Переключение на резервное питание при отключении основного своими руками

Добавил пользователь Валентин П.
Обновлено: 16.09.2024

В процессе эксплуатации резервных источников питания большое значение имеет такая функция, как автоматический запуск генератора при отключении электричества. Необходимость использования данных устройств обусловлена рядом причин. В первую очередь, они связаны с шумной работой генераторов и необходимостью, их размещения на расстоянии от дома или даже в отдельных строениях и подземных бункерах. Однако при таком изолированном состоянии возникает серьезная проблема в подаче электроэнергии на объект, в случаях ее неожиданного отключения.

Система автозапуска генератора

Ручное переключение подачи электричества потребует много времени. Вначале рубильником отключается основная сеть, затем нужно подойти к генератору, завести его, дать прогреться и только после этого можно подавать электричество на объект. После того как городское электричество вновь появилось, процедура отключения генератора повторяется в обратном порядке. Для того чтобы избежать подобных движений, был придуман автозапуск генератора, самостоятельно выполняющий все операции. Принцип действия данных устройств один и тот же, они различаются лишь по количеству функций, качеству сборки, комплектности и стоимости.

Автоматический запуск генератора при отключении электричества

Автоматический запуск генератора осуществляется в той же последовательности, что и при ручном режиме, только значительно быстрее. Самые простые устройства выполняют обычное включение и выключение домашней электростанции. В современных моделях представлен более широкий набор функций. В основе конструкции таких устройств лежат новейшие программируемые процессоры.

Система позволяет контролировать не только наличие сетевого напряжения, но и его номинальное значение по верхнему и нижнему пределам, а также разница напряжения между фазами. При выходе параметров за допустимые пределы, выполняется автоматическое переключение на генераторную установку. На некоторых моделях автоматического ввода резерва (АВР) возможно самостоятельное программирование всех необходимых параметров, обеспечивающих нормальную и корректную работу электростанции. Дополнительные настройки предусмотрены в бензиновых и дизельных генераторах с учетом их специфики.


Качественная автоматика делает эксплуатацию генератора значительно проще и доступнее практически для каждого человека. Выбор системы автозапуска рекомендуется делать в специализированных организациях, которые не только продают, но и устанавливают необходимое оборудование.

Блок для автозапуска генератора

В качестве автоматического ввода резерва расмотрим более подробно устройство БАЗГ-1, представляющее собой блок автозапуска генератора. С его помощью обеспечивается дистанционное управление, не требующее присутствия людей. Основной функцией блока является запуск и остановка двигателя электростанции. Для запуска предусмотрено пять попыток, в том числе на сам запуск отводится 5 секунд, и на перерыв между запусками – 15 секунд с автоматическим управлением воздушной заслонкой.


Блок БАЗГ-1 входит в состав системы резервного автоматического электроснабжения. Внешний источник отдает команду, по которой выполняется запуск и последующий контроль над работой двигателя. Для того чтобы система работала полноценно, понадобится щит, переключающий на резерв.

Устройство БАЗГ-1 может работать совместно с инвертором, обеспечивающим запуск генератора и дальнейшую подзарядку аккумуляторной батареи. Пуск и отключение генератора происходит при замыкании и размыкании двух контактов. При неудачной попытке запуска блок переходит в состояние аварийного режима. Для выхода из него нужно снять питание с блока или отменить команду запуска. Перед полным отключением двигателя генератор охлаждается в течение 30 секунд.

Схема автозапуска генератора

Все электроприборы и оборудование, для которых требуется резервное питание, отдельно выделяются на схеме автозапуска. Остальные потребители остаются подключенными к городской сети по стандартной схеме. Подключение фазы осуществляется через автоматический предохранитель. Сами потребители резервного питания подключаются через розетку на 32 ампера, позволяющую снимать полную мощность генератора.


В схеме в обязательном порядке должен быть предусмотрен заземляющий контур, обеспечивающий защиту и безопасную работу с установкой. Следует учитывать, что розетка и блок автозапуска не рассчитаны на высокие нагрузки. Мощность потребителей, подключенных к резервному питанию, не может быть выше номинальной мощности генератора. В случае перегрузки высока вероятность сжигания обмотки и выхода из строя всей установки.

В некоторых случаях схема автозапуска предусматривает подключение стабилизаторов напряжения. Они используются для тех потребителей, которые чрезвычайно требовательны к качеству электроэнергии в бытовых условиях и на производстве. Подключение стабилизаторов в сеть осуществляется в тестовом режиме. В случае стабильной работы всех потребителей, отсутствии посторонних шумов, прибор устанавливается перед генератором и включается в городскую сеть. Если же ток, выдаваемый генератором, некачественный, то установка стабилизатора производится после него и все потребители будут получать уже стабилизированный ток.

Домашний генератор на 220в с системой автозапуска

Желтый прямоугольник ограниченный штрихпунктирной линией на рисунке выше и есть сам контроллер резервного питания BACKPMAN v1.0.

Все статьи по проекту

Схемотехника

Контроллер работает совместно с тремя внешними модулями:

сетевым источником питания 220 VAC в 24 VDC

инвертором 24 VDC в 220 VAC

аккумуляторной батареей 24 В

В момент отключения сетевого напряжения или понижения ниже предельного значения контроллер переключает потребителей на питание от аккумулятора и инвертора.
Переключение 24 В происходит без провалов напряжения, переключение 220 происходит с задержкой равной времени переключения реле.

Преимущества

Такая архитектура обеспечивает гибкость, масштабируемость и оптимальную стоимость.

Гибкость выражается в цифровом управлении и возможности выбирать источник питания, инвертер и аккумулятор из широкого ассортимента представленного на рынке без привязки к конкретным производителям и продавцам. Это довольно актуально с современной турбулентностью поставок и при мелкосерийном производстве.

Масштабируемость определяет возможность варьировать в широких пределах мощность источника питания, инвертера и емкость аккумулятора.

Оптимальная стоимость. На рынке можно найти предложения по созданию аналогичной архитектуры на более раздробленных дискретных модулях или вовсе на нескольких автономных UPS-ах. Но чтобы добиться встраиваемости в системы потребителей по габаритам и с полным контролем со стороны систем управления потребителей понадобится еще много дополнительных средств. Обратная связь от потребителей в данной схеме позволяет не устанавливать избыточные резервные мощности, и сэкономить на емкости аккумулятора и мощности инвертора.

Применение

Применить такой контроллер можно в промышленных и бытовых устройствах и агрегатах, подъемниках, лифтах, автоматических воротах, кранах, автоматических дверях, системах домашней автоматизации и т.д.

Контроллер способен работать и как простой зарядник аккумуляторов емкостью до 30 А*ч, как измеритель параметров электросети, измеритель КПД инвертеров, как источник питания с регулируемым напряжением, током до 10 А и защитой от перегрузок и т.д.

Принцип работы

Особенностью архитектуры данного контроллера является его тесная связь с потребителями.
Для того чтобы не превысить предельно допустимую мощность источника питания и инвертера и не спровоцировать проседания выходных напряжений контроллер получает от потребителей информацию о планируемом подключении нагрузок и сообщает потребителям о текущем состоянии сетевого напряжения. Таким образом потребители не будут пытаться получить недоступную мощность или предпринимать действия способные быстро и непрогнозируемо привести к исчерпанию аккумулятора. Связь потребителей с контроллером осуществляется через один из цифровых интерфейсов : CAN, RS485, USB.

При наличии сетевого напряжения контроллер пропускает напряжение 24 В от внешнего источника питания к потребителям через управляемый ключ 1 (см. структурную схему) и напряжение 220 В через реле Р1. Ключ 1 работает одновременно также как ограничитель входного напряжения, ограничитель тока, защита от переполюсовки и идеальный диод. Ключ 1 не дает проникать обратному току на источник питания в случае отключения сетевого напряжения. Может показаться, что это излишняя мера, но некоторые промышленные источники питания MEAN WELL не включаются, когда на их входе уже присутствует напряжение. Одновременно с подачей тока потребителям контроллер заряжает аккумулятор (если аккумулятор этого требует). При этом ток заряда аккумулятора балансируется с током уходящим потребителям так чтобы не превысить допустимый ток источника питания.

Цифровое управление и повышающее/понижающий (Buck-Boost) преобразователь зарядника позволяют точно учитывать степень заряда и разряда аккумулятора и выбирать правильные профили заряда в зависимости от состояния аккумулятора.

При отсутствии сетевого напряжения контроллер пропускает через ключ 2 напряжение 24 В потребителям от аккумулятора. Напряжение при этом может варьироваться от 27 В (полностью заряженный) до 20 В (полностью разряженный). Потребители должны быть готовы работать в таком диапазоне, что обычно не представляет проблемы. Напряжение 220 В подается через реле Р2 от внешнего инвертера. Сам инвертер питается от аккумулятора через ключ 3. Инвертер может поддерживаться как в горячем резерве так и быть отключенным (что более экономично). Однако из выключенного состояния инвертеры обычно выходят несколько секунд и это затягивает переключение.

Основные характеристики

максимальный коммутируемый переменный ток напряжения 200 В - 35A

максимальный коммутируемый постоянный ток напряжения 24 В - 15 А

максимальный ток на входе инвертера - 50 А

максимальный ток заряда аккумулятора при наличии радиатора - 10 А

максимальный ток заряда аккумулятора без радиатора - 4 А

тип аккумулятора - cвинцово-кислотная батарея 24 B

тип микроконтроллера - MKE18F512VLL16 (ARM Cortex-M4F, 32-Bit, 168MHz, 512KB (512K x 8) FLASH, 64 KB SRAM, -40°C ~ 105°C)

Цифровые интерфейсы: CAN гальвано-изолированный, RS485 гальвано-изолированный, USB 2.0 Full Speed VCOM

Два гальвано-изолированных цифровых выхода

Дисплей с энкодерным управлением

Встроенные измерители токов, напряжений, мощностей и прочего по входным и выходным линиям 220 и 24 В.

Утечка тока аккумулятора в отключённом состоянии не более 200 мкА

Все основания рассчитывать что на половине заявленных максимальных токов плата способна будет длительно работать без радиаторов при условии свободной конвекции.

Схема

Лист 1. Идеальный диод источника питания, идеальный диод цепи питания системы от аккумулятора и DC/DC преобразователь зарядника. Лист 2. Микроконтроллер, цифровые интерфейсы, дисплей, стабилизаторы питания Лист 3. Ключ питания инвертера, измерители в цепи переменного тока, коммутаторы цепи переменного тока

Структурная схема

Структурная схема с указанием номеров разъемов и точек измерения напряжений и токов. (для увеличения открыть в отдельном окне)

Структурная схема с указанием номеров разъемов и точек измерения напряжений и токов. (для увеличения открыть в отдельном окне)

Особенности схемы

Зарядник аккумулятора выполнен на регулируемом DCDC преобразователе U23 серии LTC3789.
Выходное напряжение преобразователя задается микросхемой U24 DAC80501 управляемой по интерфейсу I2C. DAC80501 преобразует 16-и битный код в выходное напряжение в диапазоне от 0 до 1.25 В. Резистивный делитель на R94, R96, R100 смешивает напряжение от U24 и выходное напряжение DCDC преобразователя чтобы получить опорное напряжение VFB, для микросхемы LTC3789 оно должно равняться 0.8 В. DCDC преобразователь работает так чтобы напряжение VFB всегда оставалось равным 0.8 В, когда микросхема U24 меняет свое выходное напряжение.
Таким образом DCDC преобразователь способен регулировать свое напряжение от 1.65 В до 31.9 В.

Для расчета схем на базе LTC3789 и подобных существует специальная программа - LTpowerCAD
Вид окна программы для рассматриваемого преобразователя показан ниже:


В целом программа показывает более оптимистичные результаты чем есть в реальности, особенно на малых мощностях. В частности недооценивается влияние паразитных элементов трассировки.

Даже упрощенная модель в программе LTpowerCAD не дает однозначного ответа по оптимальному выбору компонентов, поскольку при разных режимах и комбинациях входных и выходных напряжений и токов значительно меняется вклад разных элементов в нагрев схемы. Т.е. программа не выполняет глобальной оптимизации по всему диапазону рабочих режимов. И приведенная схема была в основном оптимизирована для случая выходного напряжения в 32 В и выходного тока 10А, т.е. самого тяжелого режима при зарядке 24В аккумулятора.

На КПД преобразователя также влияет состояние сигнала DCDC_MODE. Как показала практика в состоянии лог. 0 (forced continuous mode ) катушка индуктивности L5 меньше нагревается чем когда на DCDC_MODE присутствует лог. 1 (pulse-skipping mode).

Сигнал EN_CHARGER в состоянии лог. 0 запрещает работу преобразователя. В выключенном состоянии преобразователь не пропускает напряжение с выхода на вход.

Ключ источника питания SW1. Выполнен на микросхеме U20 LTC4364. Через этот ключ проходит ток от источника питания к потребителям. Когда происходит переключение от питания от аккумулятора этот ключ выключается микроконтроллером.

Часть схемы с ключом источника питания

Часть схемы с ключом источника питания

Ключ кроме непосредственно коммутации выполняет еще несколько защитных функций:

работает как идеальный диод от входа к выходу,

выполняет защиту от перегрузок по току,

защищает выходную цепь от перенапряжений на входе (отключается при перенапряжении) ,

не пропускает в систему слишком низкое напряжение от источника питания,

ограничивает броски тока при включении,

обеспечивает плавное нарастание выходного напряжения,

предохраняет схему от переполюсовки на входе.

При этом о своих аварийных состояниях ключ сообщает сигналом PIDS_FAULT.
Сигналом PIDS_SHDN в высоком состоянии ключ выключается. Если схема обесточена, то при включении источника питания будет находиться в открытом состоянии.

В промышленных системах столько защит не является лишним. Особенно когда работать приходится в окружении электроники сомнительного качества и надежности.

Ключ аккумулятора SW2. Выполнен на микросхеме U21 LTC4364.


Назначение этого ключа в том чтобы пропустить ток от аккумулятора к потребителям в режиме работы резервного питания. Транзистором Q9 задается два разных уровня выходного напряжения.

При уровне 0 сигнала AIDS_FBC ключ начинает пропускать ток от аккумулятора в систему (т.е. потребителям) только если напряжение в системе упадет ниже 22.9 В (т.е. внешний источник питания не будет способен удержать свое номинальное напряжение).

При уровне 1 сигнала AIDS_FBC ключ пропустит ток если в системе напряжение будет ниже 26.3 В.
Это необходимо когда в систему включается полностью заряженный аккумулятор с напряжением до 32 В чтобы транзисторы ключа не перегрелись из-за слишком большого падения напряжения на них.

Поскольку ключ еще и выполняет функции идеального диода, то ток из системы в аккумулятор через него не проходит.

В обесточенном состоянии и подключении только аккумулятора ключ останется закрытым. Таким образом систему нельзя включить от аккумулятора не подав предварительно напряжение от внешнего источника питания.

Ключ питания инвертора SW3. Выполнен на микросхеме U14 LTC4368.


Этот ключ включает питание на инвертор. Для быстрого переключения на резервное питание инвертор желательно держать включенным. Однако инверторы потребляют значительный ток. Например инвертор MEAN WELL TS-1500-224 мощностью 1.5 КВт


на холостом ходу потребляет более 1 А. После аварийной перегрузки такой инвертер не включится вновь пока на с него не снимут напряжение ( если не пользоваться его интерфейсом управления). В таком случае ключ помогает избавиться от лишнего потребления тока и упростить восстановление после перегрузок, хотя и ценой некоторой инерционности.
Ключ защищает аккумулятор от слишком больших токов. В данной схеме защита должна срабатывать при токе превышающем 50 А, на самом деле будет меньше, тут критически важна трассировка.

Высоковольтная часть. В высоковольтной части коммутация производится с помощью реле K1 и K2 типа AHES4292. Не самый быстрый и надежный способ коммутации, но дело в том что схема предназначена для коммутации самых разнообразных нагрузок и напряжений, в частности для коммутации межфазных напряжений в 3-х фазных сетях (тогда ставятся еще вспомогательные внешние 3-х фазные контакторы). Реле относятся к типу реле безопасности и на схеме они взаимно блокированные. Принято считать что по такой схеме реле такого типа ни при каких обстоятельствах не смогут включиться одновременно, даже когда одно из них залипнет. Значит сетевое напряжение никогда не сможет проникнуть на выход инвертора и погубить его.
Залипание реле контролируется измерителями напряжения на резистивных делителях R51, R52 и R53, R54


Мониторы мощности. Реализованы на микросхемах U15 и U17 типа ACS37800KMACTR-030B3-SPI.
Микросхемы способны измерять переменный ток, напряжение, мощность, действующие их значения, средние от действующих значений за заданное время, способны измерять действующее как по переходу через ноль так и действующее значение постоянных токов. Каждая из микросхем отдельно гальвано-изолирована и может выполнять точные измерения не беспокоясь о способе реализации заземления и зануления источников напряжения и даже измерять при межфазном подключении. Микросхемы измеряют ток амплитудой до 30А.
Считывание данных производится по интерфейсу SPI. На каждую микросхему идет отдельный интерфейс SPI поскольку они не могут совместно работать на одном общем интерфейсе.

Измерители токов и напряжений. Как пример приведен фрагмент схемы ниже -


U22 и U13 здесь измеряют ток. Микросхемы INA240A1 хорошо подходят для условий измерений с большими синфазными помехами. Они двунаправленные. Средняя точка для них формируется общей для всех прецизионной мало-шумящей схемой на операционном усилителе U26 THS4281DBVR. Кроме того INA240A1 достаточно хорошо согласуются в входами АЦП микроконтроллеров.

Микросхема U27 на схеме выполняет роль дифференциального усилителя напряжения для измерения напряжения аккумулятора. Дифференциальный усилитель применен здесь для того чтобы минимизировать ток потребляемый от аккумулятора, когда система обесточена, также дифференциальный усилитель как ни странно упрощает трассировку платы в отношении топологии аналоговых и цифровых земель.

Элементы управления. Для управления платой в первую очередь предназначены коммуникационные интерфейсы, но предусмотрено также и непосредственное ручное управление и настройка. Для этого введен в схему ручной механический энкодер SW1 с двухцветной подсветкой и нажатием PEL12D-4225S-S2024.



Для отображения информации есть OLED дисплей ER-OLED015-2W. Монохромный, 128x64 точки, управляется по интерфейсу SPI. Немного усложненная схема


объясняется тем что дисплею для работы нужно повышенное напряжение 12 В. Ключ питания U34 здесь добавлен скорее для страховки ввиду неопределенности поведения в даташите на дисплей в случае пониженного уровня VCC.

Микроконтроллер MKE18F512VLL16 будет работать на частоте 120 МГц. Его внутренней RAM размером в 64 кБ должно хватить для операционной системы реального времени чтобы управлять несколькими автономными задачами: GUI, измерений, контроля, связи.

Что стоит помнить

Как и программное обеспечение такие схемы подвергаются постоянному рефакторингу - меняются названия сигналов, заменяются микросхемы на другие, меняются дискретные компоненты, исправляются грубые ошибки и т.д. Изменения происходят постоянно и даже на этапе эксплуатации изделия. Эта схема прошла уже 3-и итерации с очень существенными изменениями.

Самый страшный враг схемотехника промышленных изделий - желание экономить на компонентах, пытаться снизить себестоимость отказываясь от тех или иных защитных средств: супрессоров, гальвано-изоляции, разделения земель, лимитеров и т.д.

Пример: можно не ставить супрессор на входе к которому подключается внешний источник питания. Казалось бы логично, ведь источник питания и так имеет многочисленную защиту на своем выходе. Но на производстве нередко включенный источник подключают к не запитанной плате. При достаточно длинных проводах и мощном источнике на входе платы в момент непосредственно коммутации и сопровождающего ее дребезга возникают резонансные явления приводящие к перенапряжениям и выходу из строя полупроводниковых ключей на плате.
Отловить такой баг уже отдав устройство в эксплуатацию можно лишь по факту массового обращения недовольных потребителей.

Недавно стал разбираться с электроникой. Есть необходимость сделать схему схема переключения питания (5dcv + 12dcv) от сетевого адаптера на резервное.

Пока думаю о чем то типа : пропустить основное питание через дроссель, при выключении питания через диод снимать с него отрицательное сопротивление, потом через (инвертирующий) ОУ включать flip-flop логику собранную на NAND для переключения цепей (напрямую или через BJT/MOSFET/реле). Я мыслю в правильном направлении или слишком все усложняю?



Принцип работы
При наличии напряжения на основном источнике, на базу транзистора Т1 через диод VD3 поступает напряжение равное величине напряжения источника и транзистор открыт. Через открытый транзистор Т1 на базу транзистора Т2 поступает положительное напряжение от которого он закрывается, что в свою очередь приводит к тому, что через него напряжение не поступает на базу транзистора Т3, который закрывается и напряжение на его эммитере падает до нуля. Когда же напряжение основного источника пропадает транзистор Т1 закрывается, открывается Т2 и через него начинает поступать напряжение на базу Т3, который открывшись подаёт его через диод в нагрузку. Диоды необходимы для того, чтобы исключить взаимодействие основного и дополнительного источников питания между собой.

Когда же напряжение основного источника пропадает транзистор Т1 закрывается, открывается Т2 и через него начинает поступать напряжение на базу Т3

stalker68, есть и у меня такое подозрение,что не откроется( я в железе не проверял..). Но смысл общий понятен, без всяких "потом через (инвертирующий) ОУ включать flip-flop логику собранную на NAND для переключения цепей (напрямую или через BJT/MOSFET/реле)."

При этой схеме питание при подключении от основного источника идет через диод D1, т.е. уже с потерей напряжения. Этого никак нельзя избежать?

trebuchet, ставишь диод Шоттки с минимальным падением напряжения или на базе этой схемы делаем релейное переключение.

Загнал схему в LTSpice IV - работает! (и без доп. резистора). Если верить Spice, то при емкости кондесатора меньше 1000мкФ выходное напряжение получается ниспадающим (не прямая линия). Можно ли уменьшить емкость конд., если вместо каких-то транзисторов использовать Darlington pair?


trebuchet, если у тебя входное напряжение и так стабильное и с нормальной фильтрацией, то кондер на выходе хоть вообще не ставь.


R1 и есть этот резистор. Только зачем так усложнять схему. Там достаточно всего двух диодов. Источник от сети должен иметь хотя бы на несколько сотен миливольт большее напряжение чем резервный.


Когда электричество исчезает даже на несколько минут, предприятия могут понести колоссальные убытки. А для больниц такая ситуация просто опасна. В большинстве объектах необходимо обеспечивать бесперебойное электроснабжение. Для этого его следует подключить к нескольким источникам электроэнергии. Специалисты при таком подходе используют АВР.


Что такое АВР и его назначение?

В подавляющем большинстве случаев такие системы относятся к электрощитовым вводно-коммутационным распредустройствам. Их основная цель — оперативное подключение нагрузки на резервный ввод, в случае возникновения проблем с энергоснабжением потребителя от основного источника питания. Чтобы обеспечить автоматическое переключение на работу в аварийном режиме, система должна отслеживать напряжение питающих вводов и ток нагрузки.


Типовой щит АВР

Расшифровка аббревиатуры АВР

Классификация

Вне зависимости от исполнения, блоки, шкафы или АВР принято классифицировать по следующим характеристикам:

Требования к АВР

В число основных требований к системам аварийного восстановления электроснабжения входит:

  • Обеспечение подачи питания потребителю электроэнергии от резервного ввода, если произошло непредвиденное прекращение работы основной линии.
  • Максимально быстрое восстановление электропитания.
  • Обязательная однократность действия. То есть, недопустимо несколько включений-отключений нагрузки из-за КЗ или по иным причинам.
  • Включение выключателя основного питания должно производиться автоматикой АВР до подачи резервного электропитания.
  • Система АВР должна контролировать цепь управления резервным оборудованием на предмет исправности.

Устройство АВР

Существует два основных типа исполнения, различающиеся приоритетом ввода:

  1. Одностороннее. В таких АВР один ввод играет роль рабочего, то есть используется, пока в линии не возникнут проблемы. Второй – является резервным, и подключается, когда в этом возникает необходимость.
  2. Двухстороннее. В этом случае нет разделения на рабочую и резервную секцию, поскольку оба ввода имеют одинаковый приоритет.

В первом случае большинство систем имеют функцию, позволяющую переключиться на рабочий режим питания, как только в главном вводе произойдет восстановление напряжения. Двухсторонние АВР в подобной функции не нуждаются, поскольку не имеет значения от какой линии запитывается нагрузка.

Примеры схем двухсторонней и односторонней реализации будут приведены ниже, в отдельном разделе.

Некоторые требования к АВР в ПУЭ

Хоть АВР и разнится по схемам применения, однако, принципы работы должны быть аналогичными. Вот некоторые требования, предъявляемые ПУЭ к устройствам автоматического включения резерва (полный список требований можно прочитать в разделах 3.3.30-3.3.42 правил устройства электроустановок):

  • следует использовать АВР, если это приведет к уменьшению токов короткого замыкания, упрощению схемы и удешевлению аппаратуры
  • может применяться на линиях, трансформаторах, ответственных механизмах, секционных выключателях
  • действие авр должно быть однократного действия
  • данная автоматика должна срабатывать и при исчезновении напряжения на защищаемом присоединении
  • Если есть несколько рабочих вводов и один резервный. Например, каждая секция от своего рабочего трансформатора, а резервный трансформатор общий. Так вот при срабатывании АВР при такой схеме должна быть обеспечена возможность срабатывания автоматики при каждом отключении рабочего ввода любой секции. Даже, если отключения идут подряд. Хотя тут спорно…
  • Кроме того, дополняя прошлый пункт, стоит отметить необходимость достаточной мощности резервного трансформатора. Если же мощности не хватает, то необходимо производить перед включением АВР отключение неответственных механизмов.
  • АВР должен быть отстроен от режима самозапуска и от снижения напряжения при удаленном коротком замыкании
  • Устройства авр должны быть обеспечены устройством пуска по снижению напряжения. А в отдельных случаях пускаться по частоте и даже действию датчиков (давления, расхода).

Это вероятно не все пункты из ПУЭ. Более подробно и возможно доходчиво можно почитать в первоисточнике.

Устройство и принцип работы

Независимо от устройства автоматического включения резерва, принципиальной его задачей считается наблюдение за параметрами электрической сети. Для этого могут использоваться реле контроля напряжения или блоки, оборудованные микропроцессорами. Существуют два основных вида устройства:


  1. Одностороннее (ОАВР) — один ввод работает в качестве основного и применяется, пока в электрической магистрали не возникнут проблемы. Другой выполняет роль запасного и включается в аварийных ситуациях.
  2. Двухстороннее (ДАВР) — оба ввода выполняют основную работу и используются, как резерв.

Сама конструкция представляет собой шкаф или щит АВР с контакторами или автоматами. Часто на практике используются конструкции с восстановлением, то есть как только в основной сети возвращается подача электроэнергии, то резервное питание отключается.


В случае падения напряжения на контролируемом участке цепи, реле подает сигнал на схему АВР. Отсутствие в сети одного напряжения недостаточно, чтобы сработало устройство переключения. Для этого необходимо присутствие еще ряда условий:

  1. На проверяемом участке не должно быть короткого замыкания, так как включение резервного питания будет невозможно и недопустимо.
  2. Выключатель ввода обязательно должен быть включен, чтобы при отсутствии напряжения не произошло случайного запуска АВР.
  3. На участке, от которого будет происходить питание резерва, обязательно наличие напряжения.

Когда все условия будут соблюдены, включатель резерва подает сигнал на отключение вводного выключателя обесточенной сети и на включение АВР. Алгоритм действий происходит строго в этом порядке, то есть без отключения ввода резервное питание никогда не включится.

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

  • механическую и электронную блокировку контакторов
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки
  • регулировку диапазона контролируемых напряжений
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов
  • индикацию режима работы и состояния входов
  • регулировку задержки времени переключения

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС


Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны. В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

Будем рады, если подпишетесь на наш Блог!

Обозначение АВР на схеме

В зависимости от чертившего, варианты обозначения АВР на схеме электроснабжения могут разниться. Я часто работаю со схемами различных ТЭЦ, котельных и там встречаются следующие обозначения:

  • рядом с выключателем, который должен включаться при нарушении питания пишется слово АВР (иногда это слово внутри прямоугольника)
  • иногда на схеме не обозначено наличие, хотя в реальности присутствует (или сверху справа, где описание схемы, текстом прописано как происходит резервирование)
  • рядом с выключателем рисуют кружок, который и обозначает данную возможность
  • на выключателе, на котором реализована схема, сбоку или сверху (выключатель — квадратик на схеме) нарисован примыкающий треугольник и рядом написано АВР

Примеры схем АВР

Начнем рассмотрение схем с одного пункта, который лучше сразу обозначить. Разница между схемами АВР “автомат+пускатель” и “автомат с электроприводом” в экономичности последнего варианта на токи начиная от 200 ампер, меньшем месте в шкафу и большей устойчивости к перегрузкам, возникающим при включениях. Но в зависимости от схем, это решение должно приниматься индивидуально. А так в любой схеме вместо автомата с пускателем можно установить автомат с электроприводом.

Схема АВР для двух вводов на контакторе

Значит, тут у нас два ввода. У каждого ввода есть вводной автомат или рубильник. Также присутствует третий автомат, который отвечает за нагрузку потребителя. И главную роль в этом театре играет контактор, который я обозначил К1. У него есть обмотка и два контакта — нормально закрытый и нормально открытый. Принцип работы схемы в следующем: при пропадании напряжения пропадает питание с обмотки К1 и контакты перекидываются.

Недостатки данной схемы в том, что при моржках света питание будет кидать туда-обратно. Это конечно не даст Вам остаться без света, но сам контактор, а именно его контакты, потреплет знатно, вплоть до замены. Так как через них будет проходить весь ток. Поэтому токи при такой схеме должны быть небольшими. Да и для нагрузки такие режимы не есть хорошо.

Схема АВР с магнитными пускателями

Пускай в этой схеме пускатели будут обозначены К1 и К2. Хотя обычно пускатели обозначают КМ, даже называю их “каэм’ы”. Данная схема может быть однофазная или трехфазная. Я нарисовал её однофазной, так проще и быстрее. Значит, принцип работы в следующем: включаем “ввод №1” и тут же размыкается контакт К1 в со стороны нуля обмотки К2. Затем включаем “Ввод №2”, обмотка К2 уже разомкнута и следовательно контакт К2 в схеме нуля К1 не разомкнется и не вызовет отключение К1. Далее, если пропадает питание на вводе №1, то контакт К1 в схеме нуля К2 обратно становится замкнутым, питание доходит до обмотки с двух сторон и пускатель К2 срабатывает. Пускатель К1 у нас отключен и следовательно питание происходит от второго ввода. Если вновь появится напряжение на вводе №1, то для возврата надо будет вручную отключать второй ввод и включать первый. Это не очень то удобно.

В данной схеме получается, что рабочим вводом будет тот, который включить в первую очередь. Тоже не вызывает сильного доверия, но на первое время сойдет. Чтобы питание переключалось обратно на первый ввод можно установить реле напряжения. Значит, его обмотка будет подключена параллельно цепочке “катушкаК1 — контактК2”, а его контакт замкнутый последовательно в цепочку “катушкаК2 — контактК1”. Не забываем следить за рабочим током нагрузки и контактов пускателей.

Схема АВр на три ввода

В большинстве своем схема авр на три ввода представляет из себя два ввода плюс дизельгенератор. Суть её работы: при исчезновении питания на первом вводе, включается второй, а при исчезновении двух вводов сразу — включается ДГ. При повторном появлении электроэнергии на одном из двух вводов питание переходит от дизельгенератора на вновь включенный ввод. Данные схемы самому реализовать себе во вред, так как есть готовые решения — законфигурированные мозги, куда надо просто подключить провода и задать уставки. Нечто подобное рассматривалось в статье про БАВРы.

Если хотите более подробно ознакомиться с заводскими исполнениями схем АВР, то поисковые системы выдают множество pdf файлов различных изготовителей.

Читайте также: