Преобразователь напряжения с 12 на 18 вольт своими руками

Добавил пользователь Дмитрий К.
Обновлено: 16.09.2024

В данной статье рассмотрим схему повышающего инвертора напряжения рассчитанное на 36 вольт, 127 вольт и 220 вольт частотой 50 Герц. Мощность нагрузки повышающего преобразователя может достигать 200 Ватт, при этом ток, потребляемый инвертором от АКБ, равен примерно 20 ампер.

Устройство описанное в статье способно питать от автомобильного АКБ нагрузку, некритичную к частоте и форме питающего напряжения (устройства с импульсными блоками питания, как телевизор, зарядные устройства). Преобразователь выдаёт выходную мощность до 260 Ватт.

Преобразователь предназначен для питания электроприборов, рассчитанных на 220 вольт от автомобильного аккумулятора или бортовой сети во время движения. Преобразователь выдает напряжение 220 вольт при частоте 50 герц. Но, реально, частота и особенно напряжение может существенно отличаться от указанных номинальных величин. Тем не менее можно питать паяльник, лампы накаливания, вентилятор, электронагреватель небольшой мощности, электробритву.

Напряжение бортовой сети грузовых автомобилей обычно 24 вольт. Таково и номинальное напряжение их аккумуляторных батарей. А большинство выпускаемых приборов помощников, предназначенных для применения в автомобилях (электрические кофеварки, телевизоры, магнитолы), рассчитаны на напряжение питания 12 вольт ±20 %.

В статье описана схема повышающего преобразователя напряжения с 12 вольт до 220 вольт синусом на выходе для питания сетевых приборов которые работают от сети переменного напряжения с частотой 50 герц. Прибор относится к классу средней мощности, но обладает очень хорошими параметрами и может полностью заменить сетевое напряжение.

Иногда у радиолюбителей бывают случаи, когда нужно питать устройства от двух полярного источника питания? Максимальное входное напряжение для данной схемы составляет не более 30 вольт. Таким образом, на выходе, мы получаем +/-15 вольт. Максимальный ток нагрузки - 1 ампер.

Наверное, многим водителям известна проблема с подключением электроприборов в автомобилях, где напряжение бортовой сети не 12 вольт, а 24 вольт. Данное устройство решает эту проблему путем понижения и стабилизирования в пределах 12 - 12,5 вольт.

Описываемая в статье схема предназначена для питания малых устройств автоматики от длинной линии постоянного напряжения 10-16 в. Если используется большое количество маломощных нагрузок на некотором удалении друг от друга обычно строят один первичный не стабилизированный блок питания AC-DC

Мощный повышающий преобразователь напряжения 12/220 вольт на зарубежной микросхеме SG3525. Мощность в нагрузке может достигать до 200 Вт. С генератора, собранного на микросхеме сигналы поступают через ограничительные резисторы напрямую на затворы силовых транзисторов, в нашем случае применены широко известные импортные полевые транзисторы IRFZ44.

В статье представлена схема небольшого, но простого и мощного инвертора напряжения 12 - 220 вольт и до 1000 Вт мощности. Задающий генератор импульсов с паузами между ними выполнен на популярной зарубежной микросхеме TL494CN

Небольшой и простой преобразователь напряжения 12 / 220 вольт. Прибор собран на зарубежной микросхеме TL494CN, она же и является и задающим генератором и драйвером для выходных силовых транзисторов.
Транзисторы применены достаточно мощные - КТ819БМ. Для надёжности силовые транзисторы желательно установить на алюминиевые ребристые радиаторы с площадью охлаждаемой поверхности не менее 300 кв.см.

Срок жизни аккумуляторов шуруповерта намного меньше срока эксплуатации самого электроинструмента. После выхода АКБ из строя можно купить новые элементы питания, что недешево. Но иногда хорошим выходом будет изготовить самостоятельно блок питания от сети 220 вольт и забыть о проблеме аккумуляторов навсегда. При этом произойдет потеря в мобильности, но во многих случаях (условия стационарной мастерской и т.д.) это не имеет значения.

Общая схема и ток потребления шуруповертов 12, 14 и 18В

Из чего можно сделать блок питания для шуруповерта

Шуруповерты различных производителей построены на разной элементной базе, но структурная электрическая схема у всех примерно одинакова. Электроинструмент состоит из:

  • съемного аккумулятора;
  • платы управления;
  • куркового выключателя, совмещенного с регулятором оборотов;
  • переключателя диапазонов регулирования частоты (может отсутствовать);
  • электрического двигателя (коллекторного или бесщеточного).

При изготовлении своими руками источника питания для шуруповерта надо обращать внимание на два параметра:

  • напряжение;
  • номинальный выходной ток.

С напряжением все просто – новый источник питания должен иметь выходное напряжение, равное номинальному напряжению питания электроинструмента. Понижение ведет к потере крутящего момента, повышение – к снижению ресурса. Работа платы управления при пониженном напряжении не гарантируется, при повышенном – вероятен выход ее из строя.

Необходимый рабочий ток определить сложнее. Производители электроинструмента крайне редко указывают потребляемый ток. Немногим чаще указывают мощность в ваттах. Но на шильдиках шуруповертов можно найти следующие данные:

  • рабочее напряжение (в вольтах);
  • частота вращения (в оборотах в минуту);
  • вращаюший момент (в ньютонах на метр).

Эти данные выглядят достаточными для расчета рабочего тока.

Из чего можно сделать блок питания для шуруповерта

На самом деле не все так радужно. Если задаться данными с реального шуруповерта и попытаться рассчитать номинальный ток, то получится абсурдный результат.

Сначала рассчитывается выходная мощность по формуле:

P=T*RPM/9550, где:

  • P – мощность, кВт;
  • T – вращающий момент, Н/м;
  • RPM – частота вращения, об/мин;
  • 9550 – коэффициент, объединяющий перевод из одних единиц в другие.

Для указанных данных получается:

P=42*1350/9550=5,9 кВт.

Эту развиваемую мощность надо разделить на КПД (примерно равный 0,8), в итоге потребляемая мощность равна около 7 кВт. При напряжении 20 вольт аккумуляторы должны отдавать ток 350 А. При емкости 2 А*ч батарея разрядится за 20 секунд (если даже теоретически АКБ обеспечит такой ток). Это и есть обещанный абсурд. Причиной этого могут быть лукавые декларации по оборотам или крутящему моменту. Возможно, наибольший крутящий момент выдается только при определенной частоте вращения, но даже если ее знать, то практического смысла будет мало. Ведь шуруповерт работает на разных частотах.

Поэтому ориентироваться нужно на следующие цифры, полученные экспериментальным путем:

  • холостой ход – 1..2 ампера;
  • средняя нагрузка – 4..6 А;
  • максимальная нагрузка – 8..11 А;
  • броски тока при полном торможении – до 30 А.

Уточнить эти цифры для конкретного шуруповерта можно, замерив реальный потребляемый ток на разных режимах, собрав для этого несложную схему и погоняв электроинструмент на различных нагрузках.

Из чего можно сделать блок питания для шуруповерта

А можно не уточнять, а ориентироваться на цифры, указанные выше. Блок питания понадобится на наибольший ток 10 А (но никак не меньше 5..6), желательно с защитой от сверхтока.

Из чего можно собрать блок питания

Блок питания для зарядки шуруповерта можно сделать по различным схемам. Все зависит от квалификации, наличия приборов и имеющихся материалов.

Из БП компьютера

Неплохой блок питания для шуруповерта напряжением 12 в можно получить из БП для компьютера. Сначала надо проверить, подходит ли он по параметрам.

Из чего можно сделать блок питания для шуруповерта

В приведенном примере БП имеет два 12-вольтовых канала – на 11 А и на 13 А. Каждого канала достаточно для питания выбранного электроинструмента на 12 вольт. В интернете можно найти советы по параллельному соединению каналов до получения суммарного тока (в приведенном случае – 24 А). Делать это не рекомендуется, потому что из-за разницы в напряжениях один канал может стать потребителем для другого - весь риск на выбор хозяина. Из блока питания выходит шлейф проводов. Надо обрезать все, кроме:

  • двух черных (общий провод);
  • одного зеленого (провод управления);
  • одного или двух желтых (выход 12 вольт).

Из чего можно сделать блок питания для шуруповерта

Иногда надо оставить и красный провод – некоторые схемы требуют базовой нагрузки. Для этого между красным и любым черным надо подключить лампочку на 12 вольт. Если в ее отсутствие БП не выключается, значит, ее можно убрать. Зеленый провод надо подключить к любому черному. А 12 вольт снимать с желтого и черного (любого) проводников.

Из трансформатора

Из чего можно сделать блок питания для шуруповерта

Если есть подходящий трансформатор, можно построить источник питания на нем. Общая схема нестабилизированного источника питания показана на рисунке. Такое устройство состоит из:

  • понижающего трансформатора;
  • диодного моста;
  • сглаживающего конденсатора.

Если есть готовый промышленный трансформатор, надо по справочнику найти его данные. Если они устраивают, БП можно собрать на нем. Если нет – его можно переделать, предварительно проверив его пригодность для работы в требующихся условиях. Пригодность трансформатора определяется его мощностью. Если задаться выходным током в 10 А, напряжением 14 В и КПД системы (от трансформатора до выходного вала шуруповерта) равным 0,5, то потребуется трансформатор мощностью P=10 А*14 В/0,5=280 Вт (можно округлить до 300 Вт).

Из чего можно сделать блок питания для шуруповерта

Чтобы определить мощность трансформатора по железу, надо найти площадь сечения его сердечника в сантиметрах (в большинстве случаев можно снять размеры без разборки). Получившуюся площадь в квадратных сантиметрах Sc надо подставить в формулу:

Если полученный результат превышает 300 Вт, трансформатор пригоден для изготовления блока питания. Далее надо удалить все вторичные обмотки и намотать новую. Число витков можно определить экспериментально. Для этого надо намотать любое известное количество витков любым проводом и замерить выходное напряжение. Допустим, намотав 10 витков, на выходе получается 5 вольт. Значит, на один вольт приходится два витка, и для получения 14 вольт надо намотать 28 витков. Для 10 ампер сечение провода должно быть не менее 2,5 кв.мм, это соответствует толщине 1,8 мм.

После изготовления трансформатора надо выбрать диоды, способные работать при выбранном токе. Их надо поставить на радиаторы. И последнее – установить сглаживающий конденсатор. Он должен быть рассчитан на напряжение не менее 25 вольт и иметь емкость 4000-10000 мкФ (можно больше, но увеличатся габариты). Для таких задач трансформаторный блок питания получается достаточно громоздким и тяжелым.

Его можно дополнить стабилизатором напряжения, тогда он будет сохранять крутящий момент при любой нагрузке (но это необязательно – ведь в штатном режиме аккумуляторы также просаживаются при большом токе).

Из чего можно сделать блок питания для шуруповерта

Можно собрать стабилизатор на интегральной микросхеме серии 78ХХ (79ХХ для отрицательного плеча), умощнив ее внешним транзистором.

Важно! Линейный стабилизатор работает при определенном превышении входного напряжения перед выходным, поэтому в этом случае понадобится трансформатор с выходным напряжением 17..18 вольт. Габаритная мощность также должна быть увеличена – общий КПД схемы уменьшится. Это надо учесть при подборе или изготовлении.

Готовый источник надо поместить в корпус. Его можно сделать самостоятельно или подобрать готовым.

Из ноутбука

Неплохой результат можно получить, применив бок питания от ноутбука. Такие устройства рассчитаны на выходное напряжение 19 вольт и на различный ток нагрузки. Можно подобрать источник, выдающий ток до 6 ампер, этого хватит для большинства домашних работ. Перегружать такой источник не следует – сработает защита или отключится самовосстанавливающийся предохранитель на входе (самостоятельно восстанавливается он не всегда, и придется его заменять).

Из чего можно сделать блок питания для шуруповерта

Универсальный БП

Для питания шуруповерта можно использовать регулируемые и нерегулируемые источники питания постоянного тока, применяемые, например, в лабораториях. Их достоинство в том, что выходное напряжение можно регулировать, и установить, в зависимости от модели электроинструмента, как 12 В, так и 18 В. Проблема в том, что трудно найти лабораторный источник напряжения, рассчитанный на выходной ток 10 А. Так, представленный на фото блок на каждый канал имеет ограничение тока немногим более 3 А. Напряжение при этом около нуля, поэтому работать в таком режиме шуруповерт не сможет. В лучшем случае этот блок питания обеспечит холостой ход электроинструмента.

Из чего можно сделать блок питания для шуруповерта

Импульсный источник

Наилучшим вариантом является импульсный источник питания. легкий, компактный, не содержит мощного тяжелого трансформатора за счет того, что преобразование уровня напряжения происходит на более высокой частоте. Минус такого решения – сложная схемотехника. Чтобы изготовить импульсник своими руками, потребуется определенная квалификация.

Из чего можно сделать блок питания для шуруповерта

Схема одного из вариантов импульсного БП приведена на рисунке. Переменное напряжение выпрямляется мостом на VD1-VD4. Генератор на VT1 управляет работой ключей на VT3, VT4. В обмотке 1 трансформатора T2 создаются мощные импульсы тока высокой частоты. С обмотки 3 снимаются импульсы с пониженной амплитудой, выпрямляются мостом VD7, сглаживаются емкостью С5 и подаются на нагрузку. Намоточные данные трансформаторов указаны в таблице.

ТрансформаторМагнитопроводОбмоткаКоличество витковПровод
T1Феррит 1000 НМ (2000 НМ, 3000 НМ) 12х8х3 (кольцо)1,2,320ПЭВ 0.33
T2Феррит 1000 НМ (2000 НМ, 3000 НМ) 40х25х11 (кольцо)1100ПЭВ 0.54
29ПЭВ 0.33
313ПЭВ 0.96

Типовые ошибки при изготовлении

Типовые ошибки при изготовлению блоков питания сводятся к неправильному соединению элементов. Если вести монтаж внимательно, то этих проблем можно избежать. Также надо помнить, что шуруповерт сбалансирован по весу для работы с АКБ. Если батарею снять совсем, то работать будет очень неудобно. Поэтому надо оставить неработоспособный аккумулятор, удалив контактные пластины.

Из видео узнаете, что можно сделать из старого зарядного от шуруповерта.

Другой вариант – удалить из корпуса АКБ отработанные элементы, закрепив вместо них внутри соответствующий груз. В остальном изготовлении блока питания проблем вызвать не должно, и старый инструмент получит новую жизнь.

Здесь будут рассмотрены бестрансформаторные преобразователи напряжения, как правило, состоящие из генератора прямоугольных импульсов и умножителя напряжения.

Обычно таким образом удается повысить без заметных потерь напряжение не более чем в несколько раз, а также получить на выходе преобразователя напряжение другого знака. Ток нагрузки подобных преобразователей крайне невелик — обычно единицы, реже десятки мА.

Задающий генератор

Задающий генератор бестрансформаторных может быть выполнен по типовой схеме, базовый элемент 1 которой (рис. 1) выполнен на основе симметричного мультивибратора.

В качестве примера элементы блока могут иметь следующие параметры: R1=R4=1 кОм; R2=R3=10 кОм С1=С2=0,01 мкФ. Транзисторы — маломощные, например, КТ315. Для повышения мощности выходного сигнала использован типовой блок усилителя 2.

схемы задающих генераторов

Рис. 1. Схемы базовых элементов бестрансформаторных преобразователей: 1 — задающий генератор; 2 — типовой блок усилителя.

Бестрансформаторный преобразователь напряжения

Бестрансформаторный преобразователь напряжения состоит из двух типовых элементов (рис. 2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряжения (рис. 2).

Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное напряжение 22В при токе нагрузки до 100 мА (параметры элементов: R1=R4=390 Ом. R2- R3=5,6 кОм, C1=C2=0,47 мкФ). В блоке 1 использованы транзисторы КТ603А — б; в блоке 2 — ГТ402В(Г) и ГТ404В(Г).

Схема преобразователя с удвоением напряжения

Рис. 2. Схема бестрансформаторного преобразователя с удвоением напряжения.

принципиальная схемы преобразователей напряжения

Рис. 3. Схемы преобразователей напряжения на основе типового блока.

Преобразователь напряжения построенный на основе типового блока, описанного выше (рис. 1), можно применить для получения выходных напряжений разчой полярности так, как это показано на рис. 3.

Для первого варианта на выходе формируются напряжения +10 В и -10 В; для второго — +20 В и -10 В при питании устройства от источника напряжением 12В.

Схема преобразователя для питания тиратронов 90В

Для питания тиратронов напряжением примерно 90 В применена схема преобразователя напряжения по рис. 4 с задающим генератором 1 и параметрами элементов: R1=R4=-1 кОм, R2=R3=10 кОм, С1 =С2=0,01 мкФ.

Здесь могут быть использованы широко распространенные маломощные транзисторы. Умножитель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

принципиальная схема преобразователя напряжения с многокаскадным умножителем

Рис. 4. Схема преобразователя напряжения с многокаскадным умножителем.

Инвертор полярности напряжения из (+) в (-)

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типового узла (рис. 1). На выходе устройства (рис. 5) образуется напряжение, противоположное по знаку напряжению питания.

принципиальная схема инвертора напряжения

Рис. 5. Схема инвертора напряжения.

По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (потерями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения

Преобразователь (удвоитель) напряжения (рис. 6) содержит задающий генератор 1 (1 на рис. 1.1), два усилителя 2 (2 на рис. 1.1) и выпрямитель по мостовой схеме (VD1 — VD4).

принципиальная схема удвоителя напряжения повышенной мощности

Рис. 6. Схема удвоителя напряжения повышенной мощности.

Блок 1: R1 =R4=100 Ом; R2=R3=10 кОм; C1=C2=0,015 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразования, поэтому одновременно с ее ростом уменьшаются емкости конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряжение 12В (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 В; при 50 Ом — до 10 В; а при 10 Ом — до 7 В.

Двуполярный преобразователь со средней точкой

Преобразователь напряжения (рис. 7) позволяет получить на выходе два разнополярных напряжения с общей средней точкой. Такие напряжения часто используют для питания операционных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его величины изменяются одновременно.

принципиальная схема преобразователя для разнополярных выходных напряжений

Рис. 7. Схема преобразователя для получения разнополярных выходных напряжений.

Транзистор VT1 — КТ315, диоды VD1 и VD2—Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя — 10 Ом. В режиме холостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличении тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 В.

Преобразователи-инверторы с задающим генератором на КМОП-элементах

Задающий генератор преобразователя напряжения (рис. 8) выполнен на двух КМОП-элементах, К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное напряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов — при низковольтном питании) меньше входного.

принципиальная схема

Рис. 8. Схема преобразователя напряжения-инвертора с задающим генератором на КМОП-элементах.

Похожая схема преобразователя изображена на следующем рисунке (рис. 9). Преобразователь содержит задающий генератор на КМОП-микросхеме, каскад усиления на транзисторах VT1 и VT2, схемы удвоения выходного импульсного напряжения, конденсаторные фильтры и схему формирования искусственной средней точки на основе пары стабилитронов.

На выходе преобразователя формируются следующие напряжения: +15 б при токе нагрузки 13. 15 мА и -15 В при токе нагрузки 5 мА.

принципиальная схема конденсаторного преобразователя напряжения

Рис. 9. Схема преобразователя напряжения для формирования разнополярных напряжений с задающим генератором на КМОП-элементах.

На рис. 10 показана схема выходного узла бестрансформаторного преобразователя напряжения.

принципиальная схема выходного каскада бестрансформаторного преобразователя напряжения.

Рис. 10. Схема выходного каскада бестрансформаторного преобразователя напряжения.

Этот узел фактически является усилителем мощности. Для управления им можно использовать генератор импульсов, работающий на частоте 10 кГц.

Без нагрузки преобразователь с таким усилителем мощности потребляет ток около 5 мА. Выходное напряжение приближается к 18 В (удвоенному напряжению питания). При токе нагрузки 120 мА выходное напряжение уменьшается до 16 б при уровне пульсаций 20 мВ. КПД устройства около 85%, выходное сопротивление — около 10 Ом.

При работе узла от задающего генератора на КМОП-элементах установка резисторов R1 и R2 не обязательна, но для ограничения выходного тока микросхемы желательно соединить ее выход с транзисторным усилителем мощности через резистор сопротивлением в несколько кОм.

Преобразователь напряжения для управления варикапами

Простая схема преобразователя напряжения для управления варикапами многократно воспроизведена в различных журналах. Преобразователь вырабатывает 20 В при питании от 9 б, и такая схема показана на рис. 11.

На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. Диоды VD1 — VD4 и конденсаторы С2 — С5 образуют умножитель напряжения, а резистор R5 и стабилитроны VD5, VD6 — параметрический стабилизатор напряжения.

принципиальная схема преобразователя напряжения для варикапов

Рис. 11. Схема преобразователя напряжения для варикапов.

Преобразователь напряжения на КМОП микросхеме

принципиальная схема преобразователя напряжения на КМОП микросхеме

Рис. 12. Схема преобразователя напряжения на КМОП микросхеме.

Простой преобразователь напряжения на одной лишь КМОП-микросхеме с минимальным числом навесных элементов можно собрать по схеме на рис.12.

Основные параметры преобразователя при разных напряжениях питания и токах нагрузки приведены в таблице 1.

Блок питания для шуруповерта 18в своими руками

Шуруповерт на аккумуляторной батарее применяется в строительной сфере. Он зарекомендовал себя очень хорошо благодаря его главному преимуществу — мобильности. Износ аккумулятора — основная причина покупки нового устройства, хотя некоторые сдают в мастерскую. Радиолюбители нашли выход из этой ситуации и предлагают использовать подручные материалы. Одним из таких является блок питания для шуруповерта 18в своими руками.

Способы реанимации шуруповерта

Главным преимуществом шуруповерта можно назвать мобильность. Аккумулятора хватает на длительное время и к тому же можно приобрести еще один аккумулятор для этой модели, если объем работ велик и сроки поджимают. Несмотря на то, что АКБ используется в основном литий-ионная (очень качественный тип аккумулятора), есть вероятность выхода из строя цепи питания, а также и самого автономного источника.

Производится питание и подзарядка шуруповерта от сети 220В. На батарею идет напряжение порядка 14в или 20 В (все зависит от конкретной модели). Аккумулятор выдает напряжение питания 12 или 18 вольт соответственно.

Как переделать аккумуляторный шуруповерт в сетевой шуруповерт от сети 220 вольт

Если изделием часто не пользоваться, то со временем батарея приходит в негодность, хотя литий-ионный аккумулятор защищен от перезаряда и полного разряда, нет смысла надеяться на эту защиту. Основными решениями вопроса являются:

  1. Заменить батарею на исправную (будет сделать достаточно сложно, хотя и возможно).
  2. Приобрести новый шуруповерт.
  3. Переделать шуруповерт с питанием от сети.

Очень просто переделать аккумуляторную модель в сетевую (шуруповерт от сети 220 вольт). Этот вариант обладает преимуществами, например:

    Исчезает необходимость постоянной подзарядки аккумулятора.
  1. Работа инструмента без перегрузок благодаря постоянному крутящему моменту.
  2. Можно сделать такую модель, которая будет и подзаряжать аккумулятор любого типа.
  3. Качество сборки (для блока питания будут использованы детали высокого качества, ведь пользователь делает это для своих целей. Не имеет смысла постоянно отвлекаться на ремонт электрической части — это лишнее ВРЕМЯ, а для некоторых — утрата части дохода).

Варианты переделывания

Существует несколько вариантов переделывания шуруповерта, и только пользователь решает для себя какой из них выбрать. Основные способы:

    Применить зарядник для ноутбука (подключить адаптер для ноутбука).
  1. Использовать компьютерный импульсный блок питания (далее БП) от персонального компьютера.
  2. Использовать автомобильный аккумулятор.
  3. Усовершенствовать БП для питания галогенных ламп.
  4. Собрать БП самостоятельно.

Пункты с 1 по 4 практически не требуют особого навыка и подойдут большинству людей. Суть их заключается в использовании уже готовых устройств, ведь практически все готовые БП защищены от короткого замыкания (КЗ), различного рода перегрузок и помех, а автомобильный аккумулятор является вообще идеальным источником питания.

Зарядка для ноутбука

Очень простой способ, требующий минимум знаний в области радиоэлектроники. Для изготовления блока питания для шуруповерта 12в своими руками подойдет любое зарядное устройство для ноутбука. Для переделывания необходимо выяснить напряжение питания шуруповерта и подобрать соответствующую зарядку. Необходимо произвести следующие действия:

    Разобрать аккумуляторный отсек и достать неисправную аккумуляторную батарею.
  1. На зарядке от ноута отрезать выходной разъем (не сетевой — входящий. Это очень важно).
  2. Зачистить провода.
  3. Включить зарядку (провода не должны соприкасаться) и проверить прибором постоянное напряжение (для этих целей подойдет любой вольтметр с напряжением измерений свыше 50 В или обыкновенный мультиметр).
  4. После произведения измерений параметров электропитания необходимо припаять провода, соблюдая полярность.
  5. Закрыть аккумуляторный отсек, поместив в него зарядное устройство, и вывести шнур питания.
  6. Включить в сеть и проверить работу инструмента.

При покупке зарядного устройства следует обратить внимание на его габариты, а лучше взять шуруповерт с собой, предварительно вытащив батарею и разобрав аккумуляторный отсек. При монтаже нужно соблюдать правила техники безопасности, чтобы избежать поражения электрическим током и предотвратить выход из строя зарядки для ноутбука.

Блок питания компьютера

Еще одним неплохим вариантом является использование блока питания от персонального компьютера и желательно форм-фактора АТ. Основные параметры БП: мощность 300..350 Вт, напряжение 12 В и ток величиной не менее 16 А. Этот вариант не подойдет для шуруповерта на 18 В. Основными преимуществами является наличие кнопки включения, защита от КЗ, перегрузок, а также система охлаждения, которой нет в заводской модели шуруповерта. Для реализации этой идеи необходимо выполнить следующие шаги:

    Раскрутить блок питания АТ.
  1. Защита от включения снимается путем замыкания зеленого провода с любым черным из этого разъема (при включении БП он не запустится, если не обойти защиту).
  2. На белых разъемах, которые вставляются в жесткий диск или другой накопитель, оставить желтый и черный провода, а все остальные нужно обрезать и заизолировать.
  3. Удлинить желтый и черный провода кабелем необходимой длины (желательно припаять, так как скрутки могут окисляться).
  4. Припаиваем желтый и черный провод, соблюдая полярность, к контактам аккумуляторного отсека и собираем его.
  5. Для БП можно использовать провод длиннее (сетевой шнур). Кроме того, нужно сделать кожух для БП компьютера в целях соблюдения техники безопасности при работе с электроприборами.

После всех проделанных шагов включаем БП в сеть и запускаем инструмент. Если все сделано верно, то он должен работать. Если вращение происходит в обратную сторону, необходимо разобрать аккумуляторный отсек и изменить полярность. При отсутствии питания следует удостовериться в наличии входного и выходного напряжений.

Автомобильный аккумулятор

Варианты решения переделывания инструмента на сетевое питание из готовых устройств

Оптимальный способ источника электрической энергии, защищенный от случайных КЗ, напряжение стабилизированное и отсутствуют различные помехи. Существенными недостатками являются его габариты, масса и необходимость зарядки. Пример использования очень прост. Нужно всего-навсего запитать шуруповерт от клемм аккумулятора, использовав при этом кабель нужной длины, и предварительно выпаять старый аккумулятор.

К автомобильному аккумулятору необходимо приобрести зарядное устройство или сделать самодельное трансформаторное ЗУ. Кроме того, нужно защитить аккумулятор от попадания дождя и мусора. Для этого делается специальный корпус с выводами для зарядника и питанием для шуруповерта.

Самодельный БП

Необходимо приниматься за изготовление самодельного БП в том случае, если есть знания в области радиотехники. Нужно подготовить детали и инструмент заранее и полностью сосредоточиться на работе, во время которой возможен выход из строя радиоэлемента или поражение электрическим током (напряжение питания 220 В).

Простейшая схема

При изготовлении необходимо подготовить корпус для монтажа радиодеталей, инструмент, кусок гетинакса, провод и радиодетали. После чего приступить к сборке согласно схеме 1.

Сборка самодельного БП.

Схема 1 — Простой БП на 12 или 18 вольт.

Трансформатор подойдет практически любой со следующими параметрами: мощность 250..300 Вт, напряжение на вторичке 24..30 В, а ток номиналом от 15 А и выше. Диодный мост собирается из мощных диодов (подобрать по справочнику). После сборки необходимо проверить напряжение питания: если оно выше необходимого значения, то нужно уменьшить напряжение II обмотки (уменьшение количества витков). При низком напряжении домотать вторичку проводом такого же сечения. После сборки произвести монтаж в корпусе.

При условии, что шуруповерт недостаточно мощный, можно произвести монтаж, непосредственно, в аккумуляторном отсеке. Если БП собирается отдельно, рекомендуется обеспечить охлаждение, потому что во время запуска двигателя номинальный ток увеличивается в 7 раз. В результате этого увеличения происходит нагрузка на БП, и он начинает греться. Нагревание происходит из-за недостаточной мощности источника питания. После готовности БП нужно проверить шуруповерт: запускать его несколько раз и удостовериться в отсутствии нагрева радиоэлементов. При эксплуатации переделанного шуруповерта нужно придерживаться основных требований:

  1. Необходимо давать инструменту время на остывание после каждых 20..30 минут работы.
  2. Не работать на большой высоте или делать это аккуратно (возможно падение БП и, вследствие этого, утрата равновесия и получение травмы).
  3. Следить за состояние питающего кабеля, он не должен пережиматься (может привести к КЗ, которое чревато отрицательными последствиями для инструмента и человека).

Готовые варианты и схема самодельного трансформаторного БП

При КЗ происходит плавление металла. В результате этого возможны ожоги и металлизация кожи (вкрапление в нее частичек расплавленного металла). Кроме того, возможен преждевременный выход из строя самого инструмента и БП. При соблюдении мер предосторожности шуруповерт может прослужить очень долго.

Таким образом, при выходе аккумулятора шуруповерта на 18 В или 12 В, вовсе необязательно покупать новую батарею или шуруповерт. Все зависит от сферы применения инструмента: при надобности мобильности инструмента следует заменить аккумулятор или приобрести новый шуруповерт. В случае когда мобильность не играет особой роли, нужно переделать его на питание от сети. Следуя простым рекомендациям и соблюдая правила техники безопасности, можно не только увеличить вероятность продления срока эксплуатации, но и снизить риск получения травмы.

Читайте также: