцо 21 для измерения датчиком 19 положения вала. Вал заканчивается клиновыми за­хватами, приводящими во вращение соосно расположенный далее по длине насоса ротор11. Это сопряжение изображено на рис. 1.1. Ротор снабжен прецизионными отверстиями под два или четыре плунжера 18 и пазы под роликовые толкатели 24. Их ролики обкатыва­ют внутренний профиль кулачковой шайбы 16, которая заставляет их сходиться для нагне­тания топлива. Ротор снабжен тремя продольными разгружающими пазами (из них на рис. 1.1 видны два спаренных). Кроме того, ротор имеет продольный паз-распределитель (на рис. 1.1 показан пунктиром). Только последний сообщен с плунжерной полостью. Так, при схождении плунжеров распределитель сообщается с одним из нагнетательных клапанов 15, а при расхождении - с наполнительными каналами втулки ротора (этом момент зафик­сирован на рис. 1.1). В верхней части ТНВД располагаются электромагниты управления 4, 5, 7,10 и механизм 2 поворота кулачковой шайбы для изменения УОВТ.



1 - штуцер подвода топлива; 2 - сервопоршень регулиро­вания УОВТ; 3 - штуцер слива; 4 - седло шарикового клапана; 5 - актюатор УОВТ; 6 - болт-поводок кулачковой шайбы; 7 - актюатор дренажа управления ротором; 8 - актюатор подачи управления ротором; 9 - разъем; 10 - электромагнит прерывания ТП; 11 - ротор; 12 - датчик осе­вого положения ротора; 13 - нагнетательный штуцер; 14 - демпфирующий клапан; 15 - нагнета­тельный клапан; 16 - кулачковая шайба; 17 - средняя опора; 18 - плунжеры; 19 - датчик углового положения вала; 20-внешний шариковый подшипник; 21 - кольцо измерения частоты вала; 22 - внутреннее кольцо сферической опоры; 23 - роторно-лопастной ТПН; 24 - ролик кулачковой шайбы с толкателем; 25 - корпус привода; 26 - передний подшипник; 27 - приводной вал; 28 - адаптер регулировки УОВТ; 29 - регулятор давления подкачки.

Совершенно оригинальным решением в ТНВД EPIC является механизм регулиро­вания цикловой подачи (рис. 1.2). Он продолжает традиции фирмы Lucas, использую­щей для регулирования подачи изменение полного хода плунжеров. Если максимальное схождение плунжеров определяется расстоянием между противоположными вершинами кулачковой шайбы с внутренним профилем, то расхождение плунжеров, в от­личие, от немецких и большинства американских насосов, ограничивается через толкате­ли клиновыми захватами 30 приводного вала (рис. 1.2). Ротор 11 в период между пода­ нами может перемешаться в осевом направлении. Тогда благодаря клиновой форме за­хватов и сопряженных с ними скосов 32 на толкателях 24 расхождение плунжеров меня­ется, а, следовательно, меняется наполнение плунжерной полости и цикловая подача.


Механизм управления осевым положе­нием ротора (т.е. цикловой подачей) удобно рассмотреть на гидромеханических схемах на рис. 1.3. Топливо через входной штуцер поступает к ТПН, давление подкачки стаби­лизируется регулятором 29 (позиции на рис. 1.1-1.3 унифицированы), и поступает к шариковому клапану актюатора 8 подачи СУ положением ротора. При его открытии топливо поступает в торцевую полость ро­тора, повышая давление в ней. С другой стороны давление из нее сбрасывается ша­риковым клапаном актюатора 7 дренажа в корпус ТНВД, находящийся под давлением, несколько превышающем атмосферное. Нормально открытые клапаны актюаторов 7 и 8 на короткое время попеременно закрываются по командам блока управления, обеспечивая необходимое давление у торца ротора. Его изменение обусловлено скважностью включения того или иного актюатора (ме­тод широтно-полосной модуляции). Для снижения пульсаций давления в канале дренажа имеется жиклер (рис. 1.3, а). Баланс силы от давления и противодействия возвратной пружины между приводным валом и ротором, обусловливает его устойчивое положение. Перемещение ротора осуществляется только в периоды между вспрыскиваниями.




Рис. 1.3 . Гидроме-ханические схемы управления подачей и УОВТ в ТНВД EPIC: Позиции - на рис. 1.2, дополнительно:

В рабочей области перемещений ротора 2,5 мм (при геометрическом 4 мм) обеспечи­вается строгая линейность между перемещением и цикловой подачей. Крайнее внутрен­нее положение ротора соответствует минимальной подаче, а полностью ее отключает электромагнит 10 (рис. 1.1), перекрывая подвод топлива к плунжерам. Он используется для остановки дизеля и включен в противоугонную систему.

Обратная связь по подаче в СУ осуществляется с помощью датчика 12 осевого положе­ния ротора и обеспечивает межцикловую стабильность и точность заданной (равномерной или индивидуальной) подачи по цилиндрам. При нормально отрегулированных форсунках неравномерность подачи по цилиндрам составляет 0,5 мм 3 в интервале подач 10. 50 мм 3 .

На холостом ходу система EPIC обеспечивает индивидуальную подачу по цилиндрам, поэтому за один оборот вала ТНВД СУ подачей и положение ротора успевает перена­строиться для каждого цилиндра. В то же время переход от минимальной подачи к мак­симальной искусственно демпфируется на период до 0,1 с. Датчик положения коленчато­го вала с четырьмя метками (для 4 - цилиндрового дизеля) позволяет оперативно диагно­стировать вырабатываемую каждым цилиндром мощность и корректировать цикловую подачу, добиваясь баланса мощности по цилиндрам.

Механизм управления УОВТ особенно необходим ввиду регулирования цикловой подачи по ее началу. Как и во всех современных распределительных ТНВД, изменение УОВТ достигается разворотом кулачковой шайбы 16 с помощью сервопоршня 2. Его по­ложение обусловлено балансом момента с шайбы, усилия пружины и разницы давлений топлива на сервопоршень.

В ТНВД можно выделить каналы и полости под шестью характерными давлениями топ­лива (рис. 1.3). Одно из них (В) относится к управлению УОВТ и определяется балансом расходов топлива в гидроцилиндр: оно постоянно сбрасывается на слив в корпус через жиклер (рис. 1.3, а), но и периодически поступает через актюатор 5. Таким образом, уро­вень давления в гидроцилиндре и, следовательно, УОВТ обусловливается скважностью от­крытия актюатора. В этом случае управление методом широтно-полосной модуляции осу­ществляется по одному каналу, т.к. допустима меньшая точность. Тем не менее, СУ также включает обратную связь по положению сервопоршня от датчика Холла 33 (там же распо­ложен и датчик температуры топлива). Точное регулирование УОВТ за счет обратных свя­зей по датчикам положения сервопоршня и вала способствовала снижению эмиссии ВВ.

В выходном штуцере 13 (рис. 1.1) размещены два клапана. Клапан 14 демпфирует опускание нагнетательного 15 и интенсивность гидроудара, предотвращая подвпрыскивание. В другом варианте в штуцере размещен один грибковый клапан, с последовательно установленным жиклером 0 0,56 мм. При кажущейся нера­циональности установки сильного дросселя на пути топлива, он не только делает менее вероятным подвпрыскивание, но и стабилизирует давление впрыскивания по режимам работы дизеля, в частности, повышение давления впрыскивания при установке жиклера на малых частотах и подачах.

Несмотря на конструктивную сложность, ТНВД имеет на 50% меньше движущихся де­талей относительно предшествующей конструкции, он компактен, легок, надежен, но сложен в обслуживании. Индивидуальные данные каждой системы регистрируются при изготовлении и заносятся в блок управления. К числу наиболее частых неисправностей относят эрозию нагнетательных клапанов, попадание воздуха на всасывание в ТНВД, не­герметичность, засорение ЛНД. Датчики проверяют на величину сопротивления. Предва­рительно код неисправности считывают с использованием блока управления.

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Принципиальная схема импульсного блока питания

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.


На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

ремонт компьютерного блока питания

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.


Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Читайте также: