Радиозакладные устройства своими руками

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

В этой статье расскажу про шесть интересных электронных устройств,собрать которые может каждый начинающий радиолюбитель.

Светоэффекты на основе мигающего светодиода и симистора.Светодиод выбран с различными световыми эффектами.Внутри детали есть микросхема,которая переключает с разной скоростью светодиод,делает свет ярким и потом затеняет.Лампа накаливания,подключенная в нагрузку симистора,будет повторять светоэффекты светодиода.Питание на симистор подается переменным напряжением.

Вторая схема позволяет переключать транзистор в зависимости от освещенности фоторезистора.

Когда светло,светодиод светит,когда темно и на фоторезистор не будет поступать свет,его сопротивление огромно и транзистор закрыт,соответственно и светодиод в нагрузке светить не будет.

Следующая схема является датчиком пламени или инфракрасного излучения.Датчик реагирует на чирканье зажигалки,на пламя огня,на пульт дистанционного управления,на инфракрасный обогреватель.На видимый свет реакции нет.

При чирканье зажигалки,ик-фотодиод улавливает ее излучение на расстоянии нескольких метров и светодиод нам просигнализирует об этом.При близком расположении пламени,раздается звук пищалки.ИК-фотодиод взят в черном корпусе 3мм.

Четвертое устройство-датчик уровня жидкости в емкости.Четыре контакта помещаются в емкость с жидкостью.Как только два контакта коснутся воды,начнет светить один светодиод.Далее идут третий и четвертый контакт со своими светодиодами.

Регулятор яркости светодиода на основе двух кнопок и "запоминающего" конденсатора.При нажатии на кнопки,конденсатор будет заряжаться и разряжаться с разными знаками на его обкладках.При нажатии на s1 мы увеличиваем яркость светодиода,при нажатии на s2 уменьшаем вплоть до полного выключения светодиода.Яркость светодиода можно менять и запоминать это состояние.Насколько долго конденсатор сможет хранить информацию зависит от его тока утечки.Транзистор применяется logic level.

И последняя схема-ик-датчик приближения.ИК-светодиод и ИК-фотодиод расположены рядом,между ними светонепроницаемая прокладка.Лампа накаливания не светит и транзистор заперт.При приближении руки,на расстоянии 10 см от ИК свето-фотодиода лампа накаливания включается.На таком принципе работы устроена функция отключения экрана на смартфоне.


Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно - чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Часы на ИН-14 лампах своими руками

Часы на ИН-14 лампах своими руками

Давно хотел выложить статью,по изготовлению своими руками часов на лампах ИН-14,или как еще отзываются-часы в стиле стим-панк.

Постараюсь поэтапно и останавливаясь на ключевых моментах изложить только самое главное. Индикация часов хорошо видна как днем так и ночью, и сами по себе очень красиво смотрятся,особенно в хорошем деревянном корпусе.Общем,приступаем.

Уличное фотореле своими руками

Уличное фотореле своими руками


Данная схема предназначена для автоматического включения фонаря уличного освещения в тёмное время суток. Основа фотореле - микросхема КР544УД1Б.

Схема собрана из широкодоступных радиодеталей, которые найдутся у каждого радиолюбителя.

Плавное включение лампы своими руками

Плавное включение лампы накаливания своими руками.


Выключатель звуковой схема

Схема акустического реле

акустическое реле своими руками

Начну с того, какие возможности дает нам акустическое реле, или иначе звуковой выключатель.

С помощью данного устройства, можно выключать приборы на расстоянии с помощью подачи звукового сигнала. Чувствительность настраивается с помощью переменного резистора. Так же вместо выключателя света в комнате, что бы дистанционно выключать или включать свет.

Детектор скрытой проводки своими руками

Схема простого детектора проводки


Многие кто занимается монтажом проводов, прокладкой в стенах дома сталкивались с необходимостью найти провода под электричеством которых глазом не видно. Или обычная ситуация-вам нужно просверлить стену, сверлите, и попадаете в провод.Все искрится, чтото перестает работать. Такие все ситуации спасет простой детектор скрытой проводки.

Среди большого изобилия схем детекторов в просторах интернета, остановился на довольно простом устройстве, которое очень хорошо зарекомендовало себя на практике. Искатель скрытой проводки - детектор, выполнен на логической микросхеме К561ЛА7 (аналог К561ТЛ1) и имеет звуковую индикацию.

Схема блока защиты ламп накаливания

Блок защиты ламп накаливания


Многие люди пользуясь лампами ldc и led , не довольны его цветом, или просто ценой, и продолжают пользоваться лампами накаливания, одним из минусов которых является быстрый выход из строя.

Чтоб спираль меньше изнашивалась в момент включения лампы - советую собрать токоограничитель. Схема представляет собой ограничитель броска напряжения лампы накаливания. Сделал большое количество таких блоков защиты - более 10, все функционируют отлично.

Мощный электрошок своими руками

Мощный электрошок своими руками на 100 Вт


Данный электрошок своими руками может собрать почти любой радиолюбитель в домашних условиях. Пиковая мощность данной модели доходит до 135 ватт - и это абсолютный рекорд мощности при таких габаритах. Шокер получился вполне карманным, имеет достаточно стильный дизайн благодаря покрытию из 3D карбона (в магазине метр такого карбона стоит порядка 4 гр .Сам шокер сделан в корпусе от китайского светодиодного фонарика, конечно, пришлось повозиться с переделкой корпуса. Несмотря на повышенную выходную мощность, шокер имеет простую конструкцию и весит не более 250гр.

Сварочный инвертор своими руками

Схема сварочного инвертора своими руками на 160 А


В статье представлена и описана сборка сварочного инвертора своими руками. силовая часть сварочного инвертора с блоком питания и драйверами силовых ключей.

Плата блока питания с драйверами монтируется отдельно. От силовой части её отделяет металлический лист, электрически соединённый с корпусом сварочного аппарата. Проводники управления затворами ключей скручиваются попарно и припаиваются близко к выводам транзисторов. Длина этих проводников не должна превышать 15 см, сечение не существенно.

Велосипедная фара своими руками

Велосипедная фара своими руками



Отличия от обычной, на лампе накаливания, или покупной, 1ое- это доступность деталей, 2-е, это то что потребляет мало энергии,и еще одно отличие что для сборки подойдет даже начинающим.

Часы со светодиодной индикацией своими руками

Часы со светодиодным семисегментным индикатором на микросхеме К145ИК1911


История этих часов появления на сайте немного иная, от других схем на сайте.

Обычный выходной, захожу на почту,роюсь, и на хожу наш читатель Федоренко Евгений, прислал схему часов,с описанием и со всеми фотографиями.

Кратко о схеме.Это схема электронных часов своими руками выполненная на микросхеме К145ИК1911, и время выводится на семи сегментные светодиодные индикаторы.И так его статья.Смотрим все.

С целью обеспечения реальной возможностью скрытного подслушивания и существенного повышения его дальности широко применяются закладные устройства (закладки, радиомикрофоны, “жучки”, “клопы”). Эти устройства перед подслушиванием скрытно размещаются в помещении злоумышленниками или привлеченными к этому сотрудниками организации, проникающими в помещение под различными предлогами. Такими предлогами могут быть посещения руководства или специалистов посторонними лицами с различными предложениями, участие в совещаниях, уборка и ремонт помещения, ремонт помещения и технических средств и т. д.

Закладные устройства в силу их большого разнообразия конструкций и оперативного применения создают серьезные угрозы безопасности речевой информации во время разговоров между людьми практически в любых помещениях, в том числе в салоне автомобиля.

Разнообразие закладных устройств порождает многообразие их вариантов их классификаций. Вариант классификации указан на рис. 3.14.


Рис. 3.14. Классификации закладных устройств.

По виду носителя информации от закладных устройств к злоумышленнику их можно разделить на проводные и радиозакладки. Носителем информации от проводных закладок является электрический ток, который распространяется по направляющим - электрическим проводам. Проводные закладки, содержащие микрофон для преобразования акустических речевых сигналов в электрические, относятся к акустическим закладным устройствам, а ретранслирующие электрические сигналы с речевой информации, передаваемые по телефонной линии, образуют группу проводных телефонных закладок.

Первые представляют собой:

- субминиатюрные микрофоны, скрытно установленные в бытовых радио- и электроприборах, в предметах мебели и интерьера и соединенные тонким проводом с микрофонным усилителем или аудиомагнитофоном, размещаемыми в других помещениях;

- миниатюрные устройства, содержащие микрофон, усилитель и формирователь сигнала, передаваемого, как правило, по телефонным линиям и цепям электропитания.

Проводные акустические закладки в виде микрофона имеют высокую чувствительность и помехоустойчивость, но наличие провода демаскирует закладки и усложняет их установку, в особенности в условиях дефицита времени. Поэтому такие закладки могут устанавливаться во время ремонта или в помещениях с возможностью достаточно простого и длительного доступа в них людей, например, в номера гостиниц. Закладки, использующие цепи электропитания, устанавливаются в основном в местах подключения проводов электропитания к выключателям, сетевым.

Наиболее широко применяются акустические радиозакладки, позволяющие наиболее просто и скрытно устанавливать в различных местах помещения. Простейшая акустическая закладка содержит (см. рис. 3.15) следующие основные устройства: микрофон, микрофонный усилитель, генератор несущей частоты, модулятор, усилитель мощности, антенну.


Рис. 3.15. Структурная схема акустической закладки.

Микрофон преобразует акустический сигнал с информацией в электрический сигнал, который усиливается до уровня входа модулятора. В модуляторе производится модуляция колебания несущей частоты, т. е. производится перезапись информации на высокочастотный сигнал. Для обеспечения необходимой мощности излучения модулированный сигнал усиливается в усилителе мощности. Излучение радиосигнала в виде электромагнитной волны осуществляется антенной, как правило, в виде отрезка провода.

В целях сокращения веса, габаритов и энергопотребления в радиозакладке указанные функции технически реализуются минимально-возможным количеством активных и пассивных элементов. Простейшие закладки содержат всего один транзистор.

По диапазону частот закладные устройства отличаются большим разнообразием. На ранних этапах использования закладных устройств частоты излучений их привязывали к частотам бытовых радиоприемников в УКВ-диапазоне. При массовом появлении у населения бытовых радиоприемников увеличилась опасность случайного перехвата сигналов радиозакладок посторонними лицами. Поэтому большинство типов современных закладок имеют более высокие частоты в УВЧ-диапазоне.

Для более 96% радиозакладок рабочие частоты сосредоточены в интервале 88 МГц‑501 МГц, причем с частотами 92.5 МГц‑169.1 МГц выпускаются 42% радиомикрофонов, а с частотами 373.4 МГц‑475.5 МГц - 52% радиомикрофонов [50]. Наиболее интенсивно используется диапазон частот 449.7 МГц‑475.5 МГц, в котором сосредоточены рабочие частоты 36% образцов.

Продолжается тенденция дальнейшего повышения частот, в том числе с переходом в ГГц диапазон. С увеличением частоты передатчика уменьшается уровень помех, что позволяет снизить минимально-допустимый уровень мощности и соответственно его габариты, а также длину антенны.

В интересах повышения скрытности для радиозакладных устройств осваивается ИК-диапазон. Однако в силу большего по сравнению с радиоволнами затухания ИК-лучей в среде распространения и необходимостью прямой видимости между излучателем ИК-закладки и фотоприемником применение подобных закладных устройств ограничено.

Кроме диапазона частот на условия передачи закладкой информации влияет стабильность частоты ее передатчика. Для простых схемных решений передатчика закладки значения ее частоты изменяются в значительных пределах от температуры и питающего напряжения. Кроме того, на величину изменения (дрейфа) частоты излучения закладок, установленных вблизи рабочего места человека, например, под столешницей письменного стола, могут оказывать влияние емкость человека. Величина дрейфа рабочей частоты радиокаладок может достигать единиц мГц. В результате этого радиоприемник, настроенный на частоту радиозакладки, через некоторое время “теряет” радиосигнал. Это обстоятельство имеет важное значение для обеспечения автоматического приема сигналов радиозакладок, например, в случае, когда подслушивание производится аппаратурой в автомобиле при отсутствии в нем оператора. Поэтому частоты около половины предлагаемых на рынке радиозакладок стабилизируются. Повышение стабильности обеспечивается путем включения в колебательный контур схемы передатчика элементов, стабилизирующих его частоту. В качестве таких элементов применяются пьезоэлектрические материалы, прежде всего, кристаллы кварцы. Частота стабилизации зависит от вида среза кристалла кварца, толщины и размеров его пластины, включенной в цепь генератора. Стабилизация частоты излучения радиозакладки усложняет ее схему и увеличивает габариты передатчика, но существенно улучшает удобство работы.

Другой проблемой, возникающей при применении закладных устройств, является обеспечение их энергией в течение приемлемого для подслушивания времени. Возможности современной микроэлектроники по созданию закладных устройств в чрезвычайно малых габаритах ограничиваются в основном, массо-габаритными характеристиками автономных источников питания (химических элементов). Микрогабаритные источники тока, широко применяемые в электронных часах, обеспечивают работу закладных устройств в течение короткого времени (нескольких дней при минимально-допустимой мощности излучений для дальности до сотни метров). Для закладных устройств используются гальванические элементы с высокой удельной энергией - ртутно-цинковые, серебряные и литиевые. Усредненные характеристики этих элементов приведены в табл. 3.8 [73].

Тип элемента Рабочее напряжение, В Максимальная емкость, Ач/кг Плотность энергии, Втс/кг Срок хранения, лет
Ртутный 1.2-1.25
Серебряный 1.5 2.5
Литиевый

Емкость гальванического элемента пропорциональна габаритам и весу. Габариты используемых в малогабаритных устройствах цилиндрических и кнопочных элементов указаны в табл. 3.9, а плоских - в табл. 3.10 [73].

Обозначение габаритов Диаметр, мм Высота, мм
Цилиндрические
ААА 8.2 40.2
АА 10.5 44.5
А 14.5 50.5
Кнопочные
М5 7.86 3.56
М8 11.7 3.3
М15 11.7 5.34
М20 15.7 6.1
М30 11.1
М40 16.8

Обозначение габаритов Длина, мм Высота, мм Ширина, мм
F15 14.2 3.02
F20 23.9 3.02
F25 22.6 5.85 22.6
F30 31.8 3.3 21.4
F40 31.8 5.35 21.4

Наиболее распространены ртутно-цинковые элементы. В них в качестве анода используются оксид ртути (HgO), катода - смесь порошка ртути и цинка или сплава индия с титаном, а электролита - 40% щелочь. Для малогабаритных приборов отечественной электропромышленностью созданы элементы типов РЦ-31С, РЦ-33С иРЦ-55УС с удельной энергией 600-700 кВт/м3. Электрические параметры ряда отечественных ртутно-цинковых элементов и батарей, предназначенных для питания малогабаритных радиоэлектронных устройств, указаны в табл. 3.11.

Обозначение Напряжение, В Емкость, Ач Ток разряда, мА Габариты, мм Масса, г
РЦ-31 1.25 0.07 11.5х3.6 1.3
РЦ-53 1.25 0.25 15.6х6.3 4.6
РЦ-55 1.25 0.5 15.6х12.5 9.5
РЦ-57 1.25 1.0 16х17
РЦ-59 1.25 3.0 16х50
РЦ-65 1.25 1.0 21х13 18.1
РЦ-75 1.25 1.5 25.5х13.5
РЦ-85 1.22 2.5 30.1х14 39.5
РЦ-93 1.25 13.0 31х60
2РЦ-55с 2.68 0.45 16.2х27
3РЦ-55с 4.02 0.45 16.2х40
4РЦ-55с 5.36 0.45 16.2х53
5РЦ-55с 6.7 0.45 16.2х66
6РЦ-63 7.2 0.6 23х48

Среди гальванических источников тока зарубежного производства широкое применение находят элементы фирм Duracell, Varta, Kodak. Технические характеристики малогабаритных гальванических элементов фирмы Duracell в табл. 3.12 [74].

Тип Напряжение, В Номинальная емкость, Ач Диаметр, мм Высота, мм
D392 1.5 0.05 7.9 3.6
D391 1.5 0.05 11.6 2.1
D389, D390 1.5 0.08 11.6 3.1
D386 1.5 0.12 11.6 4.2
D357H/10L14 1.5 0.17 11.6 5.4
LR54 1.5 0.04 11.6 3.0
LR43 1.5 0.08 11.6 4.2
LR44 1.5 0.10 11.6 5.4
DL2016 3.0 0.07 20.0 1.6
DL2032 3.0 0.18 20.0 3.2

Увеличения времени эксплуатации и повышения скрытности работы закладного устройства достигается путем обеспечения в нем автоматического подключения к источнику питания наиболее энергоемкого устройства - передатчика по акустическому или радиосигналу. В первом варианте в состав закладки включается устройство (акустоавтомат), подключающее к источнику питания передатчик при появлении на мембране микрофона акустического сигнала. В тишине, например, в ночное время во включенном состоянии (в “дежурном” режиме) находится лишь микрофонный усилитель с исполнительными электронным реле. При возникновении в помещении акустических сигналов от разговаривающих людей реле подключает передатчик и закладное устройство излучает радиосигналы с информацией. После прекращения разговора исходное состояние восстанавливается и излучение прекращается.

Во втором варианте закладные устройства дистанционно включаются на излучение по внешнему радиосигналу, подаваемому злоумышленником. Эти закладные устройства обеспечивают повышенную скрытность и более длительное время работы. Однако для их эффективного применения надо иметь дополнительный канал утечки сведений о времени циркулирования конфиденциальной информации в помещении, где установлено закладное устройство. Например, надо достаточно точно знать время, когда будут вестись в помещении конфиденциальные разговоры. Так как дистанционно-управляемые закладки содержат радиоприемник для приема управляющих радиосигналов. То они наиболее сложные и, следовательно, дорогие.

Рациональным решением задачи обеспечения закладных устройств электропитанием является подключение их к устройствам питания радио и электроприборов, в которые устанавливаются закладки. Широко применяются подобные закладные устройства в телефонных аппаратах, закамуфлированные под их элементы (конденсаторы, телефонные капсюли и др.), в тройниках для подключения нескольких приборов к одной розетке электросети. По оценке, приведенной в [50], в 75% закладных устройств используется автономное (батарейное) питание, 8% ‑питание от сети и 17% - питание от телефонной линии.

Следует отметить, что применяются, пока редко, также пассивные закладки, - без собственных источников электропитания. Для их активизации производится облучение их внешним электромагнитным полем частоты, соответствующей резонансной частоте колебательного контура закладки, образованного элементами ее конструкции. Модуляция радиосигнала производится в результате воздействия акустической волны на частотнозадающие элементы конструкции закладки.

Жесткие требования к габаритам, массе, энергопотреблению закладных устройств ограничивают мощности излучения их передатчиков. Наиболее часто (более 80%) применяются радиомикрофоны, мощность излучения которых находится в интервале 3-11 мВт, закладки с более высокой мощностью - до 22 мВт составляют менее 10% [50]. Встречаются закладки и большей мощности излучения (до 200 мВт и более), однако их доля крайне незначительна. Малая мощность излучения передатчиков радиозакладок определяет относительно небольшую дальность приема их сигналов. Около 75% образцов обеспечивает функционирование канала на расстояниях 50-350м, 16% - на расстояниях 460-600 м, 7% - на расстояниях 740-800м и только около 2% - на расстояние до 1000 и более метров.

В общем случае технические данные закладных устройств находятся в следующих пределах [29]:

- частотный диапазон - 27-900 МГц;

- мощность - 0.2-500 мВт;

- дальность - 10-1500 м;

- время непрерывной работы - от нескольких часов до нескольких лет;

- габариты - 1-8 дм3

Основной проблемой оперативного применения закладных устройств является их рациональное размещение в помещении или в радиоэлектронном средстве. Рациональность достигается при обеспечении:

- поступления на вход закладки сигнала с уровнем, необходимым для качественной передачи звуковой или иной информации;

- скрытности размещения и работы закладки, по крайней мере, в течение времени подслушивания интересующей злоумышленника информации.

Эффективность выполнения этих условий зависит от удаленности места установки закладки от источников звука и наличия между ними звукопоглощающих и звукоизолирующих экранов, от чувствительности микрофона, размеров и параметров акустики, прежде всего, временем реверберации помещения и от времени, которым располагает злоумышленник для установки. Чувствительность современных малогабаритных микрофонов обеспечивают достаточно качественный прием акустических сигналов на удалении до 10 м при отсутствии экранов на пути распространения акустической волны.

Установка закладных устройств возможна с заходом злоумышленника в помещение, где производится их размещение, или без захода. Первый вариант позволяет более рационально разместить закладку как с точки зрения энергетики, так и скрытности, но связана с повышенным риском для злоумышленника. Поэтому в случаях, когда создаются предпосылки для дистанционной (беззаходовой) установки закладки, их забрасывают в помещение или ими выстреливают из пневматического ружья или лука. Например, комплект PS фирмы Sipe Electronic состоит из специального бесшумного пневматического пистолета с прицельным расстоянием 25 м и радиозакладкой, укрепленной на стреле. Стрела после выстрела надежно прикрепляется с помощью присоски к поверхностям из металла, дерева, пластмассы, бетона и других гладких строительных и облицовочных материалов. Микрофон обеспечивает съем речевой информации с расстояния до 10 м, а передатчик - ее передачу на расстояние до 100 м.

Несмотря на сравнительно малые габариты и вес закладных устройств они могут быть обнаружены при тщательном визуальном осмотре помещения. С целью продления времени их оперативного использования, а также приближения микрофонов к источнику звука закладные устройства камуфлируют под предметы, не вызывающие подозрение у окружающих людей. Трудно назвать предметы личного пользования, средства оргтехники, средства бытовой радиоэлектроники, в которые не вмонтировались бы различные устройства для подслушивания. Некоторые из таких средств подслушивания приведены в табл. 3.13.

Сегодня поговорим о том, как можно сделать корпус для своего DIY проекта усилителя мощности. Красивый и аккуратный корпус — лицо любого проекта. Встречают по одежке! Корпус — известная головная боль самодельщиков. Рассмотрим некоторые методы постройки корпуса для аудио усилителя мощности своими руками.


Содержание

Из старой аппаратуры


Не стоит исключать из внимания корпуса советских усилителей. Там использовали металл избыточной толщины. Например, в корпусе Одиссей У-010 можно разместить мощный усилитель, что я когда-то и сделал, а переднюю панель поставил свою на винты поверх старой.



Да что там говорить, я умудрялся делать небольшие усилители в корпусах CD-rom (которые уже давно ушли на свалку истории). При приложении должного внимания получается неплохо.


Из листового металла

Идея изготовления корпуса из листовых деталей лежит на поверхности.

Сейчас почти в каждом городе есть услуги лазерной или гидроабразивной резки листового металла.
Нарезаем нужного размера стенки и листы корпуса и собираем коробку.

Главный конструктивный вопрос при этом — как соединять между собой листы.
Для соединения листов корпуса в короб можно использовать:

  • Уголки
  • Покупные радиаторы с отверстиями
  • Фрезерованные стойки
  • Деревянные боковины с забивными гайками
  • Профили

Пройдемся по каждому варианту.

Перед началом работ над корпусом, имея в голове потребные внутренние размеры, обязательно необходим эскиз/чертеж/трехмерная модель будущего корпуса, что бы точно не ошибиться в размерах.

Уголки

Собирается каркас из алюминиевых уголков и обшивается листами корпуса. Вполне просто и доступно сделать самому — в сети есть множество примеров.


Радиаторы

Есть в продаже радиаторные профили в которых на всех гранях имеются резьбовые отверстия. Например 246*84*25 мм с отверстиями.

Сборка корпуса — основанием являются радиаторы, все листовые панели прикручиваются к ним.

В данном случает листы были из углеродистой стали, и были окрашены порошковой краской, что, как оказалось: здорово выглядит, стойко к царапинам и совсем не дорого.


Фрезерованные стойки

Доступно при наличии станков: токарного и фрезерного.
Я делал цилиндр из алюминия с выборкой четверти (угол 90 градусов), там были нарезаны резьбовые отверстия для крепления листов внутри корпуса.



Этот корпус в сборе на заглавной картинке топика. Он собран из нержавеющих листов химически очищенных, отшлифованных и покрытых матовым лаком.

Деревянные боковины

Это и красиво, и может использоваться не только в декоративных целях, но и как несущая часть корпуса.
Для дерева на боковины можно использовать разделочные доски (бук, дуб). Они достаточно ровные и хорошо смотрятся под лаком.
Для удержания панелей корпуса можно использовать забивные гайки или мебельные резьбовые футорки.



Профили

В строительных магазинах крупных городов сейчас представлен большой выбор различных по форме алюминиевых профилей.

Профилями (швеллер) могут быть и боковые стенки корпуса:


А этот DIY корпус комбинация трех методов:

  • Передняя и задняя панель — алюминиевый профиль (швеллер)
  • Боковины из дерева (бук, разделочная доска) обеспечивают сборку
  • Листовые верхняя и нижняя панель корпуса

Процесс изготовления такого корпуса можно посмотреть на видео:

Листовой металл с гибкой

Доступно тем, кто работает на заводах или опять же за деньги. Есть тонкость: нужно уметь разрабатывать изделия из листового металла в 3D или воспользоваться чужими моделями.

Я делал DIY клон интересного китайского усилителя (P01) из двух частей полученных гибкой. Его обзор тут.

Мой клон китайского корпуса выглядит несколько брутальнее:




К слову, внутри там ICE125ASX2 от ICEpower® и регулировка громкости и селектор входов на PGA2311.

Гибка может и проще — с одним отгибом, к которому монтируется листы корпуса:


Фанера

Вариант для краснодеревщиков и просто для тех кто дружит с лобзиком и ручным фрезером.

Листы фанеры набранные поперёк смотрятся под лаком необычно. Передняя и задняя панель алюминиевая. Такой корпус, понятное дело, для усилителя не требующего хорошего конвективного охлаждения, например для усилителей класса D высокой эффективности.


Корпуса для РЭА

Есть интересные композитные варианты — металл и пластик. В радиомагазинах Вашего города может оказаться подходящий вариант.


Для солидного вида корпуса, опять же, можно поставить свою переднюю панель в накладку.

Покупные

И, конечно, покупной онлайн вариант. Когда руки, конечно, золотые, но растут не из плеч. Но своими руками хотя бы оплачиваешь заказ.


Я делал подборку интересных вариантов корпусов для diy проектов из Aliexpress:

Читайте также: