Коллекция диэлектриков и проводников полупроводников своими руками

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

Отличие проводников от диэлектриков наличием свободных зарядов. Исследование внешней, в отношении проводника, области пространства. Изучение диэлектриков в электрическом поле и диэлектрической проницаемости. Механизм ослабления поля внутри диэлектрика.

Рубрика Физика и энергетика
Вид практическая работа
Язык русский
Дата добавления 09.01.2015
Размер файла 510,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ХАРЬКОВСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА І-ІІІ СТУПЕНЕЙ № 122 ХАРЬКОВСКОГО ГОРОДСКОГО СОВЕТА ХАРЬКОВСКОЙ ОБЛАСТИ

Ученический проект, 11-Б класс

Проводники, диэлектрики, полупроводники

Подготовили: Дейнеко Анастасия Валерьевна,

Черкас Валерия Юрьевна, Борзов Владислав Андреевич,

Проценко Дмитрий Владимирович

Руководитель: Курносова Надежда Федоровна,

Название проекта: Проводники,диэлектрики,полупроводники

Актуальность темы: Полученные в ходе выполнения работы результаты подтверждают актуальность выбранной темы и указывают на возможность их практического применения при разработке и создании автоматизированных вычислительных комплексов, предназначенных для решения задач физики и техники.

По конечному результату : Практико-ориентированный

По содержанию : техническое творчество

По количеству участников : групповой

По продолжительности : средней продолжительности

Участники проекта: Дейнеко Анастасия, Черкас Валерия,Борзов Владислав Андреевич, Проценко Дмитрий Владимирович ученики 11 -Б класса Харьковской общеобразовательной школы № 122 I - III ст. Харьковского городского совета Харьковской области

? Показать что токое проводники, полупроводники, диэлектрики и чем они отличаются

? Установить условия прохождения тока

? Изучить что такое проводники, полупроводники и диэлектрики

? Установить условия прохождения тока

? Определить как себе ведут проводники, полупроводники и диэлектрики в электрическом поле.

1.1 Поле внутри проводника

1.2 Поле вне проводника

1.3 Потенциал проводника

2. Диэлектрики в электрическом поле

2.1 Диэлектрическая проницаемость

2.3 Полярные диэлектрики

3.1 Ковалентная связь

3.2 Кристаллическая структура кремния

3.3 Собственная проводимость

3.4 Примесная проводимость

Проводники отличаются от диэлектриков наличием свободных зарядов -- заряженных частиц, положение которых не связано с какой-то точкой внутри вещества. Свободные заряды приходят в движение под действием электрического поля и могут перемещаться по всему объёму проводника.

Проводниками являются также электролиты. Так называются растворы и расплавы, свободные заряды в которых возникают в результате диссоциации молекул на положительные и отрицательные ионы. Бросим, например, в стакан воды щепотку поваренной соли. Молекулы NaCl распадутся на ионы Na+ и Cl?. Под действием электрического поля эти ионы начнут упорядоченное движение, и возникнет электрический ток.

Природная вода, даже пресная, является проводником из-за растворённых в ней солей (но, конечно, не таким хорошим, как металлы). Человеческое тело в основным состоит из воды, и в ней также растворены соли (хлориды натрия, калия, кальция, магния). Поэтому наше тело --проводник электрического тока.

Из-за наличия свободных зарядов, способных перемещаться по всему объёму, проводники обладают некоторыми характерными общими свойствами.

1.1 Поле внутри проводника

Первое общее свойство проводников в электростатическом поле состоит в том, что напряжённость поля внутри проводника везде равна нулю.

Докажем от противного, как в математике. Предположим, что в какой-то области проводника имеется электрическое поле. Тогда под действием этого поля свободные заряды проводника начнут направленное движение. Возникнет электрический ток -- а это противоречит тому, что мы находимся в электростатике.

Конечно, такое рассуждение не оставляет ощущения удовлетворённости. Хотелось бы понять, почему обнуляется поле внутри проводника. Давайте попробуем.

Рассмотрим незаряженный проводящий шар, помещённый во внешнее электростатическое поле E. Для простоты считаем это поле однородным, но наши рассуждения останутся верными и в общем случае.

Под действием электрического поля E свободные электроны нашего шара скапливаются в левом его полушарии, которое заряжается отрицательно. Справа остаётся не скомпенсированный положительный заряд. Возникновение этих зарядов, как вы помните, называется электростатической индукцией: заряды на поверхности проводника индуцируются (т. е. Наводятся)внешним электростатическим полем. Подчеркнём ещё раз, что происходит реальное разделение зарядов: если сейчас распилить шар по диаметру в вертикальной плоскости, то получатся два разноимённо заряженных полушария.

Индуцированные заряды создают своё поле Ei, направление которого внутри шара оказывается противоположным внешнему полю (приложение 1).

Перестроение свободных зарядов шара продолжается до тех пор, пока поле Ei не компенсирует полностью внешнее поле E во всей области внутри шара. При наступлении этого момента(а наступает он почти мгновенно) результирующее поле внутри шара станет равным нулю, дальнейшее движение зарядов прекратится, и они окончательно займут свои фиксированные статические положения на поверхности шара.

А что будет в области снаружи шара? Поле Ei и тут наложится на внешнее поле E, искажая его тем сильнее, чем ближе к шару расположена точка наблюдения. На больших расстояниях от шара внешнее поле почти не изменится. В результате картина линий напряжённости будет иметь примерно следующий вид (приложение 2).

До сих пор наши рассуждения относились к случаю незаряженного проводника. Что изменится, если проводнику, помещённому в электростатическое поле, сообщить вдобавок некоторый заряд q?

Легко понять, что результирующее поле внутри проводника всё равно окажется равным нулю. В самом деле, заряд q начнёт перераспределяться по поверхности проводника таким образом, что поле Ei этого заряда внутри проводника будет направлено против внешнего электростатического поля E. Перераспределение будет продолжаться до тех пор, пока оба поля E и Ei не компенсируют друг друга во всей внутренней области проводника.

1.2 Поле вне проводника

Теперь рассмотрим область пространства, внешнюю по отношению к проводнику. Оказывается, линии напряжённости электрического поля входят в проводник (или выходят из него)перпендикулярно поверхности проводника.

Посмотрите ещё раз на рис. 2. Вы видите, что любая силовая линия, пересекающая шар, направлена точно под прямым углом к его поверхности.

Почему так получается? Давайте снова проведём доказательство от противного. Предположим, что в некоторой точке поверхности проводника силовая линия не перпендикулярна поверхности. Тогда в данной точке имеется составляющая вектора напряжённости, направленная по касательной к поверхности проводника -- так называемая касательная составляющая вектора напряжённости. Под действием этой касательной составляющей возникнет электрический ток -- а это противоречит тому, что мы находимся в электростатике.

1.3 Потенциал проводника

Раньше мы говорили о потенциале той или иной точки электростатического поля. Большой интерес представляют множества точек, потенциал которых одинаков. Один пример такого множества мы знаем -- это эквипотенциальные поверхности. Другим замечательным примером служит проводник.

Все точки проводника имеют одинаковый потенциал. Иными словами, разность потенциалов между любыми двумя точками проводника равна нулю.

В самом деле, если бы между какой-либо парой точек проводника существовала ненулевая разность потенциалов, возник бы ток от одной точки к другой -- ведь в этом случае электрическое поле совершало бы ненулевую работу по перемещению зарядов между данными точками.

Но в электростатике никакого тока быть не может.

Потенциал какой-либо (и тогда любой) точки проводника называется потенциалом проводника.

2. Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направленного движения зарядов. Поэтому для диэлектриков не проходят наши доказательства свойств проводников -- ведь все эти рассуждения опирались на возможность появления тока.

2.1 Диэлектрическая проницаемость

Но тем не менее, одно важнейшее общее свойство у диэлектриков имеется. Напряжённость поля уменьшается внутри диэлектрика в некоторое число е раз по сравнению с вакуумом.

Величина е даётся в таблицах и называется диэлектрической проницаемостью диэлектрика.

Давайте разберёмся, каковы причины ослабления поля в диэлектрике. Рассмотрим диэлектрик, помещённый во внешнее однородное (для простоты) поле E0. Опыт показывает, что на противоположных поверхностях диэлектрика появляются заряды разных знаков.

Мы видим, что дырка в целом перемещается по направлению линий поля -- то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля E~, а дырки -- в направлении вектора E~.

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью, или проводимостью p-типа. Обе проводимости -- электронная и дырочная -- вместе называются собственной проводимостью полупроводника.

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно 1010 см?3. Концентрация же атомов кремния -- порядка 1022 см?3. Иными словами, на 1012 атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов.

3.4 Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость. Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.

Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка (As). После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями -- атомами кремния (Приложение 13). Какова судьба пятого электрона, не занятого в этих связях?

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости. Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными. Например, пятивалентный мышьяк -- донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными -- дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками, или полупроводниками n-типа(или просто n-полупроводниками).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет 0,1 %, то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка 1022 см?3.

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: 1019 см?3. Такой же окажется и концентрация свободных электронов, отданных примесью -- ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна 1010 см?3. Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на 9 порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь -- например, индий (In).

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью -- это дырочный полупроводник, или полупроводник p-типа (или просто p-полупроводник).Дырки играют главную роль при создании тока в p-полупроводнике; дырки -- основные носители заряда. Свободные электроны -- неосновные носители заряда в p-полупроводнике.

Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

ads

Любое тело состоит из молекул и атомов. Атом включает в себя отрицательно заряженные электроны и положительно заряженное ядро. Электроны в атоме совершают орбитальные вращения вокруг ядра. В том случае, если сумма отрицательно заряженных электронов равна положительному заряду, то атом считается электрически нейтральным. В таблице Менделеева порядковый номер элемента определяется числом электронов атома с нейтральным зарядом. Электрический заряд электрона равен -1,6*10 -19 Кл. Заряд ядра по абсолютному значению равен заряду электрона, умноженному на число электронов атома с нейтральным зарядом.

Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.

Проводники электрического тока

Проводникиэто вещества с высокой электропроводностью. Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.

Хаотическое движение электронов

Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).

Упорядочное движение носителей заряда под действием электрического поля

Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых не завися от прохождения тока наблюдается электролитическая диссоциация.

Электролитическая диссоциацияэто процесс распада нейтральных молекул на отрицательные и положительные ионы.

Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.

Электролиты

Данные растворы или расплавы состоящие из ионов, частично или полностью, называются электролитами. Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.

Проводимость электролитов

При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.

Полупроводники

Электрические диэлектрики

Диэлектрикиэто те вещества, в которых при нормальных условиях очень малое количество свободных электрически заряженных частниц. В следствии чего они обладают низкой электропроводностью. К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники


Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.

Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимость – это свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет б о льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики


В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов


Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости - уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.


Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры

Все существующие природные вещества по степени электропроводности условно разделяют на три группы: проводники электрического тока, диэлектрические и полупроводниковые материалы.

Разделение материалов по электропроводности

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Проводник

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

Диэлектрик

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Важно! При повышении влажности диэлектрики могут лишиться непроводящих способностей.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Свойства материалов

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности. В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости.

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы.

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Свойства проводников

Основными характеристиками проводников электричества являются:

При движении электронов по проводящему веществу происходят их столкновения с ионами и атомами. Это приводит к возникновению сопротивления.

Если между двумя проводниками создать разность потенциалов, то через третий, их соединяющий, потечет электрический ток. Направление его движения будет от большего потенциала к меньшему. В этом случае носителями будут электроны, не связанные между собой, которые определяют значение электропроводимости вещества.

Электропроводность – возможность материала пропускать электрический ток. Этот показатель обратно пропорционален сопротивлению материала, измеряется в сименсах, См.

В зависимости от носителей заряда, электропроводность может быть:

  • электронной,
  • ионной,
  • дырочной.

Проводник с электронной проводимостью

Обратите внимание! Надежный проводник характеризуется малым сопротивлением потоку движущихся электронов и, соответственно, высокой электропроводностью. Наибольшая проводимость – свойство наилучшего проводника.

Выбор проводящих материалов должен осуществляться в соответствии с их свойствами:

  • Электрическими (удельное сопротивление и температурный коэффициент сопротивления);
  • Физическими (градус плавления, плотность);
  • Механическими (устойчивость к растяжению, изгибанию, возможность обработки на станках);
  • Химическими (взаимодействие с окружающей средой, возможность соединения при сварке, пайке).

Малым удельным сопротивлением обладают металлы без примесей. У сплавов этот показатель увеличивается. Сопротивление возрастает и с повышением температуры.

Важно! При охлаждении до критических значений сопротивление большинства токопроводящих веществ падает до нуля. Это свойство носит название сверхпроводимости.

При выборе проводников для электроустановок, линий питания, защитного заземления и других сфер применения важно учитывать все качества материалов.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Распределение переменного тока по сечению

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление.

Формула определения длины проводника

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Виды проводников

Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.

Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.

Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.

Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.

Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.

В электрическом поле низкой напряженности любой газ и пар не проводят ток. Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью. Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  1. Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  2. Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  3. Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  4. Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Полупроводники

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Обратите внимание! При достижении температурой нулевой отметки полупроводник ведет себя как изолятор.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

Зонная классификация

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Видео

Читайте также: