Микрофонный усилитель с ару своими руками

Добавил пользователь Алексей Ф.
Обновлено: 05.10.2024

Простое и очень эффективное решение для записи голоса или вокала в своей домашней студии звукозаписи — это применение динамического кардиоидного микрофона. И вот почему:

  • Во-первых, Вам не нужно будет принимать специальные меры по шумоизоляции квартиры;
  • Во-вторых, Вам не нужно будет звукоизолировать тыловое пространство за микрофоном для избавления от реверберации комнаты, так как динамический кардиоидный микрофон хорошо подавляет боковые и тыловые звуки;
  • В-третьих, Вам не надо будет организовывать дополнительное питание как в случае с конденсаторным микрофоном.

Для нашей цели идеально подойдёт микрофон типа Shure sm58 или ему подобный. Например, у меня долгие годы идеально работает микрофон Beyerdynamic Opus39s.

Конечно, для записи голоса существует большое число самых разных решений. Например, Вы можете специально для записи вокала сделать хорошую шумоизоляцию квартиры, приобрести дорогой конденсаторный микрофон с большой мембраной, но это решение уже не такое простое и в разы дороже. Кроме того, микрофонный усилитель для конденсаторного микрофона понадобится немного другой, и об этом мы поговорим в другой статье.

Купить или сделать своими руками?

У микрофонного предусилителя, сделанного своими руками есть три основных преимущества перед теми моделями, которые можно купить в соответствующем магазине:

  1. Цена.
  2. Идеальная адаптация под конкретную задачу.
  3. Качество звука.

Итак, цена готового изделия, продаваемого в магазине, кроме стоимости комплектующих компонентов, включает в себя плату за бренд, компенсацию рекламных расходов и прибыль, которую получают все: изготовитель, оптовый и розничный продавцы, плюс транспортные расходы. Вот и получается, что в покупном усилителе один только корпус будет стоить дороже, чем весь микрофонный усилитель, сделанный вручную.

Кроме того, существует целый ряд потребительских качеств, которым обязательно следуют практически все изготовители, чтобы достичь определённой универсальности для возможных применений микрофонных предусилителей. Ведь перед разработчиками стоит задача добиться максимальной совместимости со всеми возможными микрофонами и тем оборудованием, с которым он должен будет работать.

Это приводит к тому, что схема микрофонного усилителя приобретает существенную избыточность в виде различных режимов работы, защиты, регуляторов и индикаторов. И чем больше деталей в устройстве, тем большее влияние они оказывают на качество звука, причём не в лучшую сторону.

Адаптация под конкретную задачу

Но в домашней студии звукозаписи микрофонный усилитель обычно работает с одним конкретным микрофоном, в стационарных условиях, и выполняет всегда одну и ту же задачу. А это значит, что большинство универсальных возможностей покупного преампа нам просто не нужны. Но мы можем сосредоточиться на максимальном качестве именно того, что нам нужно, идеально адаптировав собственную конструкцию под конкретную задачу.

Качество звука

Чем отличается хороший микрофонный усилитель для записи вокала от обычного? В первую очередь тем, что хороший предусилитель не вносит в звук собственных артефактов и искажений, и в то же время создаёт для микрофона самое оптимальное согласование для получения максимально возможного качества преобразование звука в электрический сигнал.

Услышать это на слух при обычной проверке затруднительно. Чтобы оценить качество микрофонного усилителя, с ним нужно поработать в реальных условиях, применяя к уже записанному с помощью него вокалу самые различные обработки. Особенно сильно все недостатки проявляются при больших уровнях компрессии и попытках поместить вокал в плотный микс.

Качество звука современных микрофонных предусилителей, особенно брендовых марок, как правило, особых нареканий не вызывает. Но естественное стремление изготовителей максимально удешевить изделие приводит к тому, что формально все характеристики соответствуют заявленным, но компоненты могут быть недорогими, чисто из маркетинговой целесообразности.

Причём проверить, из чего сделан готовый предусилитель, пока Вы его не купили, далеко не всегда возможно.

Так что пока Вы не купите преамп и не поработаете с ним как следует, качество его Вы не оцените. А вот в собственную конструкцию довольно легко можно внести изменения, если что-то не понравится.

Усилитель для электретного микрофона с АРУ

При изучении схем подключения электретных микрофонов [1] вызывает глубокое удивление их однообразность. Точка соединения микрофона и нагрузочного резистора подключается к собственно усилителю через разделительный конденсатор (Рис. 1) в 100% изученных схем.

Возможно, существуют и другие схемы подключения, но автору они не встречались. В то же время любой, кто плотно и долго связан со звуковоспроизведением, видимо, не будет резко возражать против того факта, что любой конденсатор на пути звукового сигнала, является нежелательным компонентом. Особенно это касается электролитических конденсаторов, поневоле применяемых в случае достаточно низкого входного сопротивления усилительного каскада.

Прикидочное исследование режимов работы электретных микрофонов [2] показало, что, во-первых, они представляют собой источники тока и, во-вторых, максимальная амплитуда их выходного сигнала наблюдается, когда падения напряжения на микрофоне и нагрузочном резисторе одинаковы.

Рассмотрим одну из известных [3] схем микрофонного усилителя с системой АРУ, выполненного на ОУ (Рис. 2).

Рис. 2


Рис. 2

Схема состоит из собственно неинвертирующего усилителя на ОУ DA1, на неинвертирующий вход которого поступает искусственная средняя точка с делителя R3R4, а также входной сигнал через разделительный конденсатор С2; управляемый делитель сигнала ООС (резистор R5, конденсатор С1 и сопротивление канала полевого транзистора с P-N переходом VT1); детектора выходного усиленного сигнала (конденсаторы С3,С4 и диоды VD1, VD2 ). Продетектированный выходной сигнал отрицательной полярности управляет проводимостью канала VT1, увеличивая его, за счет чего снижается коэффициент усиления ОУ.

Учитывая наличие постоянной составляющей делителя, образованного электретным микрофоном и его нагрузочным резистором, можно сделать вывод, что компоненты C2R3R4 — совершенно лишние. Роль R4 прекрасно выполняет сам микрофон, а R3 — его нагрузочный резистор. Конденсатор же С2 — вообще лишний, как класс.

В итоге получилась схема, приведенная на рис. 3.

RC-фильтра R3C1 обеспечивает дополнительную фильтрацию напряжения питания электретного микрофона. В принципе, он опциональный (необязательный), но вообще-то, довольно полезен. Номинал резистора R1 подбирается такой величины, чтобы в точке его соединения с микрофоном была примерно половина напряжения питания. Резисторы R4R6 линеаризируют передаточную функцию управляемого резистора на полевом транзисторе VT1.

Вместо резистора R5 в цепи ООС может быть включен двойной Т-образный фильтр (справа), поднимающий полосу частот, соответствующую диапазону голоса. Его АЧХ показана на плоттере Боде из измерительных приборов Мультисима (внизу)

Естественно, любые теоретические разглагольствования могут быть приняты во внимание только в случае их подтверждения практикой. Поэтому схема, показанная на рис. 3, была исследована на макете.

Вначале была исследована схема без АРУ. Детектор и полевой транзистор не подключались, а от нижнего вывода конденсатора С2 к общей минусовой шине был подключен резистор 10 кОм. Т.о., коэффициент усиления составил 11. Выходной сигнал при быстрой (10 мс/дел) и медленной (100 мс/дел) развертках на расстоянии 20 см ото рта до микрофона показаны, соответственно, на рис 4.

Вызвал удивление размах сигнала (пик-пик), составивший более 2 В. А это значит, что сигнал с микрофона составлял около 200 мВ.

Далее вместо резистора 10 кОм был подключен полевой транзистор КП303Ж с начальным током стока 0,85 мА и напряжением отсечки 0,7 В. Его затвор был подключен к минусовой шине, благодаря чему обеспечивалось минимальное сопротивление его канала и, соответственно, максимальное усиление. Выходной сигнал такой схемы показан на рис. 5.

Как видно, сигнал с микрофона усиливается избыточно, аж до клипирования, что свидетельствует о применимости полевого транзистора с таким небольшим начальным током стока при сопротивлении резистора ООС порядка 100 кОм.

Наконец, были исследованы еще два полевых транзистора с бОльшим начальным током стока и напряжением отсечки (соответственно, еще один КП303Ж с начальным током стока 1,2 мА и напряжением отсечки 0,9 В, а также КП303В с начальным током стока 2,6 мА и напряжением отсечки 1,2 В). Выходной сигнал с первым из них при расстоянии до микрофона 20 см (при медленной развертке) показан на рис. 8, а выходные сигналы со вторым при расстоянии до микрофона 10 см и 40 см (при медленной развертке) показаны на рис. 9.

В первом случае размах сигнала составил почти 5 В, а во втором — почти 7 В!

Из этих экспериментально полученных данных видно, что для практических целей желательно использовать полевые транзисторы с минимально возможным напряжением отсечки. Начальный ток стока существенно не влияет на стабилизируемую амплитуду выходного сигнала при данном сопротивлении резистора ООС.

Полевой транзистор Q1 с резистором R1 представляют собой модель электретного микрофона. Номиналом нагрузочного резистора R2 подбирается половина напряжения питания в точке соединения его с микрофоном. Номиналом резистора R4 подбирается равенство коллекторных токов Q2 и Q3. Полевой транзистор Q4 с резистором R5 представляет собой параметрический генератор тока для дифкаскада на транзисторах Q2 и Q3. Аналогичную роль играет и транзистор Q7 с резистором R9. для транзистора Q6. В принципе, эти генераторы тока могут быть заменены на обычные резисторы, но с ними параметры усилителя получше по определению. Наконец, переменный резистор в цепи ООС на транзисторе Q5 и детектор выходного сигнала — такие же, как в схеме на ОУ.

Выводы:

  1. На суд представлен еще один усилитель для электретного микрофона, не претендующий на исключительность, но несколько более простой, чем известные. За счет исключения одного разделительного конденсатора в тракте прохождения звукового сигнала — более качественный по определению.
  2. Учитывая достаточно высокое значение коэффициента усиления, обеспечиваемого этим усилителем, ОУ для него, для обеспечения достаточной полосы пропускания, должны иметь граничную частоту хотя бы 5…10 мГц.
  3. Данный усилитель без системы АРУ может быть использован для высокочувствительного усиления сигналов с электретного микрофона.

Литература:

Что делать не стоит

На практике специфическая окраска звука крайне редко нужна, а вот избавиться от неё, если она присутствует, очень сложно. Да и возможностей современной DAW — digital audio workstation вполне достаточно для того, чтобы уже при звукорежиссуре придать звуку любую окраску.

Схема микрофонного усилителя на ОУ

Схема микрофонного усилителя представлена на рисунке. Два секрета, о которых было написано вначале статьи, — это согласование микрофона и микрофонного усилителя и схема самого операционного усилителя.



Согласование

Для избавления от всевозможных помех, в том числе и помех от мобильных телефонов, нам понадобится симметричное подключение микрофона, а значит, у микрофонного усилителя должен быть симметричный вход.

Подключать можно любой ДИНАМИЧЕСКИЙ микрофон. Но чем качественнее, тем лучше. Обычно сопротивление такого микрофона от 200 до 600 ом, и для чистоты идеи Вы можете сделать сумму R1+R3 равной сопротивлению микрофона (при R1=R3).

Самое главное, что такое включение, благодаря демпфированию подвижной системы микрофона, устраняет окраску звука паразитными резонансами самого микрофона, позволяя получать чистый, ровный звук. Потом, при обработке вокала, можете делать со звуком всё, что угодно. Он податлив, с ним не надо воевать, устраняя всякие призвуки.

Кроме того, помехозащищённость низкоомного входа просто великолепна! Мне приходилось записывать без проблем вокал в комнате, где находилось одновременно более 20-ти мобильных телефонов!

Здесь следует обратить внимание на то, что согласование по-книжному — это как раз измерение параметров и шумов в первую очередь. Нас же шумы не волнуют никак. При использовании ОУ с показателями до 10nV/√Hz про шумы можно забыть. Шумы не мешали жить даже при использовании ОУ TL071, у которого шумы составляют 18nV/√Hz. В реальной работе шум помещения больше, и всё зависит от мастерства звукорежиссёра.

Зато TL071 очень даже хорошо звучит, в отличии от общепризнанной NE5534.

ПРОСТОЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ

ПРОСТОЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ - ЭЛЕКТРОСХЕМА

В качестве выпрямителя — диодный мостик, а в качестве фильтров — 2 конденсатора от БП компьютера, на 200 вольт 470 мкф соединенных последовательно, итог — выход 315 вольт на конденсаторах. Все это дело по плюсу подключено через резистор 2.7 кОм в разрыве питания.Питание анодов примерно 250 вольт постоянного тока. Конденсаторы фильтра питания шунтируем резистором в 200 кОм что бы было чему их разрядить после выключения из сети устройства.

Приступаем к сборке ПРОСТОГО ЛАМПОВОГО УСИЛИТЕЛЯ

БП выполнен в отдельном корпусе от старого лампового ТВ. Сам ламповый усилитель сделан в корпусе от советской магнитолы, корпус ее толстый и как раз по размерам подходит.

Панельки для ламп

Панельки для ламп можно выковырять из любой ламповой техники — они все стандартные. Большое отверстие делаем с помощью маленьких, просверленных по кругу. Края зачищаем круглым напильником.

Колонку смастерил на основе динамика 5-гд

Колонку смастерил на основе динамика 5-гд бумажного, с номинальной мощностью 5 вт, само основание из доски, задняя часть — фанера, а сам динамик на лицивой панели укреплен на двух спрессованных листах картона.

Колонку для ЛУНЧ смастерил на основе динамика


Ножки всем блокам сделал приклеив кусочки двухстороннего скотча к корпусу, чтобы не царапали поверхности стола. Видео про сборку простого УНЧ на лампах смотрите ниже:

проверенный ламповый УНЧ - первые шаги в лампостроении

Регулировку громкости убрал, так как только лишние шумы дает, да и в самом источнике звука (в моём случае DVD плеере) регулировать с пульта ее куда удобнее!

ПРОСТОЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ на двух лампах

Не забываем на землю поставить резистор 200-500 кОм на входе, а если делаете регулятор — то используйте высокоомный, пробовал на 1 мОм и с ним оказалось лучше всего.

очень простой и проверенный ламповый УНЧ для ДВД

Возможно кому-то конструкция покажется не особо серьёзной, но учтите, что это мой первый шаг в освоении ламповых УНЧ. Следующие усилители будут посолиднее. С Вами был тов. Redmoon.
Форум по ЛУНЧ

Внимание! Перед тем как создавать тему на форуме, воспользуйтесь поиском! Пользователь создавший тему, которая уже была, будет немедленно забанен! Читайте правила названия тем. Пользователи создавшие тему с непонятными заголовками, к примеру: "Помогите, Схема, Резистор, Хелп и т.п." также будут заблокированны навсегда. Пользователь создавший тему не по разделу форума будет немедленно забанен! Уважайте форум, и вас также будут уважать!

В прошлом году попал мне в руки для ремонта жук серийного промышленного производства(наверное падал,оторвалась затягивающая катушка на ПАВе).Крышка корпуса качественно приклеена к плате эпоксидкой,пришлось кропотливо стачивать ее на наждачке,чтобы добраться к плате.После ремонта прверил работоспособность закладки и был приятно удивлен качеством модуляции.АРУ-очень хорошая(субьективное мнение),т.к. никаких измерений не проводилось.Единственное,что сделал-смотрел на осциллографе уровень сигнала при разных уровнях звукового сигнала.При среднем и громком уровне речи амплитуда сигнала не превышала 1в.Очень понравилась работа схемы,по этому срисовал ее и Вам рекомендую.Да простит меня разработчик схемы-у меня тоже не раз слизывали и подавали как свои разработки.

Присоединённое изображение

Присоединённое изображение (Нажмите для увеличения)

Микрофонный усилитель с АРУ и малошумящим смещением микрофона

  • Автоматическая регулировка усиления (АРУ)
  • Три коэффициента усиления (40дБ, 50дБ, 60дБ)
  • Программируемое время нарастания сигнала
  • Программируемое соотношение нарастания и спада
  • Диапазон напряжения питания 2.7В…5.5В
  • Малая плотность шума по отношению ко входу 30нВ/?Гц
  • Малые общие гармонические искажения: 0.04% (тип.)
  • Маломощный режим отключения
  • Встроенный малошумящий источник смещения микрофона напряжением 2В
  • Доступность в малогабаритны UCSP (12-выв., 1.5мм x 2мм) и TDFN (14-выв., 3мм x 3мм)
  • Расширенный температурный диапазон -40°C…+85°C
  • Цифровые фотокамеры
  • Цифровые видеокамеры
  • Персональные цифровые помощники
  • Bluetooth-наушники
  • Развлекательные системы (например, Караоке)
  • Устройства двунаправленной связи
  • Высококачественные портативные рекордеры
  • IP-телефоны
  • Конференцсвязь

Структура и схема включения MAX9814:

Расположение выводов MAX9814:

MAX9814 - недорогой маломощный микрофонный усилитель с автоматической регулировкой усиления (АРУ) и малошумящим источником смещения микрофона. Микросхема содержит малошумящий предварительный усилитель, усилитель с регулируемым усилением, выходной усилитель, стабилизатор напряжения смещения микрофона и схему управления АРУ.

Малошумящий предварительный усилитель характеризуется фиксированным усилением 12 дБ, а усиление регулируемого усилителя автоматически изменяется в пределах 20 дБ…0 дБ в зависимости от выходного напряжения и порога АРУ. Выходной усилитель работает с одним из трех выборочных коэффициентов усиления: 8 дБ, 18 дБ и 28 дБ. Без учета сжатия усилительный каскад обладает общим усилением 40дБ, 50дБ или 60 дБ. Коэффициент усиления выходного усилителя программируется через отдельный трехуровневый цифровой вход. Порог АРУ задается внешним делителем напряжения, а время нарастания/спада программируется одним внешним конденсатором. Соотношение нарастания/спада программируется через трехуровневый цифровой вход. Время удержания АРУ фиксировано и равно 30 мс. Малошумящий источник смещения может использоваться для смещения большинства электретных микрофонов.

Интегральная схема MAX9814 доступна в малогабаритном 12-выводном корпусе UCSP (1.5мм x 2мм) или 14-выводном корпусе TDFN. Микросхема рассчитана на работу в пределах расширенного температурного диапазона -40°C…+85°C.

Схема усилителя микрофона-01

Схема усилителя микрофона для использования в проектах микроконтроллеров. Большинство микроконтроллеров имеют вход аналого-цифрового преобразователя, который может дискретизировать аналоговый сигнал, включая звук. Даже используя Arduino, вы можете делать много крутых проектов, используя аудио информацию.

Электретный конденсаторный микрофонный усилитель для применения в микроконтроллерах

Например, вы можете сделать устройства с голосовым управлением, такие как аудио магнитофон, переключатель с голосовой активацией и другие интересные проекты, связанные со звуком. В этом посте я хочу немного рассказать, что представляет собой схема усилителя микрофона встроенная в цепь между электретным конденсаторным микрофоном и входом аналого-цифрового преобразователя микроконтроллера.

Вообще говоря, у вас не получится подключить электретный микрофон напрямую к выводу аналого-цифрового преобразователя и ожидать, что он будет работать. Поэтому, наиболее значимой здесь деталью является схема усилителя конденсаторного микрофона.

Схема усилителя микрофона-1

Предусилитель и схема усилителя электретного микрофона

Для конденсаторных микрофонов требуется питание от батареи или внешнего источника. Результирующий аудио сигнал выходит более сильный по сравнению с динамическим микрофоном. Во-первых, электретный микрофон — это не только конденсатор внутри, в нем уже есть предусилитель, обычно собранный на полевом FET-транзисторе, который подключается в общей конфигурации источника:

Схема усилителя микрофона-2

Во-первых, на электретный микрофон необходимо подавать напряжение через подтягивающий резистор стока. Его величина зависит от напряжения питания. Практическое правило — добавляйте 1 кОм на +1 вольт напряжения питания, то есть, нужно устанавливать 10 кОм на 10 вольт.

Для отключения полевого транзистора микрофона требуется отрицательное напряжение на затворе. Таким образом, когда напряжение подается через резистор, то небольшой тока (0,2 мА) проходит через транзистор, который является в некотором роде сопротивлением. Таким образом, он действует как делитель напряжения — поэтому, вы получаете предсказуемое смещение постоянного напряжения, которое изменяется в зависимости от температуры и выбранного резистора нагрузки.

В такой ситуации микрофон похож на источник тока, колеблющегося в пределах определенного уровня. Конденсатор на выходе микрофона устраняет смещение постоянного напряжения, и вы получаете низковольтный сигнал переменного тока с низким значением(10-50 мВ), который необходимо усилить еще больше.

Для микроконтроллера с источником питания +3,3v нам потребуется смещение постоянного напряжения VCC/2 и сигнал максимальной амплитуды VCC/2 для входа в канал аналого-цифрового процессора. Если мы не стремимся к очень высокому качеству звукового сигнала, то подойдут простые схемы микрофонного усилителя. Давайте рассмотрим несколько схем усилителя и посмотрим, что лучше всего использовать.

Транзисторный микрофонный усилитель с самосмещением

Это, наверное, самая простая схема усилителя, которая работает довольно хорошо. Самосмещающийся транзисторный микрофонный усилитель можно быстро собрать, используя несколько дискретных компонентов и печатную или макетную плату, но есть некоторые моменты, которые следует учитывать перед его выбором.

Схема усилителя микрофона-3

Несмотря на самостабилизирующийся ток смещения, этот транзисторный усилитель будет не так эффективен там, где температура окружающей среды сильно меняется. Но все таки, несмотря на некоторые недостатки, мне нравится эта схема, потому что она надежна и проста.

Комбинированный микрофонный усилитель смещения делителя напряжения

Комбинированный микрофонный усилитель смещения

Так называемая схема микрофонного усилителя с делителем напряжения имеет гораздо лучшую термостабильность. Единственный недостаток заключается в том, что для этого требуется еще несколько пассивных компонентов, хотя еще одна пара резисторов не имеет большого значения, если вы получите значительное улучшение. Давайте посмотрим на эту схему более глубоко, чтобы понять, как она работает и как рассчитать значения ее компонентов. Эта схема имеет делитель напряжения R1 и R2, который выдает фиксированное напряжение на базе транзистора.

Изначально мы знаем, что:

Рекомендуется, чтобы ток, протекающий через эти резисторы, должен быть в десять раз больше, чем ток базы. Поэтому руководствуемся формулой: R2 = Vb/(10*Ib); и R1=(VCC — Vb)/(10*Ib).

Падение напряжения база-эмиттер составляет около 0,6v.

  • То есть = Ib+Ic
  • Ve = 10%*VCC;
  • Re = Ve/Ie;
  • Vb = Ve+0,6;

Имея в виду эти начальные параметры и условия, мы можем легко рассчитать значения схемы для усилителя электретного микрофона. Если мы собираемся подавать сигнал на АЦП микроконтроллера с питанием 3.3 VCC, то наш VCC = 3.3V. Тогда давайте воспользуемся транзистором общего назначения BC547C с коэффициентом усиления постоянного тока hfe = 520 и выберем ток коллектора Ic=1 мА.

  1. Нам нужно выходное напряжение смещения = 3,3v/2= 1,65v;
  2. Мы рассчитываем коллекторный резистор Rc = 1,65/1 мА=1650 Ом;
  3. Затем выберите стандартное сопротивление резистора 1,6 кОм;
  4. Напряжение эмиттера Ve = 10%*3,3v = 0,33v;

Поскольку Ic >>Ic, то вычисляем:

  • Re = Ve/Ie = 0,33/1 мА = 330 Ом
  • Базовое напряжение: Vb = Ve + 0,6v = 0,33+0,6 = 0,93v;
  • Требуемый базовый ток Ib = Ic/hfe = 1 мА/420 = 2 мкА;

Значения резисторного делителя:

Стандартное значение R2 = 47кОм;

Стандартное сопротивление резистора R1 = 120кОм; Давайте построим эту схему в симуляторе LTSpice, чтобы увидеть, как она работает:

Схема стандартного сопротивления резистора

Его выход при амплитуде микрофонного сигнала 20 мВ:

Амплитуда микрофонного сигнала

Как видите, смещение постоянного тока на выходе слишком велико. Возможно, вам придется немного изменить значения резисторного делителя, чтобы получить его на уровне 3,3/2 VCC. В любом случае, более популярны недискретные транзисторные решения, в которых используются операционные усилители. Они более стабильны, производят меньше шума и компактны.

Последняя схема, которую мы собираемся рассмотреть, представляет собой простую схему микрофонного усилителя на базе операционного усилителя.

Электретный микрофонный предусилитель на базе ОУ

Схема предусилителя на базе ОУ

В данном случае мы будем использовать стандартный маломощный прецизионный операционный усилитель LT1215 IC. Из его таблицы данных мы можем узнать, что он может питаться от однополярного источника 3,3v. Построим инвертирующий усилитель со смещением средней точки по постоянному току.

Схема выглядит следующим образом:

Здесь показан выходной сигнал:

Выходной сигнал

С операционным усилителем вычисления становятся более простыми. Делаем делитель напряжения с R1-R2 на точку VCC. Значит, оба резистора равны. Затем рассчитываем резисторы усиления по формуле:

Если мы выберем Gain = 100 то берем R3 = 100k, тогда R4 будет иметь значение 1 кОм.

Важность входного конденсатора перед усилителем

Мы не упомянули важность входного конденсатора, который стоит перед усилителем. Во-первых, это фильтр смещения постоянного тока. Если есть смещение постоянного напряжения от микрофона, оно отфильтровывается, и проходит только сигнал переменного тока. Кроме того, он работает как фильтр высоких частот вместе с входным сопротивлением усилителя. Если вы хотите улавливать низкочастотные звуки, выбирайте конденсаторы более высокой емкости — 1u, 10, 100u.

Читайте также: