Ксв метр на кв диапазон своими руками на ферритовом кольце

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Собирая свою самодельную радиостанцию, а может просто подбирая антенну к уже готовой, купленной рации, вы, рано или поздно, придёте к рассмотрению вопросов согласования передатчика с антенной, настройки антенны и фидерного тракта.

И, как не надеялся их обойти, к этим задачам всё же пришёл и я, пытаясь понять почему так сильно греется выходной транзистор передатчика и почему при достаточной мощности передачи максимальная дальность радиосвязи так мала.

Хорошая новость ‒ изобретать и выдумывать ничего не придётся, методики и способы давным-давно известны, нужно только как можно точнее следовать правильным рекомендациям.

Известен и параметр, который потребуется научиться измерять при настройке антенны и согласовании её с радиостанцией. Называется он " коэффициентом стоячей волны ", сокращённо "КСВ", либо по английски "SWR", от "standing wave ratio".

Наверное самое простое и наглядное, на пальцах, объяснение, что из себя представляет этот коэффициент и каким он должен быть, мне встретилось вот в этой статье:

Хотя и кроме неё в интернете достаточно информации по данному вопросу, достаточно набрать запрос в поисковике.

А для измерения коэффициента стоячей волны потребуется прибор, называемый КСВ-метром, или SWR-метром.

Бюджетные, но тем не менее, широко используемые, варианты со стрелочной измерительной головкой, такие как Vector (или Optim) SWR-420, SWR-430, SWR-171, Surecom SW-111 можно приобрести как в отечественных магазинах радиоэлектроники , так и на всемирно известной торговой площадке в Поднебесной .

Продаются и готовые приборы, и отдельные градуированные измерительные головки для их сборки, а также просто радиоконструкторы.

Например в Радиолавке КВ и УКВ (RV_3_YF_Radio Store) встречаются радиоконструкторы для сборки измерителя КСВ

Есть и более полные и дорогие радиоконструкторы, например такой или такой .

Что интересно, цены на измерители КСВ, например на SWR-420 или SWR-430 в отечественных магазинах, по сравнению с тем же AliExpress не сильно отличаются.

При выборе той или иной модели нужно ориентироваться не только на цену, функциональность и удобство работы с прибором, но и на частотный диапазон работы КСВ-метра и максимальную проходную мощность. Эти параметры должны быть сопоставимы с характеристиками вашей радиостанции.

Собрался приобрести один из подобных измерителей КСВ и я. Да остановило отсутствие ответных разъёмов PL-259 в комплекте поставки и у меня в наличии. "Колхозить" подключение на проводках не хотелось, заказывать разъёмы для подключения отдельно и снова ждать. ждать. ждать. тоже.

И я подумал: А почему бы вместо месяца-полутора ожидания очередной посылки с почты не собрать этот измеритель самостоятельно?

Тем более, что схема не слишком сложная (и даже совсем простая, специально такую выбирал!), без железной коробочки экранирующего корпуса вполне можно и обойтись, а из всех деталей самая дорогостоящая ‒ это стрелочная измерительная головка, которую на первых порах вполне заменит простой стрелочный тестер-авометр.

В общем, схему измерителя КСВ для сборки выбрал вот из этой статьи:

Автор книги, в свою очередь, упоминает, что первая такая схема мостового измерителя КСВ появилась ещё в 30-х годах прошлого века.

Puc.1
На рис.2 показан основной вертикальный разрез рефлектометра. Наружная поверхность плоской линии сделана из двух дюралевых пластин 5 размером 115х195Х2 мм, соединенных между собой двумя отрезками швеллера 4 размером 2Х18Х25,04мм, длиной 115 мм. Внутренний проводник линии 6 сделан из куска латунной трубки диаметром 9,4 мм, длиной 160 мм, удлиненной с обоих концов ступенчатыми переходами 7, компенсирующими неравномерности самой линии и перехода ее во внешние коаксиальные разъемы 8.

Разъемы крепятся к швеллеру 4 четырьмя винтами М3, соединение их с внутренним проводником 6 делают в зависимости от конструкции самого разъема.

Puc.2
В центре одной из пластин 5 сделано отверстие диаметром 10 мм и над ним крепится измерительная головка прибора. Механически головка состоит из двух отрезков гильзы N 20 и служит основанием 9 для поворотной части головки 10 из гильзы N 24.

В опытном образце рефлектометра сопротивление 11 желательно сделать сменным, поэтому его заземляемый конец крепится в дне гильзы при помощи стопорного винта 18 с резьбой М2. Толщина дна для этой цели вполне достаточна. В повторных конструкциях этот узел можно упростить и сопротивление R1=120-130 ом типа МЛТ впаивать в тонкую боковую стенку гильзы примерно так, как это показано на рис.2.

Держатель детектора 13 имеет внешнюю резьбу М2 и внутреннюю резьбу М3, куда ввинчивается детектор типа ДКИ. Тонкая ножка держателя проходит через отверстие диаметром 4,2 мм в дне гильзы 10 и ввинчивается в резьбу М2 в диске 15 конденсатора развязки. После подбора нужной высоты держателя 13 его положение фиксируют еще контргайкой, под которую одновременно подкладывают лепесток для соединения с микроамперметром.

Петля 3 ответвителя Lc сделана из провода диаметром 0,6 мм, имеет длину 12-13 мм и расстояние между центрами 2,6-2,8 мм. Ее левый конец припаян к проводу вывода сопротивления R1, правый, идущий к детектору, - к малому кольцу диаметром 2,0-2,5 мм, высотой 2-2,5 мм, согнутому из тонкой бронзы или латуни. Кольцо плотно надето на цилиндрический вывод детектора.

Поворот головки 10 желательно каким-либо способом ограничить в пределах 0-180°, так как отсчет ведется только в двух крайних положениях.

Применение рефлектометра. Основное назначение прибора - измерение коэффициента стоячей волны (КСВ), нагрузок и контроль согласования. Для измерения КСВ прибор включают при помощи высокочастотных разьемов между выходом передатчика и кабелем антенны. Головку ответвителя ставят в положение измерения падающей волны (ПВ), т.е. петлей в направлении к генератору, и связь с передатчиком подбирают такой, чтобы получить удобный отсчет по шкале прибора a1. Затем головку поворачивают в направлении к нагрузке для измерения отраженной волны a2. P=Uотр/Uпад=Sqr(a2/a1) где Uотр и Uпад - значения напряжений, на которые реагирует рефлектометр;
a1 и a2 - отклонения прибора;
(Sqr - корень квадратный).


Зная коэффициент отражения Р, можно определить и КСВ в измеряемой линии: K=(1+P)/(1-P) Пусть, например, антенна дает a1=20, a2=5, какой будет КСВ и потеря мощности? P=Sqr(5/20)=0,5 следовательно, K=(1+0,5)/(1-0,5)=3,0 Такие подсчеты нужны лишь в том случае, когда по каким-либо соображениям нельзя добиться согласования и узнать мощность, которую действительно излучает антенна с учетом всех потерь. Однако чаще всего рефлектометр сначала используют как индикатор рассогласования, сопоставляя a1, a2, первое должно быть большим. Если удастся, например, перемещением рефлектора в антенне "волновой канал" добиться того, что a2 будет в 10 раз меньше a1 при незначительном изменении усиления антенны, то дальнейшего уменьшения отраженной волны надо уже добиваться согласующим трансформатором или изменением диаметров и расстояний у сложных петлевых вибраторов. Соотношения a2/a1=10,

Основу устройства составляет двунаправленный ответвитель, выполненный на полосковой линии Е1 с двумя петлями связи L1 и L2. С них и снимаются напряжения прямой и отраженной волн, которые выпрямляются диодами V1 и V2. В зависимости от положения переключателя S1 измеряются либо то, либо другое напряжение. Петли связи нагружены на резистор R2. Резистором R1 регулируется чувствительность прибора. Емкость блокировочных конденсаторов С1 и С2 для диапазона 144 МГц - 0,022 мкФ, для 430 МГц - 220 пФ.

Конструкция линии с петлями связи для диапазонов 144/430 МГц показаны на рис.2а, б соответственно.


Рис. 2

Размеры даны для несимметричного фидера с волновым сопротивлением 75 Ом. Линия и петли связи выполнены на печатных платах из двухстороннего фольгированного стеклотекстолита толщиной 4 мм. При использовании другого материала ширину линии можно найти из формулы:

где Z - волновое сопротивление линии, Ом;
E - диэлектрическая проницаемость используемого материала (для стеклотекстолита Е=5);
D - толщина материала, мм;
b - ширина полосковой линии, мм.

Печатные платы впаивают в прямоугольную рамку из латунной полосы толщиной 0,8. 1 мм и шириной 30 мм. Припаивать печатную плату нужно с двух сторон. На торцевых стенках рамки можно укрепить коаксиальные ВЧ разъемы. Если же использовать рефлектометр в какой-то конкретной цепи и не предусматривать его отключение, коаксиальный кабель можно припаять непосредственно.

Диоды устанавливают между выводами петель связи и блокирующими конденсаторами. Конденсаторы применяют типа КМ, КГЛ или, в крайнем случае, СГМ. Их тонкие проволочные выводы отрезают, диоды припаивают к металлизированному участку конденсатора. Вторую обкладку конденсатора припаивают к общей поверхности фольги, как показано на рис.3.

Время пайки должно быть минимальным, так как при перегреве диоды выходят из строя.
Переключатель S1 - МТ-1. Резистор R2 - безиндукционный (УЛИ или МЛТ-0,25).

Стрелка микроамперметра на 100 мкА отклоняется на всю шкалу в положении переключателя "Прямая" при мощности на 144 МГц примерно 50 мВт и на 430 МГц - 100 мВт. При большей мощности чувствительность прибора необходимо понижать, вводя резистор R1.

После монтажа и сборки рефлектометр необходимо настроить. Для этого подают на вход сигнал от передатчика или ГСС, а выход нагружают на эквивалентную нагрузку 75 Ом. Можно воспользоваться готовым ВЧ эквивалентом от измерителей АЧХ Х1-13, Х1-19, Х1-30. Подают такое напряжение ВЧ, чтобы стрелка прибора отклонилась на всю шкалу в положение переключателя S1 "Прямая". Затем переключатель переводят в положение "Отраженная" и подбором резистора R2 добиваются нулевого показания. Эту процедуру повторяют несколько раз с каждым из вновь включаемых резисторов. Настроенный рефлектометр закрывают с двух сторон крышками.

Поскольку рефлектометры симметричны, их входы и выходы можно поменять местами.

Предлагаемый вниманию КСВ-метр на основе полосковых направленных ответвителей лишён подобных недостатков, конструктивно выполнен в виде отдельного самостоятельного прибора и позволяет определить отношение прямой и отражённой волн в цепи антенны при подводимой мощности до 200 Вт в частотном диапазоне 1…50 МГц при волновом сопротивлении фидерной линии 50 Ом.

Схема КСВ-метра проста:


Если требуется иметь только индикатор выходной мощности передатчика или контролировать ток антенны, можно воспользоваться таким устройством:


При измерении КСВ в линиях с волновым сопротивлением отличным от 50 Ом, значения резисторов R1 и R2 следует изменить до величины волнового сопротивления измеряемой линии.

Конструкция
КСВ-метр выполнен на плате из двустороннего фольгированного фторопласта толщиной 2 мм. В качестве замены возможно использование двусторонннего стеклотекстолита.


Линия L2 выполнена на тыльной стороне платы и показана прерывистой линией. Её размеры 11×70 мм. В отверстия линии L2 под разъёмы XS1 и XS2 вставлены пистоны, которые развальцованы и пропаяны вместе с L2. Общая шина с обеих сторон платы имеет одинаковую конфигурацию и на схеме платы заштрихована. В углах платы просверлены отверстия, в которые вставлены отрезки провода диаметром 2 мм, пропаянные с обеих сторон общей шины.

Линии L1 и L3 расположены с лицевой стороны платы и имеют размеры: прямой участок 2×20 мм, расстояние между ними 4 мм и расположены симметрично продольной оси линии L2. Смещение между ними вдоль продольной оси L2 -10 мм. Все радиоэлементы расположены со стороны полосковых линий L1 и L2 и припаяны внахлёст непосредственно к печатным проводникам платы КСВ-метра. Печатные проводники платы следует посеребрить.

Собранная плата припаивается непосредственно к контактам разъёмов XS1 и XS2. Применение дополнительных соединительных проводников или коаксиального кабеля недопустимо.

Готовый КСВ-метр помещают в коробку из немагнитного материала толщиной 3…4 мм. Общую шину платы КСВ-метра, корпуса прибора и разъёмов соединяют между собой электрически.


Мультиметр, пробники, индикаторы, тестеры

КСВ метр с согласующим устройством

Портативный прибор ксв метр изготовлен своими руками, на рисунке 1 приведена принципиальная схема этого устройства, позволяющего контролировать настройку и проводить согласование антенн самых разных конфигураций с 50-смными радиоаппаратами. Оно состоит из двух самостоятельных узлов: КСВ метра (Т1, VD1, VD2 и др.) и согласующего контура (L1C7C8).

В основе КСВ метра (КСВ – коэффициент стоячей волны) – высокочастотный трансформатор Т1, первичной обмоткой которого служит продетый сквозь ферритовое кольцо (М50ВЧ2-24 12x5x4 мм) антенный провод. Вторичную обмотку (20 витков провода в пластиковой изоляции сечением 0,07…0,2 мм²) наматывают равномерно по всему магнитопроводу. Подстроечные конденсаторы С1 и С2 – КПК- МН, микроамперметр РА1 – М4248 (он может быть и внешним, подключаемым лишь при наладке антенны), переключатель SA1 – “прямая волна – отраженная волна” – любой тумблер, например, П1Т- 1-1В или П1ТЗ-1В.

Катушка L1 имеет 12 витков, намотанных проводом ПЭВ-2 0,8; внутренний ее диаметр – 6 мм, длина – 18 мм. Выход КСВ метра подключают к седьмому (считая от “земли”) витку катушки L1. Подстроечным конденсатором С7 согласующий контур настраивают на середину диапазона рабочих частот. Выход согласующего устройства – отвод от 1, 2,… или 12-го витка L1, к которому будет подключена антенна или линия передачи. Выбор осуществляется посредством SA2 – двенадцатипозиционного переключателя типа ПГ2-5- 12П1НВ.

Печатную плату прибора изготавливают из двустороннего фольгированного стеклотекстолита толщиной 1,5…2 мм (рис. 2). Основную площадь как с одной, так и с другой стороны занимает общий провод-экран. Обе стороны платы должны быть соединены в нескольких точках. Размещение элементов на плате и самой платы в общей конструкции прибора показано на рис. 2, а. На рис 2, в показан фрагмент вида слева на смонтированную плату.

Для настройки КСВ метра его выход временно отключают от согласующего контура (в точке А) и подключают к 50-омной нагрузке (два параллельно соединенных резистора МЛТ-2 100 Ом), а вход – к радиопередатчику. В режиме измерения прямой волны (в указанном на рис. 1 положении SA1) микроамперметр РА1 должен показывать 70…100 мкА. Подстроечным резистором R5 можно скорректировать показания прибора. Переключив SA1 в другое положение (контроль отраженной волны), регулировкой конденсатора С2 добиваются нулевых показаний РА1.

Затем вход и выход КСВ-метра меняют местами (КСВ метр симметричен), и эту процедуру повторяют, устанавливая в “нулевое” положение С1. На этом настройку КСВ метра заканчивают и подключают его к согласующему контуру. Настройку антенны, не имеющей специально введенных в нее реактивных элементов (например, удлиняющей катушки) ведут, изменяя длину ее вибратора, противовесов, каких-либо “навесных” их фрагментов. Точной настройке будет соответствовать минимальное показание КСВ метра в режиме контроля отраженной волны.

Согласование настроенной антенны ведется поиском наилучшего положения переключателя SA2. Позиция, в которой достигается минимальное показание КСВ метра, будет соответствовать лучшему согласованию антенны с 50-омным радиоаппаратом. В этой позиции переключателя SA2 еще раз уточняют настройку антенны, поставив себе целью очень незначительными изменениями длины того или иного ее фрагмента привести показания РА1 в режиме контроля отраженной волны почти к нулю. Обычно это удается сделать.

Если микроамперметр имеет оцифрованную шкалу, можно определить численное значение КСВ по формуле: KCB=(A1+A2)/(A1-A2), где А1 – показания прибора в режиме измерения прямой волны, а А2 – обратной. Настройку и согласование антенной системы с передатчиком обычно считают вполне удовлетворительными, если достигается КСВ Согласование высокоомной антенны (полволны, ромб и др.), связанной с радиостанцией коаксиальным кабелем, рекомендуется выполнять в два этапа. Сначала с помощью нерегулируемого согласователя (например, П-контура), вынесенного на антенную мачту, понижают сопротивление антенны до 30…100 Ом, а затем подстраивают КСВ переключателем SA2. Если “высокоомная” антенна может быть подключена непосредственно, без фидера, то дополнительная ступень сотласования необязательна. КСВ метр в этом случае надо подключить но к седьмому, а к второму или третьему витку катушки L1.

Рабочее напряжение конденсаторов С7 и С8 должно быть не менее 150 В. Показания КСВ метра в режиме контроля прямой волны характеризуют отдаваемую о нагрузку мощность. Но для численной ее оценки КСВ метр потребуется проградуировать. Это можно сделать с помощью подключенного к 50-омному антенному эквиваленту высокочастотного вольтметра: Pн=U²/Rн.

Если нет ВЧ вольтметра, можно использовать цифровой вольтметр с выносной высокочастотной детекторной головкой на входе. Схема ВЧ-детектора показана на рис. 3. Вольтметр должен иметь входное сопротивление 1 МОм. Его показания в режиме измерения постоянного напряжения до 20В без какого-либо перерасчета будут соответствовать эффективному напряжению высокочастотных колебаний, но только при входном напряжении более 2В.

Читайте также: