Простой генератор синусоидального сигнала своими руками

Обновлено: 04.07.2024

Генератор сигналов был в лаборатории нашего института — это такой большой ящик с десятком ручек регулировки. Он был ламповый и грелся минуты три до выхода на нормальный режим работы. Может ли маленькая платка за 7 долларов выполнять основные его функции? Посмотрим.

Технические характеристики генератора из описания магазина:

Питание: 9-12 вольт
Форма сигналов: прямоугольная, треугольная, синус
Импеданс: 600 Ом ± 10%
Частота: 1 Гц — 1 Мгц
Настройка частоты и амплитуды
Разрешение сигнала: 5 бит
Возможность грубой и тонкой настройки.

Синус:
Амплитуда: 0-3 вольта при питании 9 вольт
Дисторшн: менее 1% при частоте 1 КГц.
Равномерность: +0.05dB в диапазоне 1Гц — 100КГц.

Прямоугольный сигнал:
Амплитуда без нагрузки: 8 Вольт при питании 9 Вольт.
Возрастание сигнала — менее 50нс (на частоте 1КГц)
Спад синала — менее 30нс (на частоте 1КГц)
Симметричность: менее 5% (на частоте 1КГц)

Треугольный сигнал:
Амплитуда: 0 — 3 вольта при питании 9 вольт.
Линейность: менее 1% в диапазоне до 100 КГц при токе 10 мА.

Там же красным по белому написано, что эта версия поставки не включает в комплект корпус. Но мне прислали с корпусом. Приятная неожиданность.

Итак, генератор сигнала поставляется в разобранном виде. Но собирается настолько быстро и приятно, что это пожалуй даже плюс.



В комплекте присутствует плата, набор комплектующих, микросхема XR-2206 (основа всего проекта), инструкция, детали корпуса из оргстекла и необходимые для сборки винтики и гаечки.


Инструкция достаточно подробная, ошибиться в сборке по ней невозможно. Кроме схемы размещения деталей, там указан из список с упоминанием полярности там, где это надо, общие рекомендации по сборке и принципиальная схема обвязки микросхемы. Все на английском.


Деталей мало, установка очевидна, справится даже чайник. Белая полоска на электролитиках должна совпадать с заштрихованной стороной круга, нарисованного на плате. Резисторы лучше проверять мультиметром, прежде чем устанавливать. Пожалуй, и вся премудрость.



Детели установлены на свои места, можно приступать к пайке.

Но прежде чем паять, я заглянул в датшит и полистал в интернете. Там советуют заменить резистор R4, отвечающий за подстройку синуса, на реостат. Это даст возможности минимизировать ненужные гармоники и приблизить сигнал к идеальной синусоиде. Так что я решил сразу впаять реостат в 500 Ом.


В конце собираем корпус. Детали хорошо подогнаны друг к другу. Винты вкручиваются в фигурные отверстия в форме звездочек. Они легко и с первого раза нарезают там резьбу, сидят потом плотно, не выпадают и не выкручиваются.


Длины штатных винтов, крепящих плату, мне не хватило, так что я подобрал свои, даже с дистанционными шайбочками.


Вот итог всех трудов:



Подсоединяем осциллограф, включаем.


Все работает. Попробуем повысить напряжение питания. По датшиту микросхемы, она питается напряжением от 10 до 26 вольт.


Синхронизация сбивается, при обследованиии синусодиы видно, что начинет сбиваться фаза.

В режиме прямоугольного сигнала та же история:


При снижении напряжения питания ниже 12 вольт сигнал восстанавливается, но амплитуда выходного сигнала ограничивается входным минус 2 — 3 вольта:


Ну нам и не обещали работу от 26 вольт. В описании генератора заявлена работа как раз от 12 вольт. Так что все по-честному.

Посмотрим на диапазон частот:

Минимально получилось порядка 0,6 Гц.


Не подумайте, что это такой затейливый сигнал, это просто осциллограф дуреет и считает, что мы имеем дело с постоянным напряжением. При переключении в режим постоянного напряжение получаем такую картину:


Вот так вот! Полка 1 вольт, размах сигнала от 1 до 9,8 вольт. Амплитуда, таким образом, 8,8 вольта. Такая же история и с другими сигналами — синусом и треугольником. Для некоторых применений это не критично, а вот для тестирования аппаратуры, где нет входного фильтра, полка ни к чему. Такой сигнал надо пропускать через конденсатор, чтобы лишить его постоянной составляющей.

Устанавливаем конденсатор 2,2мкФ:


Ну вот. Теперь красивая синусоида вокруг нуля и в режиме измерения постоянки!

Крупнее, в режиме переменного напряжения:


И тот же сигнал, в режиме постоянного напряжения, с фильтрующим конденсатором 2,2мкФ:


С треугольником что-то не задалось, форма получилась такая:


При замене конденсатора на 3,3 мкФ все пришло более-менее в норму:


Но, прямо скажем, 0,6 Гц — не самый актуальный режим работы. Вот как выглядит треугольник на частоте в 1 КГц. Без конденсатора, в режиме AC:


С конденсатором, в режиме DC:


Как видим, все совершенно одинаково.

Теперь выкручиваем ручки частоты на максимум:


Синус красивый, частота получилась даже больше заявленной: 1,339 МГц.


Ну а что вы хотели — на таких-то частотах! От синуса отличается чуть большей амплитудой. На самом деле, такая разница в амплитудных значениях характерна для всего диапазона частот: в микросхеме синус делается из треугольника, у которого сглаживаются вершины.


Прямоугольный сигнал идет с другого выхода микросхемы. Он не регулируется по амплитуде, хотя она у него зависит от входного напряжения. На самом деле, это еще большой вопрос, выдает ли генератор кривой сигнал, или это осциллограф не может его отобразить. Или вообще щупы виноваты.

Амплитуда синуса и треугольника, как я уже говорил, может тоже регулироваться в известных пределах: если перестараться, то треугольник может получиться таким:


Соответственно, заваливаются и вершины синуса, но это не так заметно. Поэтому в режиме синуса полезно иногда переключаться на треугольник и проверять, хорошо ли отображаются вершины. Уменьшаем амплитуду:



Ну вот, теперь и синус будет красивый:


Для того, чтобы понять, насколько хорош этот синус, есть проверенный способ: глянуть на преобразование Фурье от него. Вот что получилось:


У нас есть хороший пик на частоте 100 КГц, есть пики второй и третьей гармоники, но они вполне допустимых размеров, для такой техники. Установленным подстроечником можно их минимизировать. Удобно использовать прецизионный реостат, там от упора до упора много оборотов винта, так что удобно настроить буквально доли ома. Эта картинка — как раз результат моей подстройки. У меня получилось оптимальное значение резистора R4 — 243 Ома. К слову, в набор положили резистор 330 Ом.
Для сравнения, вот спектр треугольного сигнала:


Видим красивые пики на боковых гармониках, ну так это же треугольник, а не синусоида. Для комплекта, вот прямоугольный сигнал:


Тут и так все понятно. Как видим, прямоугольник на 100 КГц остается более-менее прямоугольным. Проверим, что делается на 1 МГц:




Меандр похож на клюв тукана.

Картинки у меня кончились, теперь пару слов общих впечатлений.

Регулировка амплитуды грубовата в области низких значений, кроме того, ее почему-то сделали обратной: по часовой стрелке — уменьшаем, против часовой — увеличиваем. Регулировка частоты, что грубая, что тонкая — почти одинаково влияют на результат. Тонкую я сделал бы реостатиком меньшего номинала. Но это придирки, конечно, можно привыкнуть за пару раз использования.
Резистор, который влияет на дисторшн синуса, можно было бы сделать подстроечником, как и предусмотрено в датшите микросхемы. Но если уж делать резистор, то 330 Ом — явно перебор, там нужно 200-250 Ом.

В остальном прибор порадовал: собирается легко, можно даже с ребенком собрать, как конструктор. Довольно хорошо генерирует сигналы до полумегагерца, дальше хорошо получается в основном синус. Но меандр таких частот обычно и не нужен. Вообще, прибор за 7 долларов, который помещается в карман и способный перекрыть 98% потребностей радиолюбителя в генерировании сигналов — вполне хороший выбор.
Порадовал и корпус — собирается хорошо, выглядит превосходно!

Ссылка на генератор сигналов в магазине: тыц. (цена сегодня $7.68)

Подстроечный реостатик на Али — набор 15 штук разных номиналов, на все случаи жизни. Цена около ста рублей. Пятьсот Ом там тоже есть.

Об авторе

Пожаловаться на комментарий

9 комментариев

Добавить комментарий

Ну что ж, пусть так. Люди разные нужны, люди разные важны.
Даже если никому больше не пригодится, знания о том, что же я собрал, мне самому не помешают.

Здравствуйте, очень хороший обзор. Позвольте, задать вам небольшие вопросы по собранному генератору. 1) Изменяя сопротивление R4 вы минимизировали вторую и третью гармоники синусоидального сигнала на частоте 100кГц, а на частотах в 100Гц, 1кГц, 10кГц значение сопротивления этого резистора останется прежним, или его нужно будет подстраивать, для уменьшения гармоник на этих частотах? 2) Для улучшения симметричности выходного сигнала между выводами 15 и 16 XR2206 впаиваются резистор номиналом 22кОм с ползунком подключённым нулевому проводу. Вы это не пробовали? Спасибо.

Привет. Можешь пожалуйста скинуть рисунок печатной платы. Дело в том что на своей я повредил дорожки и не могу восзоздать

Из нескольких пассивных компонентов с низкими утечками и двух операционных усилителей с высоким входным сопротивлением можно собрать генератор синусоидальных и прямоугольных сигналов с периодом выходных колебаний, измеряемым минутами и более

Изображенная на Рисунке 1 схема генерирует сигналы синусоидальной формы с нелинейными искажениями порядка 3% или меньше. В схеме отсутствуют элементы обратной связи или стабилизации усиления, поскольку они в ней просто не нужны. В качестве фазосдвигающей цепи в этом генераторе используется фильтр нижних частот, а не более распространенная схема с фильтром верхних частот.

Рисунок 1. Этому генератору сверхнизкочастотных сигналов синусоидальной
и прямоугольной формы требуется очень немного компонентов,
однако, как показывают результаты моделирования в LTspice,
он обеспечивает низкий уровень искажений.

Фильтром нижних частот, удаляющим из выходного сигнала бóльшую часть посторонних гармоник, служит времязадающая цепь. Публиковались и другие схемы генераторов, в которых используются фазосдвигающие цепи на основе низкочастотных фильтров, но большинство из них было сложнее (а некоторые намного сложнее).

Выход операционного усилителя (ОУ) U1 соединен с первой секцией фазосдвигающей цепи через R1 и C1. Каждый каскад этой цепи последовательно ослабляет гармонические составляющие сигнала и отчасти основную гармонику. Окончательный синусоидальный сигнал возвращается на вход усилителя U1, не имеющего обратной связи, поэтому из-за сильного ограничения он приобретает прямоугольную форму. Кроме того, для восстановления синусоиды до более практичного уровня и снижения выходного импеданса этот же сигнал поступает на вход усилителя U2, работающего в линейном режиме.

При использовании трех резисторов 2.2 МОм и трех конденсаторов 1 мкФ схема генерирует синусоиду с частотой примерно 0.174 Гц. (Обратите внимание, что, заменив C1-C3 трехсекционным конденсатором переменной емкости, можно создать недорогой аудио генератор с регулируемой частотой).

Независимо от частоты, схема быстро запускается в течение нескольких периодов, а амплитуда выходного сигнала отличается высокой стабильностью. Усилитель U1 не обязательно должен иметь rail-to-rail выход, но требуется, чтобы сигнал ограничивался симметрично, так как в противном случае на выходе будут присутствовать четные гармоники. При наличии у схемы дополнительного выхода сигнала треугольной формы ее можно было бы назвать функциональным генератором. Однако в представленной здесь простейшей конфигурации такого выхода нет.

При увеличении номиналов элементов эта схема может генерировать синусоиды с периодами порядка минут и более, что в значительной степени зависит от характеристик используемых компонентов. В связи с высокими сопротивлениями резисторов необходимо выбирать КМОП ОУ со сверхмалыми входными токами, а времязадающие конденсаторы должны иметь очень низкие утечки. На Рисунке 2 показаны временные диаграммы сигналов в критических точках схемы.

Возможной негативной стороной этой схемы является необходимость во втором ОУ для буферизации и усиления выходного синусоидального сигнала. Требование высокого входного импеданса относится к обоим ОУ. Хотя генератор представлен здесь как сверхнизкочастотный, верхняя граница частотного диапазона этой схемы ограничена лишь произведением коэффициента усиления на полосу пропускания выбранных операционных усилителей. При использовании ОУ с подходящей широкополосностью схема без существенного увеличения искажений будет работать и в верхней части звукового диапазона.

Для некоторых устройств требуется простой генератор синусоидальных колебаний с широким диапазоном генерируемых мощностей. В этой работе предлагается такое устройство работающее всего на одном транзисторе. Устройство позволяет генерировать синусоидальные колебания в большом диапазлоне частот, который определяется только типом транзистора и отдавать мощность в нагрузку от 0.01 до 10 Вт.

Принципиальная схема генератора представлена на рисунке ниже. Резисторы R1-R2 задают постоянное смещение на базу транзистора VT1, который с помощью цепочки из конденасторов C1-C4 и индуктивности L1 генерирует необходимый нам сигнал. Дроссель L2 желателен, но необязателен; его назначение - обеспечивать баласт, при нём схема, без нагрузки, будет потреблять в два-три раза меньшую мощность. Нагрузка же подсоединяется ко вторичной обмотке катушки L1. Это может быть трансформатор Тесла (ТТ), реактивная нагрузка, или светодиоды, например по схеме лечебной катушки. К слову, если все элементы генератора рассчитаны точно, то работа ТТ в некоторых случаях может быть эффективнее, чем по схеме качера Бровина.

Общий расчёт определяется довольно простыми оптимальными соотношениями между ёмкостями: \[C_1/C_3 = 10, \quad C_2 = C_3, \quad C_3/C_4 = 5 \qquad (1.1) \] Резонансная частота генератора будет находиться так: \[f_r = <1 \over 2 \pi \sqrt> \qquad (1.2) \] Значение сопротивлений определяется коэффициентом усиления транзистора VT1 (\(k_\)) и напряжением питания \(U\), которое может быть от 2 до 30В в зависимости от типа транзистора и необходимой мощности. Примерные значения находятся так: \[R_1 = k_\,U/100 \, (k\Omega), \quad R_2 = 2 R_1 \qquad (1.3) \]

Таким образом, расчёт начинаем со значения индуктивности катушки L1.1. Её можно определить прибором у готовой катушки или рассчитать по известным формулам. Обратите внимание, что если рассчитывается ТТ, то в качестве L1.1 там выступает индуктор. Калькулятором можно рассчитать собственную резонансную частоту вторички — эта частота и понадобится для расчёта. Если же рассчитывается обычный повышающий трансформатор, то частота выбирается исходя из его параметров.

Зная эти значения, находим ёмкость конденсатора C3 из формулы (1.2): \[C_3 = <1 \over (2 \pi f_r)^2 L_1>\qquad (1.4) \] А уже отсюда — все остальные параметры: \[C_1 = 10\,C_3, \quad C_2 = C_3, \quad C_4 = C_3/5 \qquad (1.5) \]

Для небольших значения напряжения питания 2..4В и мощности до 0.1Вт вполне подойдёт распостранённый транзистор серии КТ315А или его аналог: 2N2712, 2SC633, BFP719. Для больших мощностей хорошо походит транзистор 2SC5200 или C4793. Если мощность генератора до 1Вт, то его можно не ставить на радиатор.

Дроссель L2 можно ставить любой стандартный: 100-200мкГн, например такой. Конденсатор C4 необязателен. Он необходим только для коррекции правильной синусоиды на выходе генератора.

Автор также рекомендует ознакомиться с генератором высоковольтных импульсов на одном mosfet-транзисторе. Его схемотехника такая же простая и он может работать с любой индуктивной нагрузкой. Также, может быть интересен генератор для длинной линии с несколькими режимами работы.

© Перепечатка материалов сайта возможна с условием установки ссылки на него и соблюдением авторских прав


Измерения Генераторы НЧ

Функциональный генератор

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна


Александр Журенков, г. Запорожье
В статье подробно описана конструкция функционального генератора прямоугольных, треугольных и синусоидальных сигналов, предназначенного для проверки и настройки: электронных устройств бытовой техники, импульсных блоков питания, резонансных цепей электрических схем и аналогичной техники.

Лабораторный генератор НЧ

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда активна

Кривенко Р.Ю.
Низкочастотный генератор синусоидального сигнала - очень важный прибор в лаборатории любого радиолюбителя. Возможно, такой уже есть у всех. Но все же хочу познакомить читателей журнала со своим генератором. Генератор выполнен в виде самостоятельного прибора, питающегося от электросети. Но шкала у него сделана лишь приблизительная - нарисована перманентным маркером прямо на корпусе прибора вокруг переменного резистора, которым частота регулируется. Для точной установки частоты используется другой самостоятельный прибор - частотомер на основе платы ARDUINO UNO, кстати, выполненный в таком же корпусе.

Низкочастотный генератор для радиолюбительской лаборатории

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда активна

Иванов А.
Низкочастотный генератор является одним из необходимейших приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов (измерительных мостов, модуляторов и др.).

ЗВУКОВОЙ ГЕНЕРАТОР

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна

Горчу к Н.В.
Речь идет не генераторе сигналов звуковой частоты, а именно о звуковом генераторе, -воспроизводящем звук. Причем, в весьма широком диапазоне частот - от 60 Hz до 20kHz (частота регулируется переменным резистором), используя в качестве звукоизлучателя подключенный на его выходе широкополосной динамик.
Зачем такой прибор может понадобиться? Например, для проверки микрофонов, или экспериментов с различными акустическими датчиками, чтобы в реальных условиях как они реагируют на звуки разных частот.

ГЕНЕРАТОР НЧ ДЛЯ РЕМОНТА АКУСТИЧЕСКИХ СИСТЕМ

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна

Греков П.А.
Низкочастотный генератор является одним из необходимых приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов (измерительных мостов, модуляторов и др.). Очень часто генератор НЧ используют при ремонте аудиотехники, но с его помощью сложно тестировать и ремонтировать пассивные акустические системы, так как для работы с генератором в паре требуется достаточно мощный УНЧ, сигнал с выхода которого подается на тестируемую акустическую систему.

Функциональный генератор

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна

А.Н. Алексенцев, Р.В. Проць, г. Львов
В этой статье авторы предлагают две схемы низкочастотных функциональных генераторов, которые обладают близкими техническими характеристиками и отличаются схемными решениями отдельных функциональных узлов. При повторении конструкций можно выбрать любую из схем или такую комбинацию функциональных узлов этих схем, которая максимально удовлетворит предъявляемые к генератору требования.

Карманный плеер в роли генератора сигналов

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна


А. Бутов, с. Курба, Ярославской обл.
Если вам для тестирования и настройки звуковоспроизводящих устройств потребовался генератор испытательных сигналов, то совсем не обязательно собирать сложное электронное устройство. Для этих целей можно воспользоваться карманным Flash плеером, в память которого можно записать сотни и тысячи испытательных сигналов различной формы, а помимо них, и реальные звуковые музыкальные композиции для субъективной оценки качества звучания звуковоспроизводящей аппаратуры.
Для использования в таком качестве подойдет любой карманный плеер средней и высокой ценовой категории с напряжением питания не ниже 3 В, имеющий на выходе для подключения стереонаушников хорошее качество звучания.

Простой НЧ генератор с переключаемой функцией выходных сигналов

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна

Компактный генератор звуковой частоты

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда активна


Андрей Бутов, с. Курба, Ярославской обл.
Для конструирования и ремонта различной звуковоспроизводящей аппаратуры в числе различных измерительных и вспомогательных приборов желательно иметь генератор сигналов звуковых частот. Нередко такие генераторы, как промышленного изготовления (например, ГЗ-35, ГЗ-102), так и радиолюбительские, имеют большие габариты и вес, что в некоторых случаях создает неудобства, например, если генератор нужно перенести в другой кабинет или найти ему место на небольшом монтажном столе, школьной парте.

Ремонт выходного усилителя ГЗ-36

Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна
Звезда не активна

С.А. Елкин г. Житомир
Электрическая схема ГЗ-36 привлекает своей простотой, а конструкция - малыми габаритами и вполне приличными метрологическими параметрами.


Генераторы ВЧ, НЧ

Низкочастотный генератор синусоидального сигнала – очень важный прибор в лаборатории любого радиолюбителя. Возможно, такой уже есть у всех. Но все же хочу познакомить читателей журнала со своим генератором.

generator-nizkoj-chastoty-shema


Генератор выполнен в виде самостоятельного прибора, питающегося от электросети. Но шкала у него сделана лишь приблизительная – нарисована перманентным маркером прямо на корпусе прибора вокруг переменного резистора, которым частота регулируется.

В металлических корпусах размерами 150x60x10 см. В общем, очень удобный размер для самодельных приборов. Тогда мне досталось четыре таких. В одном сейчас частотомер на Arduino, в другом регулируемый блок питания, в третьем генератор ВЧ, в четвертом – этот самый генератор НЧ. Схема генератора НЧ показана на рисунке, здесь приводимом. Схема построена на операционном усилителе А1. Это генератор синусоидального сигнала, перестраиваемый по частоте сдвоенным переменным резистором R17 в четырех диапазонах генерации частоты 10-100 кГц, 1-10 кГц, 100-1000 Гц, 10-100 Гц.

Схема построена с мостом Винна в цепи положительной обратной связи операционного усилителя. Сдвоенный переменный резистор регулирует R-составляющую этого моста. С-составляющая состоит из восьми конденсаторов С1-С8, переключаемых галетным переключателем S1 при смене диапазона генерации. А стабилизация коэффициента передачи ОУ выполняется по цепи ООС усилителя с помощью встречно-параллельно включенных диодов VD1, VD2 и резистора R1. Подбором сопротивления этого резистора при налаживании генератора выставляется правильная синусоида на выходе генератора (с минимальными искажениями).

С выхода операционного усилителя генерируемый сигнал поступает на два выхода – разъемы Х1 и Х2. Основным выходом, с которого сигнал подают на исследуемую схему, является разъем Х1. Величину напряжения НЧ на нем можно регулировать переменным резистором R6. И, при необходимости, дополнить еще и делителем на резисторах. Но у меня делителя нет, когда мне нужно получить малый сигнал я на месте паяю делитель на двух резисторах с нужным в данном случае коэффициентом деления.

Второй выход на разъем Х2 служит для контроля частоты при помощи внешнего самостоятельного частотомера. Этот выход не регулируется по амплитуде сигнала. Операционный усилитель питается двух-полярным напряжением около 12V. Для получения этого напряжения используется маломощный силовой трансформатор Т1, предположительно китайского производства. Он при включении первичной обмотки в сеть 220V на вторичной выдает на холостом ходу переменное напряжение 9V.

Обмотка одна, и для получения двух одинаковых по модулю, но разных по значению напряжений используется схема выпрямителя на двух диодах VD3 и VD4 и двух конденсаторах С9 и СЮ. Фактически, это два разных однополупериодных выпрямителя, получающих переменное напряжение от одного источника, – вторичной обмотки трансформатора Т1. Диод VD3 выпрямляет положительную полуволну, а диод VD4 – отрицательную. Так как в электросети переменное напряжение синусоидальное и полуволны симметричные, то на конденсаторах С9 и СЮ выделяются равные по модулю напряжения, но противоположные по полярности.

Вот этим двухполярным напряжением и питается операционный усилитель. Все конденсаторы должны быть на напряжение не ниже 16V. Операционный усилитель К140УД608 можно заменить практически любым операционным усилителем общего назначения, например, К140УД6, К140УД7, К140УД708 и др., включая импортные аналоги. Монтаж сделан без применения печатной платы, даже без макетной платы.

Читайте также: