Регулируемый источник питания на 7812 своими руками

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный | Трансформатор броневой

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805 | LM7809 | LM7812

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805 | 78L05

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805 | 78L05 схема включения

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Периодически возникающая потребность запитать всевозможные устройства, имеющие как правило разные требования к величине питающего напряжения, побудило наконец создать универсальный блок питания на нагрузку до 1,5 А. В инете масса схем подобного рода устройств. Я взял за основу одну простую и подходящую для меня на основе стабилизатора LM317, решил несколько доработать ее и воплотить в жизнь. Дело в том, что в этой схеме регулировка выходного напряжения осуществляется переменным резистором 4,7 ком. Собрав схему на макетной плате, я понял, что такая регулировка уж очень неудобна, — очень сложно точно выставить нужное напряжение вращая движок резистора. Слишком большая чувствительность, и любое прикосновение к ручке вызывает значительное изменение напряжения на выходе. Я его заменил на дискретный галетный переключатель вот такого типа:


В результате нужное напряжение выбирается положением этого переключателя, коммутирующего соответствующие постоянные резисторы. Получилась вот такая схема.


Линейный регулируемый стабилизатор LM317 позволяет регулировать напряжения в диапазоне от 1,2 до 35 вольт. Мне нужен был следующий ряд — 1,5; 5; 9; 12; 15в. Это было выполнено путем подбора сопротивлений резисторов соответствующих положению переключателя на напряжения этого ряда. Правда один вывод переключателя я оставил не задействованным ( фактически разрыв в управляющей цепи микросхемы). Это я оставил сознательно (пусть будет), так как в этом положении на выходе появляется входное напряжение за минусом незначительного падения на микросхеме. У меня это — 33 вольта. Может когда пригодится.

Теперь о питании. У меня применен тороидальный трансформатор ТТП-40 с действующим напряжением вторичной обмотки 25в. После входного фильтра (конденсатор С1) напряжение на входе микросхемы 35в. Это почти предел по входному напряжению данного стабилизатора, больше подавать на него не желательно.

При работе микросхемы на нагрузках с низким напряжением на ней выделяется значительное тепло. Поэтому она помещена на ребристый радиатор с площадью поверхности около 300 см2. Но его нужно чем-то охлаждать в закрытом корпусе. Решил поставить вентилятор, не очень злобный, 60х60 мм. Но желательно, чтобы он работал, когда на то есть основания, то есть соответствующая температура радиатора, иначе зачем гонять зря воздух с пылью. Появилась схема управления кулером.


Подстроечным резистором Р1 настраивается температура срабатывания реле на включение вентилятора. Я настроил примерно на 40 градусов по замеру пирометром Fluke. Но питание схемы – 12в. . Значит нужно где-то его брать. После диодной сборки выпрямителя и конденсатора фильтра основной схемы блока питания – 35в. Можно конечно его подать на микросхемный стабилизатор типа L7812 и получить на выходе вожделенные 12в, но в таком режиме стабилизатор будет успешно работать еще и нагревателем воздуха, просаживая на себе эту дельту. Что ж городить и под него ацкий радиатор с гектар? Нет конечно. Нужно делать еще одну обмотку на трансформаторе с выходом примерно 15в.

А это вторая часть моего марлезонского балета. Трансформатор тороидальный и намотать на него очень не просто. Но начнем. Ибо глаза бояться, а руки чешутся.

Для начала нужно определить, сколько витков мотать. Ведь количество витков на первичной обмотке мне не известно. Делаем следующее. Наматываем поверх обмоток 10-20-30 (кто на сколько сподобится) витков любого провода и замеряем напряжение на получившейся новой миниобмотке. Я намотал 10 витков и получил 1, 28в. Следовательно, чтобы получить 15в нужно 15 разделить на 1,28 и умножить на 10. Результат – 117 витков. Это не десять и не двадцать, козьи пляски на лугу гарантированы! Несмотря на предстоящий ужас делаем следующее приспособление, — челнок типа рыбацкого мотовильца.


Его я сделал из того, что было под рукой – вырезал из блистерной упаковки и для жесткости примотал изолентой к получившемуся челноку небольшой гаечный ключ (если бы был ключ рожковый с двух сторон, то можно было бы использовать его в качестве челнока). При этом, когда вырезал ножницами по концам блистерного челнока пазы для укладки провода, я не стал отрезать средние части, а просто их загнул, чтобы было за что закрепить начало провода. Длина челнока по средним вырезам получилась 15 см, то есть 30 см – один виток на челноке. Замерил длину одного витка провода на самом трансформаторе. Пересчитал, сколько витков намотать на челнок, чтобы гарантированно хватило намотать на трансформатор 117 витков плюс запас процентов 5, который как известно, что-то там не трет и не делает и того хуже, прости Господи. Это не сложно. Намотал на челнок необходимую длину провода, Рис.4 ( сечение провода рассчитывается из предполагаемой нагрузки на обмотку и мощности трансформатора, я мотал диаметром 0,4 мм).


И, собственно, закрепив изолентой начало обмотки, начал аккуратно мотать 117 витков. Вот что получилось.


В процессе намотки я решил не доматывать 10 витков, чтобы получить напряжение где-то около 14в, учитывая, что входной фильтр поднимет его до 15-16в, что мне и нужно. Лишние вольты на входе – лишние калории тепла на микросхеме стабилизатора. После намотки закрепил обмотку изолентой, сделал отводы и замерил напряжение – 14,08 вольт. Ок! Не зря старался! Да, забыл. Когда собирал схему, чтобы не искать клеммы Vago ( на фото) дабы соединить щупы тестера и концы обмотки трансформатора, в дурном порыве соединил их зажимами типа "крокодил" от выключенного лабораторного блока питания. Смотрю, что такое?! Напряжение чуть выше 6 вольт и транс начал греться, как конфорка стремительно. Отключил. Секунды чесал репу, а потом догнал, — я же нагрузил его потрохами выключенного лабораторника. Чуть не спалил. Нашел клеммы, соединил, как положено, без дурного фанатизма. Результат на фото. Мораль — никогда не делай быстрее, чем думаешь.


Быстро собрал схему стабилизатора на микросхеме L7812 по типовой схеме его включения, установив на входе электролит 2200 мкф 35в, а на выходе 100 мкф 35в, предварительно на макетной плате, чтобы проверить его работу от новой обмотки. В качестве нагрузки подключил 5 ваттный резистор 51 ом. Ток нагрузки в результате получился 235 мА, что примерно соответствует потреблению вентилятора охлаждения.


Дальше собрал схему стабилизатора питания блока управления вентилятором на плате и установил в корпус устройства, чтобы проверить работу всего в целом. Универсальный блок питания работал штатно. В качестве нагрузки использовался резистор 25 вт 10 ом. На напряжениях от 9 до 15 вольт ток изменялся от 1 до 1,5А в строгом соответствии с законом Ома. L317-я благополучно грелась в своем седалище на радиаторе, но под контролем блока управления кулером, который включал вентилятор при нагреве в зоне микросхемы свыше 40 градусов и отключал его при остывании ниже оного предела с небольшим гистерезисом.


В качестве индикации напряжения и тока я применил цифровой китайский вольтамперметр. Очень удобная фишка. Единственно, что при выставлении переключателя на 1,5в индикация пропадает. Девайс рассчитан на минимальное напряжение 4 в.

Предварительно я откалибровал его на лабораторном блоке питания. Для этого в его схеме предусмотрено два подстроечных резистора.

Хочу обратить внимание на один важный момент касательно тороидальных трансформаторов. В основном они предусматривают их крепление посредством центрального болта и верхней шайбы. Так вот, очень легко создать короткозамкнутый ацкий типа виток, крепя его в стальном или любом корпусе из магнитного материала со всеми вытекающими из этого гнусными последствиями. Ток, индуцируемый в этом витке пойдет через центральный болт, корпус и вернется, откуда пришел с офигительным эффектом.


Вот в общем-то и все. Теперь есть и что питать, и чем питать. На переднюю панель корпуса изготовил в программе Front Desinger лицевую часть с учетом расположения элементов, распечатал на бумаге, заламинировал и наклеил. А это готовое изделие.



Микрофоны MEMS - новое качество в записи звука. Подробное описание технологии.


Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


Про использование технологии беспроводного питания различных устройств.


В каком направлении течет ток - от плюса к минусу или наоборот? Занимательная теория сути электричества.

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации - это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы - драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Стабилизатор для светодиодов

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания - 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Светодиодный светильник со стабилизацией тока

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

LED-светильник со стабилизатором тока

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать ~23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Стабилизатор тока светодиодов

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы - ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 - любой маломощный. Светодиоды - Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А - тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Выходная характеристика полевого транзистора

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал "земли". Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Генератор (стабилизатор) тока на MOSFET

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Схема включения TL431 в качестве стабилизатора тока

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы - 1 мА.

Схема светильника без пульсаций (LED-лампа на TL431)

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения - 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет - 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Эта статья, в первую очередь, рассчитана на начинающих радиолюбителей, а идею написания этой статьи подсказал Кирилл Г. За что ему отдельное спасибо.

Внешний вид самодельного регулируемого блока питания

Схема регулируемого блока питания

Как видите, схема простая и не содержит дорогих деталей. Рассмотрим ее работу.

1. Принципиальная схема блока питания.

Включается блок питания в розетку при помощи двухполюсной вилки ХР1. При включении выключателя SA1 напряжение 220В подается на первичную обмотку (I) понижающего трансформатора Т1.

Трансформатор Т1 понижает сетевое напряжение до 14–17 Вольт. Это напряжение, снимаемое со вторичной обмотки (II) трансформатора, выпрямляется диодами VD1 — VD4, включенными по мостовой схеме, и сглаживается фильтрующим конденсатором С1. Если не будет конденсатора, то при питании приемника или усилителя в динамиках будет слышен фон переменного тока.

Диоды VD1 — VD4 и конденсатор С1 образуют выпрямитель, с выхода которого постоянное напряжение поступает на вход стабилизатора напряжения, состоящего из нескольких цепей:

1. R1, VD5, VT1;
2. R2, VD6, R3;
3. VT2, VT3, R4.

Резистор R2 и стабилитрон VD6 образуют параметрический стабилизатор и стабилизируют напряжение на переменном резисторе R3, который включен параллельно стабилитрону. С помощью этого резистора устанавливают напряжение на выходе блока питания.

На переменном резисторе R3 поддерживается постоянное напряжение, равное напряжению стабилизации Uст данного стабилитрона.

Когда движок переменного резистора находится в крайнем нижнем (по схеме) положении, транзистор VT2 закрыт, так как напряжение на его базе (относительно эмиттера) равно нулю, соответственно, и мощный транзистор VT3 тоже закрыт.

При закрытом транзисторе VT3 сопротивление его перехода коллектор-эмиттер достигает нескольких десятков мегаом, и практически все напряжение выпрямителя падает на этом переходе. Поэтому на выходе блока питания (зажимы ХТ1 и ХТ2) напряжения не будет.

Когда же транзистор VT3 открыт, и сопротивление перехода коллектор-эмиттер составляет всего несколько Ом, то практически все напряжение выпрямителя поступает на выход блока питания.

Так вот. По мере перемещения движка переменного резистора вверх, на базу транзистора VT2 будет поступать отпирающее отрицательное напряжение, и в его эмиттерной цепи (БЭ) потечет ток. Одновременно, напряжение с его нагрузочного резистора R4 подается непосредственно на базу мощного транзистора VT3, и на выходе блока питания появится напряжение.

Чем больше отрицательное отпирающее напряжение на базе транзистора VT2, тем больше открываются оба транзистора, тем большее напряжение на выходе блока питания.

Наибольшее напряжение на выходе блока питания будет почти равно напряжению стабилизации Uст стабилитрона VD6.

Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Для контроля выходного напряжения предусмотрен вольтметр, составленный из миллиамперметра и добавочного резистора R6.

На транзисторе VT1, диоде VD5 и резисторе R1 собран узел защиты от короткого замыкания между гнездами ХТ1 и ХТ2. Резистор R1 и прямое сопротивление диода VD5 образуют делитель напряжения, к которому своей базой подключен транзистор VT1. В рабочем состоянии транзистор VT1 закрыт положительным (относительно эмиттера) напряжением смещения на его базе.

При коротком замыкании на выходе блока питания эмиттер транзистора VT1 окажется соединенным с анодом диода VD5, и на его базе (относительно эмиттера) появится отрицательное напряжение смещения (падение напряжения на диоде VD5). Транзистор VT1 откроется, и участком коллектор-эмиттер зашунтирует стабилитрон VD6. В результате этого транзисторы VT2 и VT3 окажутся закрытыми. Сопротивление участка коллектор-эмиттер регулирующего транзистора VT3 резко возрастет, напряжение на выходе блока питания упадет почти до нуля, и через цепь короткого замыкания потечет настолько малый ток, что он не причинит вреда деталям блока. Как только короткое замыкание будет устранено, транзистор VT1 закроется и напряжение на выходе блока восстановится.

2. Детали.

В блоке питания использованы самые распространенные детали. Понижающий трансформатор Т1 можно использовать любой, обеспечивающий на вторичной обмотке переменное напряжение 14 – 18 Вольт при токе нагрузки 0,4 – 0,6 Ампер.

Детали блока питания

В оригинале статьи используется готовый трансформатор от кадровой развертки Советских телевизоров — типа ТВК-110ЛМ.

Диоды VD1 – VD4 могут быть из серии 1N4001 – 1N4007. Также подойдут диоды, рассчитанные на обратное напряжение не менее 50 Вольт при токе нагрузки не менее 0,6 Ампер.
Диод VD5 желательно германиевый из серии Д226, Д7 — с любым буквенным индексом.

Диоды и стабилитрон

Электролитический конденсатор любого типа, на напряжение не менее 25 Вольт. Если не будет одного с емкостью 2200 микрофарад, то его можно составить из двух по 1000 микрофарад, или четырех по 500 микрофарад.

Электролитический конденсатор

Постоянные резисторы используются отечественного МЛТ-0,5, или импортного производства мощностью 0,5 Ватт. Переменный резистор номиналом 5 – 10 кОм.

Резисторы

Транзисторы VT1 и VT2 германиевые — любые из серии МП39 – МП42 с любым буквенным индексом.

Цоколевка транзисторов МП39 - МП42

Транзистор VT3 – из серии КТ814, КТ816 с любым буквенным индексом. Этот мощный транзистор обязательно устанавливается на радиатор.

Цоколевка транзисторов серии КТ814 - КТ817

Радиатор можно использовать самодельный, сделанный из пластины алюминия толщиной 3 – 5см и размером около 60х60мм.

Стабилитрон VD6 будем подбирать, так как у них идет большой разброс по напряжению стабилизации Uст. Возможно, даже придется составить из двух. Но это уже при наладке.

Вот основные параметры стабилитронов серии Д814 А-Д:

Параметры стабилитронов серии Д814 А-Д

Миллиамперметр используйте такой, какой у Вас есть. Можно использовать индикаторы от старых приемников и магнитофонов. Одним словом – ставьте что есть. А можно даже вообще обойтись без прибора.

На этом хочу закончить. А Вы, если заинтересовала схема, подбирайте детали.
В следующей части начнем рисовать и делать печатную плату с нуля, возможно, распаяем на ней детали.
Удачи!

Напряжение постоянного тока для питания многих электрических устройств, гаджетов и электронных схем, требует стабилизации. Часто встречающиеся величины напряжений – 5, 9, 12 и 24 вольта. Наиболее востребованы преобразователи на 12 В. Питание генераторов, усилителей, светодиодных подсветок, зарядных устройств осуществляется именно этой величиной напряжения. Стабилизатор 12в является неотъемлемой частью схем блоков питания.

Стабилизаторы напряжения (СН)

Разновидности 12В стабилизаторов

Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:

Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов.

К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.

Классический стабилизатор

Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.

Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:

  • при подаче на стабилитрон Uвх 12 В он открывается и удерживает заявленное напряжение постоянным.

Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя.

Схема классического линейного СН

Интегральный стабилизатор

Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.

Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.

Схема СН на ИМС

Целесообразность использования LT 1083/84/85

В схеме стабилизатора напряжения на 12 вольт может быть разная ИМС. В зависимости от серии микросхемы, условия для её работы разнятся. Микросборки серии LT 1083/84/85 можно применять для изготовления стабилизатора на такое напряжение.

К сведению. Ток на выходе LT 1083 может достигать 7 А, на LT 1084 и LT 1085 допустимые токи нагрузки – 5 А и 3 А, соответственно.

Конструкторы для радиолюбителей, поставляемые из Китая, предлагают самостоятельно собрать схему простого блока питания на подобной платформе стабилизаторов.

Схема БП на LT 1083

Стабилизатор, входящий в данную схему, выдаёт на выходе ток до 7,4 А. Резистор R2, позволяющий изменять величину выходного напряжения, можно заменить постоянным, подобрав его значение так, чтобы U на выходе было равно 12 В. Диоды подбираются на напряжение не менее 50 В и ток не менее 12 А.

Внимание! СН на этой микросхеме требует разницы напряжения между входом и выходом не менее 1,5 В. При выполнении этого условия ИМС будет выдавать стабильное напряжение. При этом она имеет тепловую защиту и защиту от превышения значения выходного тока.

Простой СН, сделанный своими руками

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Видео

Читайте также: