Преобразователь на irf3205 своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 04.10.2024

В документации (datasheet) по характеристикам от МОП-транзистора IRF3205 (HEXFET) говорится – это современный, высокопроизводительное устройство от компании International Rectifier (IR) с индуцированной конструкцией затвора (N-канальный). В параметрах заявлено большое поддерживаемое им напряжение 55 В и ток стока до 110 А. Основной особенностью этого MOSFET является очень низкое сопротивление, в открытом состоянии, составляющее порядка 0,008 Ом. Из за низкого внутреннего сопротивления его часто используют для коммутации цепей в инверторах, электроинструменте, преобразователях постоянного тока и т.д.

Power MOSFET-транзистор отличается от обычного затвором с большей толщиной оксида кремния, выдерживающего высокое входное и выходное напряжение.

Цоколевка

Распиновка транзистор irf3205 выполнена в пластиковом корпусе TO-220. Такой обычно применяется при мощности рассеяния до 50 Ватт. Три металлических, гибких вывода имеют следующее назначение: 1) З-затвор (G-gate); 2) С-сток (D-drain); 3) И-исток (S-source). Именно такое назначение и порядок следования выводов, если смотреть на маркировку, у всех транзисторов с префиксом “irf” в 220 корпусе.

IRF3205 цоколевка

Основные параметры

Для определения возможности использования транзистора irf 3205 в своем проекте необходимо изучить его технические характеристики. Они указываются в техническом описании (даташит) от производителя. Основные параметры изготовители представляют в двух таблицах, с наименование: абсолютные максимальные рейтинги и электрические характеристики.

Абсолютные максимальные рейтинги

Абсолютные максимальные рейтинги определяют предельные значения напряжений, тока, рассеиваемой мощности и рабочей температуры, которые способен выдержать полупроводниковый прибор в различных условиях эксплуатации. Надо знать, что эти величины устройство способно выдержать, но это не значит, что возможна его эксплуатация при таких значениях. Использование устройства на максимальных параметрах однозначно приведет к выходу его из строя. У irf3205 следующие максимальные параметры:

Абсолютный максимальный рейтинг IRF3205

Необходимо внимательней отнестись к этим значениям. Иногда производители хитрят и указывают не применимые на практике величины. Так, максимальный заявленный ток стока (ID) у irf3205, указанный в первой строке таблицы, равен 110 A. Однако можно сказать, что это значение не более чем рекламный ход изготовителя, способствующий возможным продажам. Кристалл рассматриваемого прибора действительно может выдержать такой ID, но не корпус ТО-220 в который он заключен, ограниченный током 75 А. Об этих ограничениях в применении производитель указывает только в конце таблицы.

Электрические характеристики

В таблица электрических характеристик все параметры проверены производителем с учетом условий измерений, указных в столбце с соответствующим названием. Они проверяются при температуре окружающей среды менее 25 градусов. У данного устройства они следующие при TJ = 25 °C:

IRF3205 электрические параметры

Тепловые параметры

Рассмотрим тепловые параметры irf3205. Они представлены в виде тепловых сопротивлений корпус-кристалл (RθJC=0.75°C /Вт) и кристалл-окружающая среда (RθJA=62°C /Вт). Для большинства современных полевых МОП-транзисторов RθJA определяется в первую очередь размещением элементов на печатной плате, а не самим полевым МОП-транзистором. Поэтому RθJA имеет меньшее значение для оценки тепловых характеристик, чем RθJC.

Тепловые сопротивления IRF3205

Маркировка

Замена и аналоги

Комплементарная пара

Комплементарной пары у irf3205 нет.

Принцип работы

Назначение выводов сток и исток у мосфетов аналогичны контактам коллектора и эмиттера биполярного транзистора. Эти выводы делаются из материала n-типа, а корпус устройства и подложка из материала p-типа. Добавление диоксида кремния SiO2 на подложку образует тонкий слой диэлектрика, который отделяет клемму затвора от всего корпуса.

Получается однополярное устройство, в котором проводимость осуществляется движением электронов. Область между стоком и истоком образуют свободную от носителей заряда зону. Ее насыщение электронами управляется путем подачи положительного напряжения на клемму затвора.

Работа МОП-транзистора с изолированным затвором

Оно изменяет распределение заряда в полупроводнике, поэтому дырки под слоем диэлектрика, под действием электрического поля двигаются вниз, а свободные электроны притягиваются к области вверх, образуя таким образом n-переход. По этому переходу в последующем и течет электрический ток, сила которого зависит от величины приложенного на затвор напряжения. Возможная схема включения irf3205 показан на рисунке ниже.

MOSFET схема работы с индуцированным каналом

Так же, в зависимости от величины управляющего сигнала МОП-транзистор закрываться (низкая проводимость) или в открываться (высокая проводимость).

Правила безопасности

Основная причина отказа у полевых транзисторов — КЗ между контактами стока-истока. В таком случае только внутреннее сопротивление источника напряжения сдерживает максимальный ток. Из за КЗ кристалл устройства плавится. А повышенное напряжение на затворе разрушает тонкий слой диэлектрика MOSFET. Таким образом, затвор irf3205 разрушится если напряжение на нем будет превысит 25 вольт. Производители советуют выбирать транзистор с 30% запасом по ожидаемым параметрам, при этом должны быть соблюдены требования по подавлению различных скачков напряжения и тока.

Применение

Предельно допустимое напряжение сток-исток до 55 В, позволяют использовать транзистор IRF 3205 в преобразователях напряжения работающих от 12 до 36 В, в бесперебойных источниках питания и др. Он так же популярен при работе в ключевом режиме в повышающих высокочастотных инверторах, например автомобильных. Посредством параллельного включения нескольких корпусов есть возможность построения преобразователей, рассчитанных на значительные токи. На видео можно посмотреть одну из простейших схем собранных на irf 3205 – сенсорный выключатель.

Производители

Далее можете скачать DataSheet транзистора IRF3205 от нескольких производителей. В России наиболее распространены: International Rectifier; Infineon Technologies. Однако, встречаются и других марок: First Silicon, Nell, Kersemi Electronic и др.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Когда в автомобиле нужно создать сетевое напряжение, то обычно используют специальные преобразователи 12-220. В продаже есть недорогие штатные инверторы со стоимость около 20-30 долларов. Однако максимальная мощность таких устройства составляет в лучшем случае около 300 Ватт. В некоторых случаях такой мощности бывает недостаточно.

Получить питание для мощного усилителя можно путем небольших преобразований. Достаточно всего лишь заменить вторичную обмотку на стандартном инверторе. После этого можно получить любое значение входного напряжения. К примеру, мощность инвертора в 400 Ватт возрастет до 600 Ватт.

Для повышения мощности в домашних условиях специалисты рекомендую воспользоваться простым способом. Потребуется заменить мощные биполярные ключи на IRF 3205.

Для работы взят инвертор, к которому допустимо подключить 4 пары выходных транзисторов. Поэтому устройство, после проведения необходимых работ, сможет выдать мощность около 1300 Ватт. Если покупать готовый инвертор с такими параметрами, то стоимость его возрастет до 100-130 долларов.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

12-220 на 500 Ватт

Стоит обратить внимание, что традиционная двухтактная схема устройства не содержит в себе защиту от перегрева, КЗ и перегрузок на выходе.

Основу генератора составляет микрочип ТЛ 494, у которого есть дополнительный драйвер. Необходимо провести замену маломощных биполярных транзисторов на отечественные аналоги (КТ 3107).

Для того чтобы не использовать в работе мощные переключатели для подачи питания, инвертор оснащается схемой ремоут контроля.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

В задающей части устройства использованы диоды специальные ШОТТКИ типа 4148 (подойдет и отечественный КД 522). Транзистор в схеме ремоут контроля заменяют на КТ 3102.

После этого можно переходить к самой ответственной части проекта – трансформатору. Этот элемент намотан на пару склеенных колец 3000 НМ. При этом размер каждого из них: 45х28х8. Для более плотной фиксации кольца можно обмотать скотчем.

Затем кольца обматывают сверху стекловолокном (стоимость его в магазине не более 1 доллара). Вполне допустимо заменить этот материала тканевой изолентой.

Стекловолокно нарезают на небольшие полоски шириной около 2 см и длинной не более 50 см. Материал для работы имеет высокую термостойкость, а благодаря тонкому основанию изоляция выглядит аккуратно.

Для первичной обмотки нужно 2х5 витков проволоки, то есть 10 витков с отводом от середины. Работы выполняются проводом диаметром 0,7-0,8 мм, и на каждое плечо уходит 12 жил. Более наглядно процесс представлен на следующих фотографиях.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Жгут растягивают, и на оба плеча равномерно наматывают 5 витков, растягивая их по всему кольцу. Обмотки должны быть одинаковые.

Получившиеся элементы имеют четыре вывода. Начало первой обмотки нужно припаять концу второй. Место припоя будет случить отводом для силового напряжения в 12 В.

На следующем этапе работ кольцо необходимо изолировать с помощью стекловолокна и покрыть вторичной обмоткой.

Вторичная обмотка повышает выходное напряжение. Поэтому при проведении работ нужно быть максимально аккуратным и соблюдать все меры предосторожности. Стоит помнить, что высокое напряжение опасно. Монтаж устройства осуществляется только с отключенным питанием.

Обмотку колец проводят с помощью пары параллельных жил провода 0,7-0,8 мм. Количество витков составляет порядка 80 штук. Провод равномерно распределяют по всему кольцу. На финальном этапе проводят дополнительную изоляцию изделия стекловолокном.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

После этого можно переходить к проверке полевых ключей на предмет тепловыделения. При правильно собранной схеме оно должно быть практически нулевым. Если входной нагрузки нет, а транзисторы перегреваются, то нужно искать неработающий компонент в устройстве.

В случае, если тестирование прошло успешно, то можно установить транзисторы на один общий теплоотвод. Для этого используют специальные изоляционные прокладки.

Принципиальная электрическая схема в формате *.lay находится в архивном файле и станет доступна после скачивания:


Сегодня разберёмся что такое ШИМ и с чем его едят, а также как сделать контроллер в домашних условиях.

Что такое ШИМ?

ШИМ (широтно-импульсная модуляция, англ. pulsewidth modulation (PWM)) — это способ управления мощностью путём импульсной подачи питания. Мощность меняется в зависимости от длительности подаваемых импульсов.

ШИМ в современной электронике применяется повсеместно, для регулировки яркости подсветки вашего смартфона, скорости вращения кулера в компьютере, для управления моторами квадрокоптера или гироскутера. Cписок можно продолжать бесконечно.

В любительской электронике ШИМ контроллеры часто используются для управления яркостью светодиодных лент и для управления мощными двигателями постоянного тока.

Принцип работы ШИМ

В отличии от линейных систем, где мощность регулируется путём снижения электрических параметров (тока или напряжения), при использовании ШИМ мощность, передаваемая потребителю, регулируется временем импульсов, что существенно повышает эффективность работы контроллера. В аналоговых системах остаточная мощность рассеивалась в виде тепла, здесь же при снижении потребления остаточная мощность просто не используется.

Основная характеристика ШИМ – СКВАЖНОСТЬ (процент заполнения) – процентное соотношение длительности импульсов к периоду. На рисунке ниже изображено 5 степеней скважности прямоугольного ШИМ сигнала:


Скважность ШИМ

ПЕРИОД — это время за которое происходит полный цикл колебания сигнала. Измеряется в секундах. Он линейно зависит от частоты сигнала и рассчитывается по формуле:

f(частота) = 1/ T(перод)

Частота ШИМ – это количество периодов (или если хотите, циклов колебаний) в единицу времени. Частота измеряется в Герцах (Гц), 1 Гц это одно колебание в 1 секунду.

Если сигнал делает 100 колебаний в секунду, значит частота равняется 100 Гц. Чем выше частота тем меньше период.

Откуда берётся ШИМ

Вариант 1 — аналоговый

ШИМ сигнал создаётся специально сконструированными устройствами – генераторами ШИМ сигнала или генераторами прямоугольных импульсов. Они могут быть собраны как на аналоговой базе, так и на основе микроконтроллеров, как в виде схемы из нескольких транзисторов, так и в виде интегральной микросхемы.

Самый простой вариант это микросхема NE555, собирается всё по схеме:


Схема ШИМ генератора на NE555

Но если лень разбираться и паять, то китайцы за нас всё уже давно сделали.


ШИМ генератор на NE555

Стоит $0,5, работает стабильно при питании от 5 до 16 вольт. Выдаёт ШИМ сигнал амплитудой в 5 вольт, скважность можно менять подстроечным резистором (вон та синяя штуковина с вырезом под отвертку). При желании можно заменить подстроечный резистор на переменный и получим удобную ручку регулировки.

Вариант 2 – цифровой

Более сложный для новичка – использование микроконтроллера, но вместе с тем более интересный и дающий широкие возможности. Звучит страшно, но самом деле реализуется довольно просто.

В качестве микроконтроллера удобнее всего взять отладочную плату ардуино.

Как с ней работать написано вот здесь. Подключаем ардуинку к компьютеру и заливаем в неё вот такой наисложнейший код:

Далее цепляемся осциллографом к пину D3 и видим:


ШИМ скважность 30%

Сигнал частотой (Freq) -526 Гц, амплитудой (Vmax)- 5 вольт и скважностью (duty) – 30.9 %.

Меняем скважность в коде — меняется и скважность на выходе. Добавляем датчик температуры или освещённости, прописываем зависимость скважности на выходе от показаний датчиков и — готова регулировка с обратной связью.

Как подключить к нагрузке

Напрямую генератор ШИМ сигнала к нагрузке подключать не следует, потому как он слаботочный и скорее все сразу же сгорит. Для того, чтобы управлять нагрузкой необходим ключ на мосфет-транзисторе. Берём N-канальный мосфет-транзистор IRF3205 и собираем всё по схеме:


Ардуино ШИМ на IRF3205

Резистор R1 нужен для защиты пина ардуинки от выгорания, а резистор R2 для того, чтобы транзистор полностью закрывался, когда ардуина не даёт выходного сигнала.

Как видно ничего сложного. Четыре элемента и ШИМ-контроллер готов. Он уже может управлять одноцветной светодиодной лентой или каким-нибудь моторчиком.

Если нужна трехцветная лента или больше лент (делаем многоканальный ШИМ), просто добавляем ключи на пины D3, D5, D6, D9, D10, D11 (только на них работает ШИМ). Итого, Ардуина способна управлять мощностью 6-ти устройств одновременно.

IRF3205 способен выдерживать токи до 70 Ампер при напряжении до 55 Вольт, таких характеристик вполне достаточно для решения большинства бытовых задач.

Если нужно управлять плюсовым контактом

В таком случае нам понадобится другой мосфет- транзистор — P-канальный. Схема аналогична, только подтягивающий резистор подключен к плюсу.

Также нужно будет инвертировать сигнал на выходе ардуино, ведь при подаче 5 вольт транзистор будет закрываться, а при 0 — открываться, значит шим скважностью в 30% выдаст 70% мощность на выходе схемы.


ШИМ на irf4905, питание5 v

Стоит оговориться такая схема будет работать только при питании не выше 5 вольт, так как для полного закрытия P-канального транзистора необходимо подтянуть его затвор к плюсу питания, а ардуина способна выдавать на цифровой пин только 5 вольт. Значит, при питании хотя бы чуть-чуть выше напряжения выдаваемого на цифровой пин транзистор будет не полностью закрываться при верхней части импульса ШИМ и БУДЕТ СИЛЬНО ГРЕТЬСЯ. Полностью отключить нагрузку он тоже не сможет.


Ардуино, управление ШИМ по плюсовому проводу IRF4905

Контроллер ШИМ для RGB светодиодной ленты

В качестве примера приведу схему ШИМ контроллера для RGB светодиодной ленты на ардуино. В ней используется трёхканальный ШИМ для управления тремя цветами ленты. Ниже будет ссылка на готовое устройство, собранное на этой схеме управления.


ШИМ контроллер RGB ленты на ардуино

Соединяется всё вот так:


В схеме я добавил ещё кнопку, она нам поможет в будущем переключать цвета и регулировать яркость.

Вот простой код, позволяющий засветить ленту различными цветами. Чтобы изменить цвет подставьте цифры в значения для R, G и B из комментария ниже.


***Изучение матчасти***

Существует давно известный факт — от 12 В бортового напряжения можно получить лишь 18 Вт мощности. Чтобы качественно качать саб, нужно как минимум 100 Вт. Повторюсь, от 12 В такую мощность получить НЕВОЗМОЖНО. Для этого в мощных автомобильных усилителях используются преобразователи напряжения, поднимающие бортовое напряжение 12 В до необходимого. В случае с Ланзаром нужно получить 55-60 В, чтобы снять с него максимальную мощность.
В интернете есть куча схем, в нашем случае лучше всего использовать схемы на микросхеме TL494. Перелопатив кучу этих схем, я отобрал несколько годных, и переделал их под свои нужды.
Если вы собрались браться за такое, очень советую посмотреть видео Ака Касьяна, вот ссылка на него. Очень доступно все объясняет. Поэтому на принципе работы я останавливаться не буду.

***Изготовление печатной платы***

Подробно процесс изготовления печатки я описывал тут, поэтому также не останавливаюсь, но парочку фоток я все-таки скину). Из новшеств — "типа шелкография", также печатал на журнальных листах и переводил утюгом. На одну плату перевелось отлично, на преобразователь плоховато, но ничего.

Читайте также: