Катушка томпсона своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

В данном уроке подробно показана катушка Томпсона. На демонстрационной подставке стоит катушка, на которую одевается сплошное алюминиевое кольцо. Через катушку пропускается постоянный и переменный ток. В момент замыкания ключа при подаче постоянного напряжения кольцо подпрыгивает, а затем вновь опускается на катушку.

Затем те же манипуляции проводятся с переменным источником напряжения. При замыкании ключа кольцо высоко подпрыгивает, слетая с катушки. Затем на катушку одевается не сплошное кольцо, а с прорезью. При замыкании ключа оно остается без движения. В заключительной части опыта на катушку одевается легкое алюминиевое кольцо, а затем и медное кольцо. И если первое парит над катушкой, зависая над ней, то второе из-за своей тяжести не может этого сделать.

В процессе опыта объясняется природа такого поведения колец в момент взаимодействия с катушкой при подаче напряжения.

катушка тесла своими руками

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.
  3. Вторичный контур.

Составные части

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух — образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:

  1. Для питания потребуется 12 – 19 В постоянного напряжения. Подойдёт машинный аккумулятор, зарядное устройство от ноутбука или понижающий трансформатор с диодным мостом, для получения постоянного тока.
  2. Найдём детали для первичного контура:

— Переменный резистор R1 с номиналом 50 кОм. Для удачной сборки не забудьте соединить два контакта этого резистора согласно схеме.

— Резистор R2 с номиналом 75 Ом.

— Транзистор VT1 D13007 или советский аналог с n-p-n структурой.

— Радиатор для охлаждения транзистора можно поискать на мощных транзисторах в неисправной технике. Размер напрямую влияет на качество охлаждения.

Первичная обмотка трансформатора

— Первичная обмотка трансформатора Тесла. Проводником может быть простая медная трубка или провод диаметром 0,5–1 см. Обмотка делается плоской, цилиндрической или конической (рис. 2).

Вторичный контур

После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

простейшая схема

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Подключение транзистора

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

Мощная катушка Тесла

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

Схема трансформатора Тесла

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

Для тех, кому не терпится соорудить нечто необычное, что поразит окружающих, и сделать это своими руками – трансформатор Тесла будет идеальным вариантом. Процесс конструирования увлекает, а сочетание сразу нескольких физических эффектов в одном относительно простом устройстве приводит в восторг и любителей, и профессионалов.

Несмотря на простоту устройства, смастерить теслу не так уж просто. Принцип трансформатора основан на катушках: первичка с малым количеством витков, которая создает искровой контур, и вторичная обмотка, представляющая собою прямую катушку провода. Резонанс частот колебания обмоток вызывает высокое переменное напряжение между двумя концами катушки.

В статье расскажем подробнее, что из себя представляет этот прибор и как можно его собрать своими руками. В качестве бонуса в конце статьи добавлен интересный видеоматериал о трансформаторах Тесла и учебный материал “Способы определения параметров трансформатора Тесла” В. А. Колчановой.

Работа трансформатора тесла

Как правильно называть устройство

Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как:

  1. Трансформатор Тесла.
  2. Катушка Тесла.
  3. Тесла.

Также существуют сленговые названия трансформатора Тесла, некоторые из них:

Часто трансформатор называют его типом – СГТЦ, ССТЦ и так далее.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Имя Тесла не склоняется, то есть грамматически не верно говорить: “Трансформатор Теслы”, хотя, если вы так скажите, все вас поймут.

Принцип работы

Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

Катушка тесла

Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Аналогия с качелями

Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.

Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Естественно, раскачивать качели нужно не абы как, а в точном согласии с их собственными колебаниями. Количество колебаний качелей в секунду называется “резонансная частота”.

Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).

Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.

Основные виды катушек

Как выглядит тесла

Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ).

С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла.

Типы катушек принято называть из английских аббревиатур. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода. Самые распространенные типы катушек тесла рассмотрим ниже.

SGTC (СГТЦ, Spark Gap Tesla Coil)

Трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.

VTTC (ВТТЦ, Vacuum Tube Tesla Coil

Трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.

SSTC (ССТЦ, Solid State Tesla Coil)

Трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой, может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).

Solid State Tesla Coil катушка

DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil)

Трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше, чем у SGTC, а управляемость немногим хуже, чем у SSTC.

Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.

Основные детали катушки

Несмотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажем о основных деталях теслы сверху вниз.

Основные детали трансформатора тесла

Тороид

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий. Выполняет три функции:

  1. Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
  2. Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
  3. Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Вторичка

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на тесле, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Также в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи. Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

Заземление

Очень важная деталь теслы. Очень часто задают вопрос – куда же бьют стримеры? Отвечаем на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно.

Теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Внимание! Изготовление тесел с противовесами представляет намного большую опасность, чем тесел с простым заземлением, потому как вся конструкция находится под высоким относительно земли потенциалом. А относительно большая емкость между противовесом и окружающими предметами способна негативно на них повлиять.

Область применения

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В таблице ниже представлены эффекты, возникающие во время работы трансформатора тесла.

Эффекты от трансформатора Тесла

В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Схема для самостоятельной сборки

В данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить. Начнем с МОТов.

Такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению.

Схема самодельной сборки теслы

Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

Моты на самодельную теслу

Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты.

Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Внимание! Дилетантов просим отказаться от этой работы! Опасно, высокое напряжение, смертельно для жизни! Напряжение хотя и мало по сравнению со строчником, но сила тока, в сто раз большая, чем безопасный предел 10мА сведет шансы остаться в живых практически к нулю.

КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!).

Фильтр для самодельной теслы

Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты.

В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Искровик, который нужен для коммутации питания и возбуждения колебаний в контуре.

Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание!

искровик для самодельного трансформатора

Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дроселей — когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью.

Наконец-то очередь дошла и до самого трансформатора Теслы: первичная обмотка состоит из 7-9 витков провода очень большого сечения.

Впрочем, подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться.

Катушка тесла

На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) .

Тор можно изготовить из вентиляционной гофры. На этом все. Помните о безопасности и желаем удачи в самостоятельной сборке.

Заключение

В данной статье были рассмотрены основные факты о трансформаторе тесла и способ собрать устройство самостоятельно. Больше информации об этих трансформаторах можно узнать в учебном материале “Способы определения параметров трансформатора Тесла” В. А. Колчановой.

Имея патологическую тягу к сантехнической фурнитуре никак не могу приучить себя использовать ее по прямому назначению. Всегда в голову лезут идеи, что сделать из труб, фитингов и переходников так, чтобы уже никогда не использовать их в сантехнике. Так получилось и в этот раз. Делаем высоковольтный генератор Тесла на сантехнической фурнитуре.

Почему такой выбор? Все очень просто. Я сторонник элегантных и хорошо повторяемых технических решений. Минимум слесарки, доводки, допилки, доклепки. Жизнь должна радовать легкостью решений и изяществом форм.

Что понадобится?


В магазине оказалось все в наличии и покупка заняла буквально несколько минут.

Набор фурнитуры для проекта

На снимке все, что необходимо. Привожу оригинальные названия c магазинных этикеток
1. Труба 40x0.25м
2. Переходник кольцо на трубу 40мм
3. Лак высоковольтный (был в арсенале)
4. Муфта переходная на гладкий конец чугунной трубы на 50мм
5. Резиновая манжета на 50мм
6. Медный провод 0,14мм ПЭВ-2 (из старинных запасов)

Стоимость всей фурнитуры около 200 рублей. При покупке лучше выбрать магазин побольше, чтобы не объяснять охранникам и менеджерам зачем вы соединяете несоединяемые элементы с друг другом и как вам помочь найти то, что вам нужно. Также нам понадобится еще несколько недорогих деталей, о которых немного позднее. Но для начала немного отвлечемся…

Катушки Тесла и все такое


О Тесла сказано много и разного, но люди в большинстве своем (в том числе и я) единодушны в своем мнении — Тесла сделал не мало для развития науки и техники для своего времени. Многие его патенты воплотились в жизнь, часть же до сих пор остается за гранью понимания сути. Но основными заслугами Тесла можно считать исследования природы электричества. Особенно высоковольтного. Тесла поражал своих знакомых и коллег удивительными экспериментами в которых он без труда и опаски управлял высоковольтными генераторами, которые вырабатывали сотни тысяч, а иногда и миллионы вольт. В этой статье я описываю изготовление миниатюрного генератора Тесла, теория которого достаточно хорошо и подробно изучена. А теперь к делу!

Что мы должны получить?

В конце концов мы должны собрать наше устройство так, как показано на фото:

image

Шаг 1. Намотка высоковольтной катушки


Намотку основной высоковольтной катушки проводим на трубку проводом 0.1-0.15 мм. У меня в запасе был провод 0.14 мм. Это, пожалуй, самое занудное занятие. Намотку необходимо делать максимально аккуратно, виток к витку. Можно использовать оснастку, но я намотал катушки вручную. Кстати, я всегда что-то делаю минимум в двух экземплярах. Почему? Во-первых навык. Второе изделие получается просто конфеткой, да и всегда найдется человек, который начнет клянчить устройство (подари, продай, дай попользоваться и т.п.). Отдаю первое, второе остается в коллекции, глаз радуется, дружба крепнет, гармония в мире возрастает.

image

Шаг 2. Изоляция высоковольтной катушки


Следующий важный шаг — изоляция высоковольтной катушки. Не буду говорить, что катушку надо 20 раз пропитать воском, оборачивать лакотканью или применять вываривание в масле. Все это колчаковские подходы. Мы люди современные, поэтому используем высоковольтный лак (см. первое фото. марку лака не указываю, можно погуглить) и широкую термоусадку. Лаком покрываем в два — три слоя. Сушим слой минимум 20-30 минут. Лак наносится прекрасно. Результат великолепный! Катушка становиться просто вечной! Стоимость лака не велика. Триста рублей баллон. Думаю, хватит на десяток подобных устройств. НО.

image

По хорошему нанесение лака необходимо проводить под вытяжкой, но (после спасения себя и кота) я делал это на улице. Благо погода располагала, не было ветра и пыли, а дождь не лил. Затем необходимо надеть широкую термоусадку и усадить катушку термофеном. Делать это необходимо аккуратно, с середины к краям. Должно получиться плотно и ровно.

Шаг 3. Изготовление индуктора и сбор всей конструкции


Пожалуй, самая ответственная часть генератора. Я анализировал многие конструкции подобных устройств и многие авторы делают одну и ту же ошибку. Во-первых, используется достаточно тонкий провод, во вторых, нет равномерного и существенного (не менее 1 см) зазора с высоковольтной катушкой и используется много витков. Это совершенно не нужно. Достаточно 2..4-х витков в первой трети высоковольтной катушки. Для индуктора используем полую медную отожженную трубку диаметром 8 мм, что обеспечивает минимальную индуктивность и просто великолепные характеристики генератора при эксплуатации. Три витка наматываем на резиновую манжету в пазы. Чтобы трубку не заламывало — наполните ее плотно мелким песком. После аккуратно высыпьте песок. После сбора всей конструкции все должно выглядеть как на фото:

image

Медная трубка, пожалуй, самая дорогая позиция в этой самоделке. Аж целых 150 рублей. Куплена также в хозмаге.

Некоторые тонкости.


Тонкости связаны с конструкцией контактов индуктора. Они выполнены из отожженной медной полосы и закрыты термоусадкой. Это обеспечивает минимальную индуктивность конструкции, что является очень важным. Контакты спрятаны внутри муфты. Все соединения должны быть как можно короче и выполнены широкими медными лентами, что снижает различные потери. На верх устройства одеваем переходник-кольцо, которое прижимает медный круглый контакт, на который припаян верхний вывод высоковольтной катушки. Конструкция вверху подлита жидкой резиной. В центре выведен мини-разъем.

image

Шаг 4. Подключение и испытание генератора


Существует примерно 2 миллиона способов запитать подобное устройство. Остановимся на самом простом — с помощью схемы, изображенной на данном рисунке:


Понадобится пара резисторов, конденсатор, транзистор не забудьте поставить на радиатор. Номиналы указаны. Ресурс схемы, думаю, не большой, но учитывая дешевизну транзисторов и срочность желания увидеть результат это уже не в счет.

image

Видео работы устройства можно посмотреть здесь.

Губит людей не пиво.

Помните об этом!

PS — По просьбам некоторых читателей добавляю видео с некоторыми подробностями конструкции катушки. Видео доступно по ссылке.

Читайте также: