Отряшенков как сделать модель радиоуправляемой

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

ОСНОВЫ СХЕМОТЕХНИКИ И СЕКРЕТЫ ЭЛЕКТРИЧЕСКИХ СХЕМ

издание 2-е, дополненное и переработанное

Историки науки и техники наверняка назовут 20 век веком радиоэлектроники наряду с другими его особенностями. Действительно, основополагающие исследования русского ученого А. С. Попова в конце 19 века стали той благодатной почвой, на которой развилась радиоэлектроника нашего столетия. Представить сегодняшнюю жизнь без радиоэлектроники довольно трудно. Она вошла в наш быт и стала его неотъемлемой составляющей. Проявить интерес к радиоэлектронике и сделать первые самостоятельные практические шаги в этой области поможет сделать эта книга. Книга может быть полезна как школьникам, выбирающим свой путь в жизни, так и студентам, собирающихся работать в различных областях радиоэлектроники, а также всем желающим, независимо от возраста, проявляющим интерес к этой области знаний. Она может быть полезна и бизнесменам, желающим получить полезные рекомендации в приобретении радиостанций Си-Би диапазона или пришедших к мысли, что для дальнейшего процветания собственного дела им необходимо обязательно открыть частную радиовещательную станцию. Как создать коммерческую радиовещательную станцию рассказано в этой книге с берегов Невы, на которых еще до революции 1917 года было налажено производство самых мощных в мире радиостанций конструкции С. А. Айзенштейна.

Книга построена в виде отдельных шагов (глав). Каждый шаг представляет законченный раздел и может читаться независимо от других разделов. Включенные в книгу описания радиолюбительских конструкций расположены в порядке возрастания сложности их изготовления и уровня необходимых знаний. Дается подробное описание, технология изготовления и методика налаживания конструкций. Рассказано, как проводить налаживание самодельных устройств в домашних условиях и какие несложные приборы для этих целей можно изготовить самому. Для облегчения конструирования приведены необходимые справочные данные по радиокомпонентам и радиодеталям.

Помещенный в конце книги словарь терминов радиоэлектроники призван помочь при чтении этой книги. В процессе чтения книги может встретиться слово из области радиоэлектроники, смысл которого вам непонятен и его нет в приведенном словаре, тогда следует обратиться в библиотеку и посмотреть специальный энциклопедический словарь по радиоэлектронике. Если после прочтения книги вы обретете новое для себя увлечение (хобби), которое в результате станет вам большим подспорьем в жизни и к тому же будет еще приносить вам экономическую выгоду, то автор может считать выполненной свою миссию в сеянии доброго, разумного, вечного.

Предисловие ко второму изданию

Автор благодарен всем тем, кто прислал и высказал свои замечания и пожелания по книге, что способствовало ее улучшению. Особая моя признательность инженеру В.Ю.Карташову из Санкт-Петербурга и к.м.н. Вадиму Мельнику из Донецка за общее обсуждение книги и высказанные при этом полезные соображения, которые нашли отражение во втором издании.

Пестриков В. М., профессор, доктор технических наук,

г. Санкт-Петербург, Россия.

А. Некрасов. Приключения капитана Врунгеля.

Рис. 1. РАДИОметр

Энциклопедия радиолюбителя - _02.jpg

Рис. 2. Устройство РАДИОфона



900 — это длина катера в мм. Так же видел чертежи на 1300 мм для катера с ДВС.

Поехал в печатный центр и распечатал чертежи в формате А1. Оригинальный pdf файл именно такого формата. Все распечаталось с точностью до мм. (У меня курсовые даже с такой точностью никогда не печатались, даже если по размеру были созданы). Печатаем 2 копии, а лучше 3, на всякий случай.
Одна копия основной чертёж, для сверки, второй для трафарета. Третий — пусть будет.


Идём в нормальный строительный магазин и смотрим фанеру. Нужна фанера в идеале 6мм. Я такую не смог найти, но нашёл фанеру 4мм, распиленную квадратами 50х50см. Берём 2 ровных(!) листа. Также понадобится клей ПВА столярный (у меня уже был универсальный, но позже я докупил банку водостойкого). Так же смотрим ручной лобзик и пилки для него.

Если есть какой-то специнструмент для фигурной резки — вообще замечательно. Пилить надо много и долго.

Ищем место для работы, желательно большой стол с хорошим освещением, клеим на ПВА вырезанные детали с одного из чертежей. Зажимаем к столу струбциной фанеру, и начинаем возвратно-поступательные движения лобзиком, и попутно вспоминая алкаша-трудовика в школе.

Делал модель на работе. За одну ночную смену я сделал нос катера.



Небольшой нюанс. Центральная часть, на которую крепятся шпангоуты из 4мм фанеры получилась, на мой взгляд, тонкая. Она легко гнулась, и была кривовата. Приклеиваем ее на фанеру, хорошо прижав по всей площади, даём высохнуть, и вырезаем такую же по форме уже выпиленной. Получаем 8мм толщину. Уже посерьезней.
Приклеиваем шпангоуты, не забыв что пазы на них (в центре) рассчитаны для 6мм фанеры, надо расширить до 8мм.

Следующий этап склейка корпуса вместе. Состыковка происходит в центре. Я взял доску, положил на неё кормовую часть и носовую. Зафиксировал изолентой. Под носовую часть примерно в центре, подложил изоленту, для того чтобы нос был правильно приклеен, а не смотрел вниз.


В общем скелет готов. Следующий момент — стрингера(ы) (хз как правильно) — продольные длинные палки, соединяющие шпангоуты вместе. В том же строительном магазине взял штапик 10х10 мм, длиной 150см. По чертежу они должны быть 6х6 мм. Зажимаю в тиски и канцелярским ножом срезаю лишнее. Можно рубанком, но я не стал тратить лишние деньги, а найти его мне негде.
Вклеиваем их начиная с кормы к носу, зажимая их проводом из витой пары. Нос пока не спешим клеить, там много работы, чтоб вывести его красиво.

Радиолюбитель

– аналоговые схемы радиоуправления;
– разработки на микросхемах;
– схемы радиоуправления на микроконтроллерах;
– готовые модули приемник – передатчик;
– самодельные модули приемник – передатчик;
– применяемые антенны;
– вопросы настройки самодельных модулей
– и многое другое, что связано с радиоуправлением.

Подборка статей Владимира Днищенко для конструкторов аппаратуры радиоуправления:

Книга Владимира Днищенко для конструкторов аппаратуры радиоуправления:

В общем случае системы радиоуправления делятся на две группы по типу передаваемых команд: дискретное и пропорциональное. Дискретные системы предназначены для включения и выключения различных устройств (например, освещения). Органами управления в таких системах обычно служат всевозможные тумблеры и кнопки. На сегодняшний день их возможностей для управления моделью явно недостаточно. Потому они используются только в детских игрушках и как составная часть более сложных систем. Вторая группа систем предполагают возможность плавного изменения какого-либо параметра модели пропорционально отклонению управляющего органа от нулевого (базового) состояния. Например, можно задать любые обороты двигателя (от нуля до максимальных) передвигая стик газа из нижнего положения в верхнее.



Человек, при помощи органов управления (джойстики, кнопки, тумблеры и пр.), формирует команды управления. Эти команды в виде электрических сигналов поступают на вход шифратора. Дискретные команды обычно представляются логическими 0 и 1. Напряжение, близкое к напряжению питания, на соответствующем входе шифратора обозначается логической единицей, а близкое к нулю – логическим нулем соответственно. Для пропорциональных каналов обычно применяются аналоговые датчики. Так двухосевые джойстики управления чаще всего представляют собой пару переменных резисторов, каждый из которых отвечает за соответствующую ось и представляет отдельный канал управления. Резистор подключается к шифратору по схеме делителя напряжения. При этом изменение положения джойстика вдоль некоторой оси приводит к пропорциональному изменению уровня напряжения в канале управления.

Основными задачами шифратора является преобразование и уплотнение сигналов со всех каналов управления в один единственный канал. Для этих целей в современной аппаратуре используется принцип дискретизации непрерывного сигнала. Последний представляется в виде последовательности дискретных значений, полученных из канала через равные промежутки времени. При условии, что временные промежутки будут стремиться к нулю, последовательность таких дискретных величин будет стремиться к первоначальному непрерывному сигналу.



Полученные таким образом точки кодируются при помощи широтно-импульсной модуляции (ШИМ, PWM в английском переводе). Т.е. уровень в каждый момент времени преобразуется в ширину импульса. Так в общем случае нулевой уровень соответствует ширине импульса в 1000мкс, а максимальный – 2000мкс.

Преобразовав так все каналы, шифратор уплотняет их в один канал. Импульсы каждого канала выстраиваются друг за другом в порядке следования каналов. За импульсом последнего канала идет синхропауза, обозначающая конец пакета и начало следующего. Такой способ кодирования называется PPM и является стандартным для большинства выпускаемых сегодня аппаратур. При длине пакета в 20мс он позволяет передать 8 каналов. Частота дискретизации при этом будет равна 50Гц, т.е. информация о каждом канале будет передана 50 раз в секунду.

Далее PPM-сигнал поступает на вход ВЧ-модуля. Главной задачей последнего является передача сигнала на приемник. Его основными характеристиками является несущая частота и выходная мощность. Обе эти характеристики напрямую влияют на дальность действия аппаратуры. Повышение несущей частоты позволяет модулю передавать больше информации за промежуток времени, что дает возможность использовать различные алгоритмы помехозащищенности и увеличивать максимально возможное число каналов аппаратуры. На сегодня самыми многообещающими являются модули с частотой 2.4гГц. Использование столь высокой частоты позволило передавать с пакетом идентификационный код. Это в свою очередь дало возможность снять ограничения на использование нескольких аппаратур одновременно разными моделистами в одном месте. Для соединения передатчика и приемника производится операция привязки (binding). В рамках этой операции идентификационный код передатчика запоминается приемником. После этого приемник принимает только пакеты, подписанные этим кодом. Таким образом исключается сама возможность взаимного влияния двух аппаратур, работающих в одном диапазоне частот.

Так же были разработаны различные системы кодирования PCM – pulse code modulation. Но это уже тема отдельной статьи. Очень хорошо все плюсы и минусы PCM рассмотрены в этой статье.

Но у повышения несущей частоты есть и свои минусы. И заключаются они в основном в свойствах волны. Дело в том, что чем выше частота, тем хуже она преодолевает препятствия. Поэтому для дальнобойных систем(LRS – long range system) чаще всего используются вч-модули с несущей частотой 433 и 868 мГц.

На стороне модели сигнал аппаратуры принимается вч-модулем, превращается обратно в PPM и передается дешифратору. Дешифратор разделяет суммарный сигнал на канальные ШИМ-сигналы. Именно эти сигналы передаются на исполнительные устройства, где они преобразуются в механическое действие. Принимающий вч-модуль и дешифратор обычно выполняются в виде одного неделимого модуля приемника. Делается это с целью уменьшения размера и веса аппаратуры на стороне модели.

С той же целью различные настройки модели, микширование и прочие функции выполняются на стороне передатчика в пульте управления. Но с развитием микроконтроллеров это становится все менее актуально.

Дальнейшим развитием аппаратуры управления стало использование двунаправленных вч-модулей (трансиверов) и передача со стороны модели на аппаратуру управления информации о состоянии элементов, текущих характеристиках, географическом положении и пр. – телеметрии.



Фактически в системе появляется дублирующий набор таких же блоков с той разницей, что находятся они на противоположной стороне. Роль органов управления на стороне модели выполняют различные датчики – напряжения, гироскоп, барометр, компас, ускорения, оборотов двигателя и пр. На стороне аппаратуры управления роль исполнительного устройства обычно выполняет дисплей, который отображает показания датчиков модели.

Так же на стороне модели стали применяться специальные контроллеры, которые объединяют информацию с каналов управления с показаниями датчиков внутри модели и выдают на исполняющие устройства уже измененный сигнал. Так строятся, например, различные стабилизаторы полета, которые позволяют в реальном времени без участия человека компенсировать порывы ветра на авиамоделях. Передача же телеметрии на пульт управления позволяет, например, своевременно отследить разрядку бортового аккумулятора модели и вернуть ее в точку старта до отключения питания.

Читайте также: