Регулируемый ибп своими руками

Добавил пользователь Дмитрий К.
Обновлено: 04.10.2024

Источник бесперебойного питания — вещь незаменимая. Причем применять его и его составные части можно очень по-разному. Из старого бесперебойника или его частей без особого труда получаются:

  • инвертор;
  • зарядное устройство;
  • блок питания.

Подробнее про изготовление

Что касается блока питания, то при помощи старого источника бесперебойного питания можно изготовить как простой блок, так и лабораторный. Естественно, лабораторный блок питания гораздо сложнее в сборке, установке, монтаже и настройке, а также потребует большего количества дополнительных деталей и инструментов. Тем не менее, в основе их изготовления лежит один принцип, к тому же при их использовании возникают одни и те же проблемы.

Первоначально приступим к рассмотрению простого блока питания и схемы его изготовления из старого ИБП от компьютера.

Что потребуется?

Для изготовления простого блока питания из бесперебойника своими руками потребуются:

  • трансформатор от бесперебойника;
  • корпус — подойдет и старый корпус от ИБП, и самостоятельно изготовленный для создания блока питания;
  • диодный мост.

Правила безопасности и важные советы

При выполнении работы необходимо обладать базовыми знаниями в физике и электромеханике, а также соблюдать правила техники безопасности, использовать защитное обмундирование и пользоваться диэлектриками.

Что касается простого блока питания, то большинство сталкивается с одной и той же сложностью: на выходах из стандартных трансформаторов типовое значение напряжения составляет 15 В.

Пошаговый алгоритм действий

Алгоритм действий для самостоятельного изготовления блока питания из старого ИБП будет следующим:

Схемы и пояснения

На рисунке 1 изображен стандартный трансформатор от ИБП с типичной расцветкой проводов, на которые даются ссылки в инструкции по самостоятельному изготовлению блока питания.

Как сделать лабораторный блок питания?

Изготовление лабораторного блока питания из старого бесперебойника — более сложная задача. Лабораторный блок питания зачастую используется радиолюбителями. Помимо трансформатора от старого ИБП, потребуются также:

  • мощный транзистор;
  • диоды для выпрямления напряжения;
  • микросхема (от ОУ);
  • реле;
  • набор светодиодов;
  • варистор;
  • разъемы;
  • оксидные конденсаторы;
  • керамические конденсаторы.

Экспликация блока питания представлена на рисунке 2.

Первичная обмотка трансформатора получает напряжение от сети через вставленный элемент FU1 и выключатель подачи питания SА1. Подключенный параллельно RU1 (варистор) служит защитой от скачков напряжения.

При помощи R1 (резистор токоограничения) и VD1 (диод) происходит питание светодиода HL1, который выполняет роль индикатора наличия сетевого напряжения.

К обмотке || подключается выпрямитель напряжения, расположенный на VD2-VD5 (диодные сборы). Положение релейных контактов К 1.1 определяет работу трансформатора как двухполупериодного с напряжением в районе 10 В или как мостового с напряжением примерно 20 В. От выпрямителя напряжение поступает к полевому транзистору.

При помощи конденсаторов С1 и С3 сглаживаются пульсации. При помощи резистора R17 обеспечивается минимальная нагрузка стабилизатора напряжения.

От собранного на VD6-VD9 (диоды) выпрямителя при участии С2 и С5 (конденсаторы) происходит питание параллельного стабилизатора на:

  • микросхемах (DA1, ОУ DA2);
  • реле К1;
  • вентиляторе M1.

Порог ограничения тока устанавливается резисторами:

Управление реле (К1) происходит при помощи резистора (VT2). Выходное напряжение устанавливается R19 (подстроечный резистор). При его превышении при помощи реле происходит переключение выходного напряжения. При превышении установленного R15 (резистор) значения максимальной температуры VT3 (транзистор) и RK1 (терморезистор) запускают в работу M1 (вентилятор). Чрезмерное напряжение реле и вентилятора распределяются, соответственно, на R13 и R18 (резисторы).

При превышении порогового значения тока нагрузки уменьшается напряжение выхода ОУ. VD 10 (диод) открывается, уменьшая напряжение на VT1 (затвор транзистора) до обеспечивающих протекание тока нормальных значений. Ограничение тока устанавливается R8 и R7 (резисторы) в интервалах 0-0,5 А и 0-5 А соответственно. При помощи конденсаторов обеспечивается устойчивое функционирование токоограничителя.

С увеличением их емкости значение устойчивости также увеличивается, однако уменьшается значение быстродействия токоограничителя.

На рисунке 3 изображены собранные выпрямители, транзисторы в монтаже с взаимосвязанными элементами. Выводы трансформатора оснащены гнездами, при необходимости их использования для них производится монтаж соответствующих им вилок, выпаянных из платы от старого ИБП.

Налаживание следует начинать с определения максимального значения напряжения на выходе при помощи R12 (резистор) с движком, расположенным сверху в схеме. При помощи подборки R13 (резистор) на К1 (реле) устанавливается номинальное значение напряжения. На вентиляторе напряжение устанавливает R18 (резистор).

Налаживание выходного токоограничителя происходит путем подключения последовательно соединенных амперметра и переменного резистора с сопротивлением 15 ом и мощностью 50 Вт.

Резисторы R1, R7 устанавливаются в положение в схеме слева, а R8 — справа, с его помощью происходит регулировка выходного тока.

Режим ограничения тока позволит зарядить аккумуляторы путем установки конечного напряжения и тока. В дальнейшем доработка осуществляется установкой оборудования:

  • вольтметр;
  • амперметр;
  • комплексное измерительное устройство.

Возможные проблемы и нюансы

Таким образом, из старого источника бесперебойного питания получится как простой самодельный блок питания, так и лабораторный блок питания.

Последний гораздо сложнее в изготовлении и потребует большего набора знаний и умений, а также дополнительного оборудования.


Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.


На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры - структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)

↑ Схема ИБП на биполярных транзисторах



Ошибка. Диод VD1 включить наоборот!

↑ Схема ИБП на полевых транзисторах

Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.



Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на стабилизаторе LM317

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317 своими руками

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Регулируемый стабилизатор напряжения на LM317 для блока питания своими руками

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

На этой странице вы найдёте видеоинструкции, схемы и советы по сборке лабораторного блока питания из китайских модулей своими руками. Здесь представлены два варианта регулируемых блоков питания: полноразмерный “всё-в-одном” с мощностью около 100 Ватт и размерами корпуса 170х120х45 мм, а также мини-версия с отдельным блоком питания, мощностью 50 Ватт (100 Ватт пик), и компактным корпусом 100х60х25 мм. Оба проекта имеют регулируемое напряжение, регулируемый ток (ограничение по току), вольтметр и амперметр. Делитесь своими вариантами исполнения в теме проекта в нашем сообществе!

ВАМ ОБЯЗАТЕЛЬНО ПРИГОДИТСЯ

Паяльники, припой


Мультиметры


Радиодетали


Блоки питания


Инструменты


Шуруповёрты


КИТАЙСКИЕ ЛБП

blank

300W, 0-30V, 0-10A, CC/CV, QC

blank

300W, 30V/10A или 60V/5A, CC/CV

DIY ВЕРСИЯ









ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ










КОМПОНЕНТЫ

AC DC 24V 6A


DC ВС XL4016


40 мм вентилятор


Выключатель


Термореле


Термореле мини


Понижайка


Гнёзда С8


Гнёзда С8

Провод С8


Силовой провод


Гнёзда под банану


Клеммник


Банана – крокодилы


USB 1 выход 3A


USB 2 выхода


USB QC 4.0


МИНИ ВЕРСИЯ










ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ

Крутой корпус от Андрея Бесараба (EVERYLIGHT). Файлы можно скачать с Яндекс.диска или из статьи (статья включает рекомендации по сборке)


Видео

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолен

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, н

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соо

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.


Если лампа вспыхнула и погасла, это нормально, так

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.


Фильтр

Выходное напряжение надо отфильтровать – оно содержит большое количество продуктов преобразования. Так как инвертор работает на достаточно большой частоте, то эффективными становятся фильтры, содержащие не только конденсаторы, но и малогабаритные дроссели относительно небольшой индуктивности.

Г- и П-образные LC-фильтры.

Г- и П-образные LC-фильтры.

Для расчета элементов фильтра надо задаться коэффициентом пульсаций Кп. Он выбирается из предполагаемой нагрузки:

  • чувствительная аппаратура для радиоприема, предварительные каскады аудиоаппаратуры, микрофонные усилители – Кп=10 -5 ..10 -4 ;
  • усилители звуковой частоты – Кп=10 -4 ..10 -3 ;
  • приемная и звуковоспроизводящая аппаратура среднего и низкого класса – Кп=10 -2 ..10 -3 .

Для Г-образного фильтра, устанавливаемого после двухполупериодного выпрямителя, действуют соотношения:

В этих формулах:

  • L – индуктивность дросселя в мкГн;
  • С – емкость конденсатора в мкФ;
  • f – частота преобразования в Гц;
  • Rн – сопротивление нагрузки в Омах.

Для П-образного фильтра:

Размерность величин та же, что и для предыдущего фильтра.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.


А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.


Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.


Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Проверка


Для того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

Проверить правильность работы блока питания можно следующим образом:

  1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
  2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

откуда что берется и как пересчитать номиналы под собственную задачуfosc = 1,1 / (RT * CT)RT = 1,1 / (200 000 Гц * 0,0000022 Ф) = 2500 ОмUВЫХ = UVCC + Iизм*0,04В/А = (5В / 2) + (40А * 0,04В/А) = 2,5В + 1,6В = 4,1В5В / 4.1В = 1.22UОП = UREF / (1+R27 / R26) = 5В / (1 + 2/10) = 4,16ВREFIVT = PВЫХ / UДЕЛ = 600 Вт / (380В / 2) = 600 Вт / 190В = 3,15Арисунке 3

Снаббер

Чтобы скомпенсировать выбросы тока и напряжения, неизбежно возникающие при коммутации первичной обмотки трансформатора, применяются демпферные цепи, в англоязычной технической литературе называемые снабберами. Такие цепи могут устанавливаться по питанию (параллельно первичной обмотке трансформатора) либо отдельно на каждый ключ. Исполнение снабберов может быть разным, но наибольшее распространение получили демпферы в виде последовательной RC-цепочки (схема б на рисунке).

Различные схемы демпферов.

Различные схемы демпферов.

Обоснованной методики расчета снаббера не существует. Для этого надо учесть все паразитные индуктивности (обмотки, дорожек, конденсаторов) на множестве частот и для неизвестных волновых сопротивлений. Поэтому все существующие расчеты носят эмпирический характер.

Что такое снаббер или демпфер можете узнать посмотрев видео.

В схемах RCD-снабберов (в и г на рисунке) присутствуют диоды. Они могут быть полезны для ограничения импульсов обратной полярности в схемах с тиристорами и биполярными транзисторами. Если ключи собраны на полевых или IGBT-транзисторах, то смысла в установке вентилей нет – они дублируют диоды, имеющиеся внутри указанных транзисторов.

Емкость конденсатора выбирается в пределах 0,1–0,33 мкФ. В 90+ процентах случаев этого достаточно. Увеличение или уменьшение номинала применяется для ключей, работающих в нестандартных условиях (повышенная частота преобразования и т.п.)

Расчет мощности

Повторение уже готовой разработки БП не требует проведения расчетов. Копирование схемы и точный подбор компонентов гарантируют получение указанных параметров. Необходимость в расчетах появляется, если нужны другие характеристики блока или есть необходимость применять другие детали. Наибольшую сложность вызывает подбор требуемого феррита и расчет импульсного трансформатора. При пользовании онлайн-калькуляторами все параметры задавайте в сопоставимых единицах — вольтах, ваттах.


Схемы ИБП

Перед выбором схемы ИБП нужно:

  • задать уровень входного напряжения;
  • определить выходной диапазон БП;
  • задать максимальную мощность или ток нагрузки.

С учетом заданных параметров выбирается проект ИБП. Отбор может производиться по типу регулирующих компонентов:

  • биполярные транзисторы;
  • полевые;
  • специализированные микросхемы.

Последние наиболее удобны, поскольку для сборки БП на их основе требуется минимум дополнительных деталей. Их настройка проста и заключается в подборе одного параметра. Типичным представителем такого чипа для устройств бесперебойного питания является UC3842. Однотактные преобразователи нашли применение в условиях лабораторного эксперимента, когда главным критерием являются малые габариты и простота.

Читайте также: