Мегаомметр для измерения сопротивления изоляции своими руками

Добавил пользователь Алексей Ф.
Обновлено: 18.09.2024

Для себя определил 3 основные ветки развития данных статей:
• Электрика
• Механика
• Кузовные работы.
Пишите в комментарии , о чем вы бы хотели больше узнать!

Сегодня поговорим о такой штуке как Мегаомметр — как его сделать самому и как использовать.

Что такое Мегаомметр?

Для начала нужно разобрать, что это и с чем его едят. Лезть в техническую информацию я не стану — если большое желание будет, сможете найти по первой ссылке в Яндексе.

Конкретно в нашем случае (на СТО или в гараже) он нужен для проверки обмоток стартера или генератора под нагрузкой. Но почему бы не купить сей чудесный агрегат в магазине? Хотя бы потому, что ценник начинается от пары тысяч и выше.

Что нам понадобится?

Для изготовления данного прибора необходимо:

Собираем прибор

Соблюдайте ТБ! Не уподобляйтесь нам, мы дураки — нам можно 🙂

Как им пользоваться?

Теперь к самой проверке. Берем нашу обмотку, сперва прикладываем к концам контактов — лампа должна загореться — значит обмотка целая.

Далее прикладываем один к контакту, другой на корпус. Если лампа загорелась — значит есть пробой на корпус . Также могут на обмотке появляются искры и начинает дымить. Долго держать так не советую.

Лечиться данная болячка подкладкой диэлектрической бумаги между корпусом и обмоткой. Это не единственный метод, но, как по мне, он весьма неплох.

Поддержите лайком и подпишитесь, если вам понравилась статья. Ну и, как всегда, ни гвоздя ни жезла!

МЕГАОММЕТР на Атмега328Р

Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.

Индикация осуществляется на жидкокристаллический дисплей. Для заряда аккумулятора применен контроллер заряда на TP4056 (отдельная платка 17х20 мм).

Применены SMD детали, резисторы 5%, конденсаторы 10%. Нужно учесть, что это не омметр и не служит для точного измерения сопротивления, хотя точность в диапазоне 1К — 1М достаточно велика. Для повышения достоверности показаний весь диапазон измерения сопротивлений разбит на три. В прошивке применен oversampling. Использованы три делителя напряжения 1;10, 1:100 и 1:1000. Последний диапазон очень растянут, от 10 мОм до 100 мОм и при дискретности АЦП микроконтроллера 10 бит имеет очень крупный шаг, около 90 кОм. К тому же пришлось применить цепи защиты входом микроконтроллера и они вносят погрешность на двух верхних диапазонах. Ниже вы видите рисунки с результатами замеров.

Может кто-то захочет усовершенствовать прибор или более точно откалибровать, поэтому я прикладываю исходники. При калибровке подключаем точный резистор не хуже 1%, например 47 кОм и подбираем коэффициент для диапазона 10-100 кОм в строке:

Шкала от 10 до 100 мОм очень не линейна, вначале показания занижаются kx2, а в конце диапазона завышаются kx1, поэтому подбираются два коэффициента аналогично, но резистор ставим 20 мОм, затем 47 мОм и затем 91 мОм:

С наилучшими пожеланиями, Самоделкин и Ю.Градов.

Сделать мегаомметр своими руками












Цифровой мегомметр предназначен для испытания изоляции, измерения тока утечки. Новый дизайн, который позволяет тестировать на напряжении 500В или 1000В. Он может измерять сопротивление изоляции до 999МОм и токов утечки до 100мА. Построен на PIC микроконтроллере и отображает результаты на 2-строчный ЖК-дисплей.

— измерение сопротивления до 999Мом

— подаваемое напряжение 500В или 1000В

— измерение тока утечки до 100мА

Преобразователь инвертирует 6В ,источника питания, в переменное напряжение с последующим его увеличением. Преобразователь построен на элементах: Генераторе 6кГц (4093B), транзисторах BC327, повышающего трансформатора с 4,5В до 230В.

Отрицательная обратная связь используется для контроля подаваемого напряжения. Построен на операционном усилителе ( LM 358) и выполняет роль компаратора, сравнивая образцовое напряжение 2,5В со стабилитрона (LM336Z-2.5) с напряжением на выходе мегомметра. В одном корпусе микросхемы LM 358 находится два операционных усилителя, первый для контроля напряжения подаваемого, а второй для измерений тока утечки. С помощью VR1 настраиваем уровень напряжения 2,5В на входе №6 LM 358 соответствующий выходному 500В при включенном тумблере S1 на 500В и нажатой кнопке S 2.

Измерение тока ограничено резистором, 100мА для напряжения 1000В и 50мА для напряжения 500В. В качестве ограничителя выступает сопротивление 10МОм, которое имеет еще одно назначение – обезопасить пользователя от прямого прикосновения к выходу мегомметра, в худшем случае будет шок. В качестве измерителя тока служит резистор 10кОм, на нем измеряется падение напряжения, усиливается и подается на 1 ногу микроконтроллера.

В зависимости от потенциала на выводе 3 микроконтроллера определяется состояние тумблера S 1.

Собран делитель из резисторов 3,3к 5,6к 270, на напряжение +3,2В, для расчета контроллером измеренных показаний.

На выходе микроконтроллера №15 запускается тестовый генератор 2МГц.

Для замера ,при наладке, уровней напряжения предусмотрены выводы ТР1,ТР2,ТР3.

1 шт корпус 157 x 95 x 53mm

1 шт плата, 84 x 102m

1 шт LC D дисплей, 2 строки x 16 символов, тип — Altronics Z-7013

трансформатор, 9 V 150 mA или 1.35 VA

4 шт AA батарейки питания

2 шт тумблер (S1, S3)

1 шт тактовая кнопка (S2)

2 шт разъем, banana jacks (1 красный, 1 черный)

Сделать мегаомметр своими руками

Ещё нашёл калькулятор параметров MC34063, но мои расчёты не совпадают с ним.
Видимо я просчитался. Подскажите стоит доверять этому калькулятору при расчётах?

Простой мегомметр


Для проверки сопротивления изоляции электродвигателя, кабеля или трансформатора применяют мегомметры на соответствующее напряжение. Иногда нужно ориентировочно оценить состояние изоляции глубинного насоса, сварочного трансформатора, электропроводки и т.д. Обычным мультиметром этого сделать нельзя, так как на его щупах очень низкое напряжение, которое не может быть использовано для проверки прочности изоляции.

Если генератор импульсов собран правильно, то настройка и градуировка устройства следующая:

1. Подключаем стрелочный мультиметр к выводам высокого напряжения (цифровой для этих целей не подходит из-за неустойчивости показаний к ВЧ импульсам)

2. В разрыв питания 18В подключаем миллиамперметр (желательно стрелочный)

3. Полностью шунтируем микроамперметр

4. Включаем наш мегомметр

5. Перемещая контакты подстроечных резисторов добиваемся максимального напряжение на выходе со стороны высокого напряжения и минимального тока питания. Например, 2500В на высоком напряжении и ток 30мА на низком напряжении питания 18В (для сведения: измерения электрооборудования напряжением 220В, 380В мегомметр промышленного изготовления должен вырабатывать на выходе напряжение 1000В током около 500мкА)

6. Выключаем мегомметр, отсоединяем все мультиметры, замыкаем вывода высокого напряжения

7. Включаем мегомметр

9. Выключаем мегомметр и подсоединяем эталонное сопротивление 500кОм

10. Включаем мегомметр и отмечаем на шкале микроамперметра деление 500кОм

11. То же самое проделываем с эталонным сопротивлением 1МОм, 10МОм, 100Мом начиная с пункта 9.

На этом настройка заканчивается. Последующие градуировки могут понадобиться, если напряжение питания батарей со временем понизятся.

О деталях: транзистор IRF540 может быть заменён на менее мощный, диоды D1-D2 — любые быстродействующие (примерно на 100кГц), С3 — от 200мкФ и выше, D3 – аналогичный высокочастотный высоковольтный диод, La1 – любая неоновая лампочка, Т – произвольный повышающий малогабаритный ферритовый трансформатор.

Внимание! Работа с устройством связана с высоким напряжением опасным для жизни. Поэтому соблюдения и знание правил работы с мегомметрами обязательно. После проверки состояния изоляции электрооборудования все токоведущи части должны быть разряжены путём их замыкания между собой и заземлённым проводником в течение времени 5-10 секунд. Не следует испытывать этим устройством высоковольтные конденсаторы, так как накопленная энергия в результате может быть смертельной.


Существует ряд случаев, когда необходимо произвести проверку состояния изоляционного покрытия кабеля: до начала эксплуатации, при ремонте или после него, при нарушении работоспособности проводки. С обыкновенным мультиметром определяется только сам факт проблемы, получить более исчерпывающую информацию может помочь только специальный прибор из разряда профессиональных. Чтобы разобраться, как пользоваться мегаомметром, что он измеряет, в помощь домашним мастерам, и подготовлен этот материал.

Об устройстве и принципе работы

Мегаомметр – это прибор, применяемый для замеров уровня сопротивления изоляционного покрытия электрического кабеля или провода. Делается это путём непосредственного подключения к линии специальных щупов.

Принцип действия мегаомметра основывается на использовании источника постоянного высокого напряжения, генерирующего это самое напряжение в цепи, тем самым проверяя изоляцию. Модельный ряд прибора многообразен и разнится в основном набором калибровочных напряжений, подаваемых по одному или комбинациями. Первые будут проще и дешевле, вторые – сложнее и дороже.

Существует две разновидности устройства. В старой комплектации, включающей встроенную динамомашину, приводимую в действие специальной боковой ручкой. Либо электронный вариант, способный создавать испытательное напряжение, чтобы проводить замеры, как в бытовой электросети, так и в батарейках или аккумуляторах.

Помимо измерения электрических параметров сети в некоторых электронных моделях возможно определения напряжения, низкоомного сопротивления и т.д., фактически заменяя мультиметр. Единственный недостаток – малый выбор показаний калибровочного напряжения для определения состояния изоляционного покрытия. Фактически это два положения: 500В и 1000В.

Принцип работы мегаомметра опирается на широко известный закон Ома – I=U/R. Работа прибора сводится к определению сопротивления в цепи, опираясь на эту формулу, т.е. генерируя выставленное пользователем напряжение, определяется сила тока, а прибор выдаёт на шкалу результат – R=U/I.

Проведение измерений

Проведение измерений, по сути, не представляет сложностей, главное – это строгое соблюдение правил и очерёдности действий, т.к. создаваемое во время проверки высокое напряжение представляет реальную опасность.

Готовим прибор к работе

До того, как работать с мегаомметром, следует произвести некоторую подготовку. Во-первых, с тестируемых цепей необходимо полностью снять нагрузку, т.е. прекратить подачу питания, отключив рубильник или выкрутив пробки. Во-вторых, следует отключить все источники питания, т.е. вилки достать из розеток, а лампочки из патронов. Выполнив эти действия, полностью сняв нагрузку, можно проводить проверку проводки.


Кроме того, рекомендуется использование переносного заземления, чтобы не допустить случайного поражения остаточным напряжением. Для этого можно использовать многожильный медный провод, закреплённый к шине заземления щитка одним концом, а вторым, зачищенным от изоляции, к сухой деревяшке. Крепление провода осуществляется так, чтобы соприкосновение меди с проводниками было удобным.

Особенности безопасности

Правила работы с мегаомметром требуют соблюдения всех пунктов инструкции по эксплуатации. А это:

Важно! Остаточное напряжение требует особого внимания. В первую очередь это касается протяжённых линий, способных к накоплению значительного заряда, который может привести даже к летальному исходу.

Соединение устройства с проверяемой линией

Стандартной комплектацией прибора считается наличие трёх щупов: двух обычных и одного с двумя наконечниками.

Верхняя часть панели устройства оснащена тремя разъёмами для подключения этих щупов, с соответствующей буквенной маркировкой:

Видео описание

Вопрос, для чего нужен мегаомметр, раскрыт в этом видео на примере электронного вида прибора:


Для подключения аппарата к измеряемой сети используют зажимы-крокодилы:

По-другому в частном жилье прибор практически не используется, т.к. там не используется экранированные кабели. Но при наличии кабелей с экраном и необходимости исключения токов утечки нужно применить раздвоенный щуп, скрутив экранирующую оплётку жгутом и добавив её к общему пучку измеряемых проводов.

Проведение измерений

Рассмотрим подробнее, как работать мегаомметром. Установив щупы, выбирается тестовое напряжение. Для проверки сопротивления изоляционного покрытия проводки частного жилья подаётся напряжение в 500В либо 1000В. Действия проводятся в следующем порядке:

  • прибор готовится к работе по описанному выше алгоритму;
  • проводится установка переносного заземления;
  • в соответствии с ожидаемым сопротивлением выбирается шкала измерений, установив переключатель прибора в нужном положении;

Каждый электроприбор имеет свои показатели сопротивления, отображённые в его паспорте. Если измеренное значение получилось не меньше предусмотренного в паспорте, то все в порядке. В ином случае необходимо принимать меры по поиску причин, устранению их или замене устройства/кабеля.

Видео описание

Подробный обзор ручного мегаомметра с динамомашиной показан в этом видео:


Измерение сопротивления изоляционного покрытия провода

Замер сопротивления изоляции мегаомметром является наиболее распространённым измерением. Для его проведения нужно отключить подачу электричества, тем самым убрав нагрузку.

После этого выполняется измерение каждой жилы, отсоединённой от остального пучка, включающего заведённый провод заземления.

В случае получения заниженных показателей необходимо произвести проверку каждой жилы относительно земли без включения остальных проводов, а затем каждой жилы относительно других проводов.

Проведение такой проверки не сложное, но хлопотное при наличии большого количества жил. В однофазной же сети проблем с измерениями возникнуть не должно.


Коротко о главном

Наличие качественной изоляции в любой электросети или электроприборе является залогом их безопасной эксплуатации. Для измерения показателей сопротивления в электрических линиях и существует такой прибор, как мегаомметр. Он помогает обнаружить повреждённый участок работающей цепи либо проверить работоспособность проводки до её установки. Так как все действия предполагают работу с высоким напряжением, то главным является соблюдение правил безопасности. Порядок работы с мегаомметром достаточно прост, если знать и придерживаться алгоритма, независимо от вида прибора – электронного или ручного.

От изоляции кабелей зависит надежность, безопасность и корректность работы электрических приборов, установок или линий. При этом надо учитывать, что со временем ее характеристики ухудшаются. Отсюда вывод: состояние изоляции нужно периодически контролировать. Для этого используются специальные приборы – мегаомметры.

Принцип проведения измерений

Мегаомметр позволяет измерить величину сопротивления изоляции. Для этого на его щупы подается напряжение и измеряется возникший электрический ток. Чтобы получить искомый результат, используется закон Ома:

закон Ома

где U – подаваемое на щупы напряжение,

I – измеренная сила тока.

Конструктивные особенности мегаомметров

Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.

Виды мегаомметров

Можно выделить два основных вида приборов:

1. Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.

Мегаомметр с механическим генератором

Так выглядит мегаомметр с механическим генератором

2. Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.

Электронный мегаомметр

Так выглядит электронный мегаомметр

Меры безопасности при использовании мегаомметра

Мегаомметр подает на испытуемый образец высокое напряжение, поэтому при его использовании нужно соблюдать следующие меры безопасности:

  • Применять только те провода и щупы, которые предназначены для проведения измерений этим прибором.
  • Использовать мегаомметр, измерительные провода, щупы и зажимы без механических повреждений.
  • Обесточивать испытуемый образец.
  • Использовать переносное заземление. С его помощью снимается остаточный заряд с тестируемого объекта и устраняется опасность поражения током.
  • Применять диэлектрические перчатки.

Подготовка к проведению измерений

Каким должно быть значение напряжения и сопротивления изоляции

Подаваемое на исследуемый объект напряжение и сопротивление изоляции должны соответствовать следующим значениям:

таблица.jpg

Проведение измерений

С помощью мегаомметра могут проводиться измерения двух видов. Главный принцип, который при этом используется, следующий: должно быть проверено качество изоляции каждого из проводов, входящих в состав кабеля.

Проверка замыкания на землю (пробой на землю)

Мы рассмотрим ее на примере высоковольтного силового кабеля. Для начала его необходимо обесточить. Затем к двум его жилам, которые не будут участвовать в тестировании, подключить переносное заземление. Один измерительный провод мегаомметра подключить к заземляющей шине электрощита, а второй – к тестируемой жиле. После этого подать напряжение на выводы мегаомметра и замерить сопротивление. Таким же образом проверить оставшиеся две жилы.

Контроль кабеля на пробой на землю

Так выполняется проверка кабеля на пробой на землю

Проверка взаимной изолированности жил кабеля

Проверку на вероятность короткого замыкания жил кабеля мы рассмотрим на примере низковольтного силового кабеля. Сначала, как и в предыдущем случае, необходимо его обесточить. Если линия протяженная, то после каждого измерения нужно коснуться переносным заземлением кончика каждого из проверенных проводов.

Для оценки состояния изоляции требуется подключить один измерительный провод мегаомметра к заземляющей жиле кабеля (на рисунке она обозначена РЕ), авторой конец поочередно подключать к оставшимся, каждый раз выполняя измерение величины сопротивления.

Контроль взаимной изолированности жил кабеля

Так проверяется состояние изоляции каждой из жил кабеля

После этого аналогичным образом поступить с нулевой жилой (N), подключив к ней один измерительный провод, а второй – поочередно ко всем оставшимся. Эти действия необходимо повторить для каждой жилы кабеля, перебрав все возможные сочетания.

Заключение

Приведенные выше приемы вполне можно использовать для проверки бытовых линий. Например, для оценки состояния изоляции проводов, подключенных к розетке, достаточно обесточить ее, затем один измерительный провод мегаомметра подключить к нолю розетки, второй – к фазе, после этого подать напряжение и выполнить замер. Если же к розетке подведено заземление, чтобы проверить все возможные сочетания, понадобится сделать три замера.

Измерение сопротивления изоляции

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

 испытание электрической прочности изоляции

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения изоляции

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Читайте также: