Разряд своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.

Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.

Ионизатор USB, который является основным компонентом проекта, можно найти здесь: ссылка

  • Ионизатор.
  • Изолированная проволока.
  • Термоусадочная трубка.
  • Горячий клей.
  • Припой и паяльник.
  • Батарейки-кнопки на 1.5v.
  • Изолента.

Шаг 1: Разбираем ионизатор








Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.

Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.

Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.

Шаг 2: Добавляем входной и выходной провода






Чтобы изменить схему до нужного нам состояния, первым делом избавимся от USB. Отвернём два ушка по бокам, и порт будет держаться лишь на 4 пинах. Прислоним паяльник сразу ко всем пинам и высвободим плату от USB порта.

На другой стороне платы есть обозначения, по которым можно определить, какая клемма предназначена для положительного заряда и какая для земли, они соответственно обозначены символами V+ и GND. Я припаял к этим клеммам по проводу, другие концы проводов будут соединены с батарейками.

На последней картинке видно, что я работаю на другой стороне платы, где я выпаиваю короткий выходной провод и припаиваю вместо него новый, значительно более длинный.

Шаг 3: Изолируем схему






Нам нужно изолировать схему от высокого напряжения, которое она будет генерировать, иначе она поджарит сама себя. Перед тем как поместить всё в термоусадочную трубку, я сперва прошелся по схеме горячим клеем, это позволило создать для проводов соединение более прочное, чем просто маленькая капелька припоя. Затем я поместил поверх устройства термоусадочную трубку и малым огнём аккуратно закрепил её на месте. Концы трубки остались не слишком зажатыми, и я также заполнил их горячим клеем. Такие ионизаторы идут со световым индикатором, чтобы вы знали, что они работают, так что я убрал немного термоусадки в том месте, где находился диод.

Шаг 4: Запитываем генератор






Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.

Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.

Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.

При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.

Шаг 5: Заключение




Устройство на данном этапе полностью работоспособно. Для того чтобы оно зарядило ваше тело (или любой проводящий объект), выходной провод должен касаться вашей кожи, в то время как конец длинного заземляющего провода должен соприкасаться с поверхностью, на которой вы стоите. Более токопроводящая поверхность позволит девайсу работать лучше, так как это даст возможность получить больший дифференциал заряда между вами и вашим окружением.

Для своих предыдущих генераторов я создавал соединения на липучках, они позволяли надежно закрепить выходные провода на теле и прикрепить заземляющий провод к низу моей подошвы.

На этом всё! Надеюсь вам понравилось читать о моём проекте.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Искровой разрядник считается самым первым из сделанных человеком электронных компонентов. Он изобретен значительно раньше электронной лампы, транзистора и электродвигателя. А еще его несложно изготовить самостоятельно в домашних условиях.

Как сделать разрядник

Самый простой искровый разрядник - шаровой. Как и следует из его названия, состоит он из двух металлических шаров. Диаметры шаров мало влияют на его напряжение пробоя, значительно сильнее оно зависит от расстояния между ними, состава газовой смеси, в которой они находятся, а также давления этой газовой смеси.

Приближенно можно считать, что в воздухе при атмосферном давлении напряжение пробоя шарового разрядника в киловольтах равно расстоянию между шарами в миллиметрах. Включив последовательно с искровым промежутком токоограничительный резистор для предотвращения короткого замыкания и изготовив из хорошего изоляционного материала механизм для изменения расстояния между шарами, таким примитивным прибором можно весьма точно измерять высокие напряжения. Если напряжение переменное, измеряться будет его амплитудное значение.

Значительно эффективнее работает разрядник, электроды которого имеют форму, отличную от шаровой. Чем они острее, тем меньше будет пробивное напряжение при тех же условиях (расстояние между электродами, вид газовой смеси, давление). У прибора, электроды которого имеют форму игл, напряжение пробоя значительно меньше при одинаковых условиях, чем у разрядника, в котором используются шары.

Интересными свойствами обладает разрядник, электроды которого неодинаковы. Если один из них представляет собой иглу, а другой - перпендикулярную ей пластину, напряжение его пробоя сильно зависит от полярности. В определенном диапазоне напряжений такой прибор способен даже выпрямлять, чем иногда пользуются в некоторых лабораторных установках до сих пор.

Благодаря наличию нелинейных свойств, может выступать в качестве активного элемента релаксационного генератора. Как известно, такой генератор состоит из источника питания с большим внутренним сопротивлением, конденсатора и любого элемента, обладающего отрицательным динамическим сопротивлением: динистора, неоновой лампы или разрядника.

В обычной школьной электростатической машине есть все элементы, которые должны входить в состав релаксационного генератора. Именно поэтому при вращении ее ручки разряды между электродами возникают с определенной периодичностью, которая зависит от скорости вращения рукояти (она определяет скорость заряда лейденских банок) и расстояния между электродами (которое определяет напряжение пробоя разрядника).

Предлагаемое устройство предназначено для разрядки двух аккумуляторов до напряжения 1 В, причем контролировать степень разрядки не нужно – устройство само отключится, как только напряжение на каждом из аккумуляторов упадет ниже критического. Так что глубокая разрядка аккумуляторам не грозит, даже если вы их оставите в разрядном устройстве надолго.

Как видно из схемы, для каждого аккумулятора своя нагрузка (резисторы R1 и R2) и своя система защиты (диоды VD1 и VD2). Светодиодн HL1 с токоограничительным резистором R3 – индикаторный. По нему можно визуально наблюдать степень разрядки аккумуляторов. В зависимости от емкости разряжаемых аккумуляторов резисторы R1 и R2 нужно подобрать. Они должны быть такими, чтобы разрядный ток лежал в пределах 0.2 …05 от емкости разряжаемых аккумуляторов.

Вместо указанных на схеме диодов можно использовать любые, выдерживающие прямой ток 1 А, но обязательно кремниевые. Светодиод можно использовать любой индикаторный, но он должен светиться при напряжении 1.8 В. Мощность резисторов R1 R2 – не менее 0.5 Вт.

По материалам Радио №12, 2010 г.

Рекомендуемый контент


При поиске неисправностей и ремонте электронного оборудования всегда первым делом нужно разряжать имеющиеся в схема конденсаторы. В противном случае нерадивый ремонтник рискует получить заряд бодрости…


В прошлом ламповые приёмники и усилители можно было найти в каждом доме. В своей конструкции они использовали конденсаторы большой ёмкости, что продолжали удерживать опасный уровень заряда длительное время даже после того, как они отключались от сети. После этого наступила эра телевизоров с электронно-лучевыми трубками. Благодаря техническому прогрессу сейчас телевизоры оснащаются плоскими LED экранами и может сложиться впечатление, что все современные приборы переходят на низковольтные цифровые схемы, но в чем же тогда проблема?

ЛИП выпрямляет сетевое напряжение, обеспечивая постоянное напряжение около 330 В (для сетевого напряжения 230 В и 170 В для сетевого напряжения 120 В), после чего его можно использовать для питание того либо иного участка/компонента схемы. Получается картина маслом. Маленькие, аккуратненькие черные ящички, через которые подключаются ноутбуки, мониторы и другие приборы, в действительности имеют нехилые величины напряжений, что могут оказаться смертельно опасными.

Приведенная в статье схема работает с потенциально опасным напряжением. Не пытайтесь собрать её в железе если до конца не понимаете принцип её работы и/или у вас нет опыта работы с высоким напряжением. В любом случае, все действия вы выполняете на свой страх и риск.


Для того, чтобы разрядка выполнялась в правильном русле, необходимо отводить накопленный заряд постепенно. В принципе нам не нужно ждать, пока разрядка будет полной, достаточно подождать определенный отрезок времени, чтобы величина напряжения стала достаточно низкой. А как долго ждать, мы сейчас разберемся.

К большому сожалению, мы не можем просто подключить резистор (именно через резистор будет происходить разрядка) к конденсатору и подождать. Почему? Сидеть с секундомером и контролировать время не очень удобно, не так ли?

В интернете можно найти небольшую, простую схему для разряда конденсаторов с внешней индикацией. Постараемся разобраться с принципом её работы, внесём изменения, увеличив количество диодов и соберём готовую поделку.

Воспользоваться цепочкой из трех стандартных диодов 1N4007 включенных последовательно (D1, D2, D3) для установки корректной точки фиксации, где мы сможем подключить светодиод с его токоограничивающим резистором. 3 последовательно включенных диода обеспечат напряжение около 1,6В, что хватить для включения светодиода. Светодиод будет светится, пока напряжение на аноде D3 не упадет ниже комбинированного прямого напряжения цепочки.

Будем использовать красный светодиод с низким током (Kingbright WP710A10LID), который имеет обычное 1,7В прямое напряжение и включается уже при прямом токе 0,5 мА, что позволяет нам использовать всего 3 диода. В соответствии с малым током, протекающим через светодиод, значение токоограничивающего резистора будет относительно высоким 2700 Ом 1/4 Вт.

Конденсаторный разрядный резистор представляет собой резистор мощностью 3 Вт и сопротивлением 2200 Ом, который рассчитан на максимальное входное напряжение 400 В. Этого достаточно для работы со стандартными блоками питания. Обратите внимание, что если вы посмотрите на даташит для диода 1N4007, вы увидите номинальное прямое напряжение 1 В, поэтому можно подумать, что двух диодов будет достаточно, чтобы включить светодиод. Не совсем так, поскольку прямое напряжение 1 В для 1N4007 рассчитано на прямой ток 1 A, значение, которого мы никогда не достигнем (надеюсь), поскольку это означало бы, что мы подали напряжение 2200 V на вход схемы. Прямой ток в нашем рабочем диапазоне составляет порядка 500-600 мВ, поэтому нам нужны три диода.

Всегда учитывайте условия, для которых указаны параметры в даташите. Используются ли они в вашей схеме? Может быть не стоит останавливаться на первой странице и следует продолжить просмотр характерных кривых!


Приведенная выше схема полезна для иллюстрации принципа работы, но её не следует повторять и использовать на практике, потому что она довольна опасна. Опасность кроется в способе подключения конденсатора (вернее в правильной полярности) (клемма Vcc должна быть положительной относительно клеммы GND), иначе ток не будет протекать через диодную цепочку D1-D2-D3! Поэтому, если вы случайно подключите конденсатор неправильно, ток не будет протекать и полное входное напряжение поступит на выводы LED1, как обратное напряжение. Если приложенное обратное напряжение выше нескольких вольт, LED1 сгорит и останется выключенным. Это может заставить вас поверить, что конденсатор не заряжен, хотя он по-прежнему …

Чтобы сделать схему безопасной, нужно обеспечить симметричный путь для тока при разряде конденсатора, когда Vcc-GND отрицательное. Это можно легко сделать, добавив D4-D5-D6 и LED2, как показано на схеме. Когда Vcc — GND положительное, ток будет протекать только через D1-D2-D3 и LED1. Когда Vcc-GND отрицательное, ток будет протекать только через D4-D5-D6 и LED2. Таким образом, независимо от применяемой полярности, мы всегда будем знать, заряжен ли конденсатор и когда напряжение упадёт до безопасного уровня.


Теперь, когда мы разобрались, как работает схема, пришло время подумать об корпусе. Все это можно было бы скомпоновать либо в виде пробника, либо в виде небольшой коробки, которую удобно держать на рабочем месте и подключаться к конденсатору с помощью щупов.

Изготовим маленькую круглую коробку из двух половинок с пластикой болванки. Посадка получилась очень плотная, поэтому винты не понадобились.


Осталось произвести сборку, особое внимание следует обратить на изоляцию. С таким напряжением не шутят! Несколько моментов:

Чтобы автомобильный аккумулятор работал дольше, а также для определения остаточной емкости и восстановления, его надо периодически полностью разряжать.

Для восстановления работоспособности автомобильных АКБ их подвергают одному-двум контрольно-тренировочным циклам полного разряда/заряда. При этом разрядный ток аккумуляторной батареи должен быть в диапазоне условий эксплуатации.

разрядное устройство для аккумуляторов

Представленное здесь разрядное устройство позволяет производить измерение емкости аккумуляторов, как новых так и Б/У. Описание принципа работы схемы разрядки аккумулятора в конце страницы.

В настоящее время существует большое количество типов батарей имеющих свои зарядно-разрядные характеристики, но подавляющее большинство типов автомобильных аккумуляторов считается полностью разряженными, когда напряжение на нагрузке упадет до 10,2 вольта – по 1,7 вольта на каждой банке.

разрядная характеристика

Чем больше ток разряда, тем меньше аккумулированной энергии батарея отдаст в нагрузку. На графике видно, что напряжение в процессе разряда изменяется, а соответственно и ток. Разряд батареи током постоянной величины может быть получен только от электронного устройства. Автоматическое поддержание постоянного тока в соответствии с изменением напряжения на клеммах аккумулятора в простейшем устройстве реализовать не так уж и сложно, но оценить состояние АКБ с достаточной точностью можно определив средний ток в процессе разряда.

Таким образом, конечное напряжение автомобильной АКБ, как правило, равно 1,7 Вольт на элемент и для 12-ти вольтовой автомобильной батареи составляет 10,2 вольта; для 6-ти вольтовой - 5,1В; для 24-х вольтовой - 20,4В. Максимальное напряжение кислотных АКБ должно быть 2,5 В на элемент, 15 В для 12-ти вольтовой батареи.

На степень заряженности влияет множество факторов, и точно ее могут определить только специальные разрядные устройства с встроенным микропроцессорным контроллером.

разрядное устройство

В промышленных разрядно-диагностических устройствах рекомендуют токи разряда, составляющие одну пятую часть от номинальной емкости АКБ (получается делением емкости батареи на 5): Пример: при емкости 60 Ач, рекомендуемый ток разряда = 12 А. Такие устройства с микропроцессорными контроллерами имеют расширенные функции по восстановлению и проверке работоспособности АКБ.

Как можно разрядить автомобильный аккумулятор

Самый простой вариант разрядки в домашних условиях – это подключение к аккумулятору вольтметра и нагрузки. В качестве нагрузки используют 3-5 автомобильных ламп накаливания указателя поворотов мощностью 21 Вт включенных параллельно, либо одну ближнего света на 55-60 Вт. Купить такие лампы пока-что можно очень дешево, ипользуя самые неходовые, например двухспиральные 21+5(4) Ватт.

Перед разрядкой аккумулятор надо зарядить.

Внимание! Подключенные к аккумулятору лампы имеют высокую температуру, что может привести к ожогам или оплавлению окружающих предметов.

Лампы размещают на диэлектрической поверхности с низкой теплопроводностью, например на кафельной плитке.

узнать емкость аккумулятора

При использовании в качестве нагрузки трех ламп на 21 ватт, включенных параллельно средний ток разряда составляет 4,5 А, для четырех ламп средний ток составит 6А. Теперь самое главное не пропустить момент, когда показания на вольтметре достигнут 10,2 – 10, 5 вольт, а это значит, что аккумулятор разряжен полностью – надо быстро отключить нагрузку и подключить его к зарядному устройству.

Если засечь время от начала разряда до конечного напряжения, то можно рассчитать емкость аккумулятора , умножив время (в часах) на средний ток разряда (в амперах).

Описание схемы, конструкция и настройка разрядного устройства для аккумуляторов

Схема собрана на макетной плате.

как полностью разрядить аккумулятор

R1 – 1…4k7; R2 – 2k; R3 – 1k; R4 – 430; R5 – 100; R6 – 560; R7 – 3k9; C1, C2 – 0,1…0,33; K1 – CMA3 12VDC (792H) 30A; K2 – РГК15.3 (5-6v); DA1 – 7806; DA2 – LM324A; VT1 – кт972А. Вместо реле К2 можно поставить любое маломощное реле на 12 Вольт, подключив его параллельно нагрузке.

как проверить емкость аккумулятора

В качестве таймера разряда можно использовать любой кварцевый электро-механический будильник или настенные часы с питанием от батарейки АА. Для этого надо подключить маломощное реле на 12 вольт и контактом разрывать питание электромеханических часов, предварительно установив стрелки на 12 часов. После полного разряда реле отключится, часы остановятся и покажут время разряда. Контакт реле К2 с помощью проводов припаивается к кусочку двухстороннего стеклотекстолита, на одной стороне которого сделана фаска, чтобы его легко можно было вставить между батарейкой и контактом в часах.

как определить емкость аккумулятора

Rн - две автомобильные лампы накаливания: одна на 55Вт, другая на 21Вт. Лампа на 21 Вт включена постоянно и ипользуется для тренировки и определения емкости аккумуляторов от ИБП на 12 вольт емкостью 7-12 A/h, а лампа на 55Вт подключается тумблером, средний ток разряда составляет 6 А и в таком режиме происходит диагностика и восстановление АКБ емкостью 55-75 Ампер-часов.

прибор для измерения емкости аккумулятора

Кнопка S1 служит для запуска процесса разряда, цепочка R1 - VD1 нужна для настройки разрядного устройства от маломощного регулируемого источника питания при отключенных нагрузочных лампах. Стабилизатор DA1 служит для создания опорного напряжения, питания компаратора DA2 и реле K2. Делители напряжения R2 – R3 и R4 – R5 – R6 определяют порог отключения нагрузки от аккумулятора. Транзистор VT1 - ключ включения/отключения реле К1. Компаратор DA2 управляет включением/отключением нагрузки при заданном напряжении (10,2В) на аккумуляторе. На делителе R2-R3 напряжение в три раза меньше напряжения на аккумуляторе, то есть при Uakk = 10,2 V напряжение на выводе 12 DA2 составляет 3,4 вольта и это пороговое напряжение нужно выставить с помощью R5 на выводе 13 DA2.

Сделать стабилизатор тока разряда не составляет технических трудностей, но для тренировки АКБ и определения емкости с погрешностью 10% достаточно мощность ламп нагрузки разделить на 12 вольт и умножить на 0,9. Это будет средний ток разряда, который надо умножить на время разряда. Так, для данного устройства, мощность ламп составляет 76Вт, ток при 12 В будет 6,33 А, плюс ток, потребляемый схемой (в основном обмотка К1) порядка 0,2 А. 6,53 В умножаем на 0,9 и получаем 5,87 А. При времени разряда 10 часов емкость аккумулятора 58,7 А/час, при времени 6 часов - около 35 А/часов.

Для настройки необходим цифровой мультиметр и регулируемый источник постоянного напряжения

Процесс настройки заключается в следующем:

Параллельно кнопке и контакту реле К1 подключается тумблер или устанавливается перемычка,
Схема с отключенными лампами нагрузки подключается к регулируемому стабилизированному блоку с выходным током > 0,3A. В таком варианте основным потребителем является обмотка реле К1 с током потребления 0,15…0,25 А в зависимости от типа.
К выходу БП подключается цифровой мультиметр и выставляется напряжение 10,2 вольта. Резистором R5 достигается срабатывание реле.
После этого напряжение БП многократно изменяется в диапазоне 9 -11 вольт и резистором R5 порог срабатывания подгоняется до 10,2 В +/- 0,1В. Далее тумблер или перемычка удаляются, на БП устанавливается напряжение 12В, нажатие на кнопку должно включить реле. Медленно уменьшая напряжение, убедитесь, что отключение реле К1 происходит при напряжении 10,2 вольта. Теперь подключите лампы к схеме.

ток разрядки

Читайте также: