Как сделать эллипс

Добавил пользователь Alex
Обновлено: 18.09.2024

Пусть даны две взаимноперпендикулярные прямые (оси будущего эллипса) и два отрезка длиной a (большая полуось) и b (малая полуось). Точку пересечения прямых обозначим как O, это центр эллипса.

Содержание

  1. Раствором циркуля, равным a, с центром в точке O отметим на одной из прямых точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
  2. Раствором циркуля, равным a, с центром в точке Q1 (или Q2) отметим на отрезке P1Р2 точки F1 и F2. Полученные точки являются фокусами эллипса.
  3. На отрезке P1Р2 выберем произвольную точку T. Затем с помощью циркуля начертим две окружности: первую — радиуса, равным длине отрезка TP1, с центром в точке F1 и вторую радуса, равным длине отрезка TP2, с центром в точке F2. Точки пересечения этих окружностей принадлежат искомому эллипсу, так как сумма расстояний из обоих фокусов равна длине большой оси 2a.
  4. Повторяя необходимое число раз шаги предыдущего пункта, получим искомый эллипс.
  1. Раствором циркуля, равным a, с центром в точке O отметим на одной из прямой точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
  2. С помощью линейки проводим через точку O произвольную наклонную линию. Затем раствором циркуля, равным а, с центром в точке O отмечаем на ней точку S, а раствором, равным b — точку R.
  3. Затем из точки S опускаем перпендикуляр на прямую P1Р2. Для этого произвольным раствором циркуля (но бо́льшим, чем расстояние от точки до прямой), с центром в точке S отмечаем на отрезке P1Р2 две точки, переносим в них циркуль и отмечаем тем же радиусом точку персечения окружностей S'. Затем с помощью линейки соединяем точки S и S', это и есть искомый перпендикуляр.
  4. Аналогичным способом опускаем перпендикуляр из точки R на прямую Q1Q2.
  5. Точка пересечения построенных перпендикуляров принадлежит эллипсу.
  6. Повторяя необходимое число раз шаги четырёх предыдущих пунктов, получим искомый эллипс.

В 2-х чёрных фокусах — 2 иголки, соединённые нитью. В красной точке — карандаш, который натягивает нить

  • AA1 = 2a — это большая ось эллипса,
  • BB1 = 2b — это малая ось эллипса,
  • Точки F и F1 — фокусы эллипса. Фокусы лежат на прямой AA1 на расстоянии a от точки B. Расстояние между фокусами FF1 равно 2 a 2 − b 2 -b^>>>

Этот способ основан на определении (фокальном свойстве) эллипса: эллипс — геометрическое место точек, сумма расстояний от каждой из которых до фокусов постоянна и равна 2a.

Для этого способа лист бумаги нужно приколоть к чертёжной доске.

1. В точки фокусов эллипса F и F1 втыкаются две иголки (иглы́, булавки, кнопки, тонких гво́здика…)

2. К этим двум иголкам привязываются (у са́мой поверхности бумаги) концы нити длиной 2a — нужно, чтобы между иголками F и F1 было 2a длины нити. Это удобно осуществить так:

  1. Берётся нитка длиной в несколько раз больше 2a.
  2. Один из концов нити привязывается к иголке F.
  3. В точку B втыкается третья иголка.
  4. Нить кладётся на лист дальше иголки B от прямой FF1, один раз (один виток) оборачивается вокруг иголки F1 (так что может скользить по ней), затем, держа нить левой рукой за свободный конец, её натягивают вдоль ломанной FBF1.
  5. Свободный конец нити зажимается в кулаке левой руки, и кулак прижимают к листу бумаги в стороне от будущего эллипса — так, чтобы кулак (и нить) не перемещались ни в направлении к точке F1 ни в направлении прочь от неё. Кулак держать так (зафиксированным) до тех пор, пока эллипс не будет построен. Вместо удерживания конца нити рукой, можно привязать конец нити к четвёртой иголке или кнопке, и, натянув нить, воткнуть эту иголку/кнопку в стороне от будущего эллипса.
  6. Выдёргиваем (удаляем) иголку B (нить при этом утрачивает натяжение).
  • Примечание: Вместо точки B третью иголку можно было воткнуть в точку A.

3. Грифелем карандаша оттягиваем участок нити между иголками F и F1 в сторону от прямой AA1, натягивая нить.

4. Оттягивающий нить грифель карандаша прижимаем к бумаге и, скользя грифелем по натянутой нити от точки A до точки A1, рисуем половину эллипса, лежащую по одну сторону от прямой AA1.

5. Располагаем грифель карандаша по другую сторону от нити, оттягиваем нить в другую сторону от прямой AA1 и, так же как первую, рисуем вторую половину эллипса.

Чтобы нить не спадала вниз с грифеля карандаша, на лист бумаги под нить можно подложить шайбу от резьбового соединения (шайбу подходящей толщины) и оттягивающим нить грифелем касаться бумаги внутри отверстия шайбы — чтобы во время рисования эллипса натянутая нить лежала на шайбе (грифель будет перемещать шайбу по бумаге и вдоль нити).

Можно не привязывать нить ни к одной из иголок и нарисовать эллипс одним движением карандаша, а не двумя:

  1. Так же втыкаем три иголки — в точки F, F1 и B.
  2. Треугольник FF1B окружаем и обтягиваем нитью, и связываем концы натянутой нити — получается кольцо из нити. Длина кольца равна периметру треугольника FF1B.
  3. Выдёргиваем (удаляем) иголку B (кольцо из нити при этом утрачивает натяжение).
  4. Поместив грифель карандаша внутри кольца из нити, оттягиваем грифелем нить в сторону от прямой FF1, натягивая нить. Затем, удерживая нить натянутой, прижимаем грифель к бумаге и, скользя грифелем по натянутой нити вокруг отрезка FF1, рисуем эллипс не двумя движениями руки с карандашом, а одним (круговым).
  • Примечание: Опять-таки, вместо точки B третью иголку можно было воткнуть в точку A.

Эллипсограф состоит из двух ползунов, которые могут двигаться по двум перпендикулярным канавкам или направляющим. Ползуны прикреплены к стержню посредством шарниров, и находятся на фиксированном расстоянии друг от друга вдоль стержня. Ползуны движутся вперёд и назад — каждый по своей канавке, — и конец стержня описывает эллипс на плоскости.

Полуоси эллипса a и b представляют собой расстояния от конца стержня до шарниров на ползунах. Обычно расстояния a и b можно варьировать, и тем самым менять форму и размеры вычерчиваемого эллипса.

В этом уроке мы разберемся, как изображать объекты, в основе которых лежат окружности: чайник, вазу, бокал, кувшин, колонну, маяк. Сложность их изображения в пространстве заключается в том, что принцип равноудаленности точек окружности от центра срабатывает, только когда мы смотрим на плоскость прямо (то есть направление взгляда перпендикулярно ей). Например, мы видим круглый циферблат часов перед собой или чашку и блюдце, когда наклонились над ними. В других случаях (взгляд падает на плоскость под углом) мы видим искажение формы окружности, ее превращение в овал (эллипс).

Содержание:

Примеры эллипсов и окружности в перспективе

Ненадолго вернемся к коробкам из прошлого урока. Только теперь рассмотрим кубическую форму. Обратите внимание, как квадраты плоскостей, уходящих вдаль, сплющиваются. Верхние и нижние грани превращаются в трапеции. И тем сильнее они сужаются по вертикальной оси, чем ближе находятся к уровню глаз (к линии горизонта).

Линейная перспектива

То же самое происходит и с окружностями. Чем дальше от линии горизонта они находятся, тем больше они открываются (обратите внимание на верхние и нижние плоскости этих спилов). А на уровне глаз окружность сужается до линии. Мы видим лишь переднюю грань предмета.

Окружность в перспективе

Принципы рисования эллипсов:

Принцип 1. У эллипса есть две оси симметрии: большая и малая. Они перпендикулярны. Здесь будем работать с наиболее частым случаем – когда предмет расположен прямо, то есть вертикальная ось (малая) находится под углом в 90°, а горизонтальная (большая) – под углом в 180°.

Принципы рисования эллипсов

Принцип 2. У эллипса 4 вершины (они лежат на пересечении с осями). Эти точки в наибольшей степени удалены от центра. Форма эллипса выглядит искаженной, если соседние с вершинами точки смещены на тот же уровень (на эллипсе справа показано красным цветом).

У эллипса 4 вершины

Принцип 3. Другая крайность – это заострение боков эллипсов. Они должны быть скругленными. В бока можно вписать окружности. И чем больше раскрыт эллипс, тем больше диаметр этой окружности относительно высоты эллипса (на примере ниже это сравнение показано бледно-голубым цветом).

Заострение боков эллипсов

Принцип 4. Центр эллипса смещен вдаль (вверх) относительно геометрического центра из-за перспективного искажения. То есть ближняя половина эллипса больше дальней. Однако обратите внимание, что это смещение очень незначительно. Разберем, почему. Начнем с квадратов, поскольку круг вписывается в эту форму. Ниже показаны кубы, справа их верхние квадратные грани в перспективе. Проведены оси красным. Сравните, насколько их ближние половины больше дальних. Разница очень небольшая. То же самое будет и для эллипсов, вписанных в них. Ошибочно преувеличивать в рисунках эту разницу между ближней и дальней половинками эллипсов.

Центр эллипса смещен вдаль

Рисуем эллипсы

Шаг 1. Для начала проведем две перпендикулярных оси.

Рисуем эллипсы 2 оси

Шаг 2. Отметим границы произвольного эллипса симметрично по горизонтальной оси. А для вертикальной верхнюю половину (дальнюю) сделаем чуть-чуть меньше нижней.

Границы произвольного эллипса

Шаг 3. Нарисуем по этим отметкам прямоугольник, в который будем вписывать эллипс.

Вписываем эллипс в прямоугольник

Шаг 4. Наметим легкие дуги в местах пересечения осей и прямоугольника.

Пересечения осей

Шаг 5. Соединим легкими линиями эти дуги, стараясь изобразить эллипс более симметрично.

Соединяем дуги эллипса

Шаг 6. По обозначенному пути проведем более четкую линию. Смягчим ластиком лишнее.

Смягчим ластиком лишнее в эллипсе

Более правильно было бы при рисовании эллипса вписывать его в квадратную плоскость в перспективе, то есть в трапецию. Однако, во-первых, сложно точно построить такую трапецию, зная лишь вершины эллипса. А во-вторых, овал, вписанный в квадрат в перспективе, мало отличается от вписанного в прямоугольник по тем же самым вершинам.

Рисуем кружку

Рисуем кружку исходное изображение

Шаг 1. Начинаем с общих пропорций предмета. Измеряем, сколько раз ширина кружки (ее верха) умещается в высоте. Можно пока не учитывать ручку, однако надо оставить для нее достаточно места на листе. Намечаем общие габариты. Находим середину предмета по ширине и проводим через нее вертикальную ось. Чтобы нарисовать ее ровно, удобно сделать 2-3 вспомогательные отметки по высоте предмета на том же расстоянии от ближнего края листа, что и первая отметка середины предмета.

Рисуем пропорции кружки

Шаг 2. Найдем высоту верхнего эллипса. Для этого измерим, сколько раз она умещается в его ширине (которую мы нашли ранее). Отметим нижнюю границу эллипса от верхнего края кружки. Легкими линиями нарисуем прямоугольник по намеченным крайним точкам.

Найдем высоту верхнего эллипса

Шаг 3. Проведем горизонтальную ось и впишем эллипс в прямоугольник. Затем найдем ширину нижней части кружки, сравнив ее с шириной верха. Высоту нижнего эллипса мы найдем, измерив расстояние по вертикали от самой нижней отметки кружки до нижней отметки ее бока (до точки, через которую пройдет горизонтальная ось этого эллипса). Найденное расстояние – это половина искомой высоты. Удвоим его и отложим от самой нижней точки кружки. Здесь важно не запутаться: в данном случае ось надо провести через нижнюю точку бока кружки, а не через низ самой кружки. Иначе пропорции нарушатся. Зная высоту нижнего эллипса, проверим, соблюдается ли принцип их постепенного раскрытия по мере удаления от уровня глаз. Верхний эллипс расположен ближе к уровню наших глаз, чем нижний, поэтому должен быть уже. Найдем, сколько раз высота нижнего овала помещается в его ширине – около четырех раз. Для верхнего овала было соотношение примерно 5 к 1. Таким образом нижний овал шире, то есть раскрыт в большей степени. Принцип соблюдается.

Изображаем 2 эллипса у кружки

Шаг 4. Рисуем стенки кружки, соединяя боковые вершины верхнего и нижнего эллипсов. Для большей объемности покажем толщину стенки. Нарисуем второй овал внутри верхнего. При этом учитываем, что из-за перспективного искажения толщина стенок выглядит не одинаковой. Передняя и дальняя стенки визуально сужаются сильнее боковых примерно в два раза. Отметим вершины внутреннего овала на некотором расстоянии от вершин первого овала. Делаем этот отступ чуть больше для боковых вершин. Ставим отметки симметрично относительно вертикальной и горизонтальной осей. Нарисуем новый эллипс через эти вершины.

Рисуем стенки кружки

Шаг 5. Найдем расположение ручки и ее общие пропорции, а затем схематично наметим основные отрезки, формирующие ее контур. Их наклоны определяем методом визирования (а где-то - на глаз).

Найдем расположение ручки и ее общие пропорции

Шаг 6. Уточним контур ручки, сделаем его более плавным. По необходимости подправим очертания кружки. Смягчим немного ластиком линии построения. Выделим более сильным нажимом на карандаш контуры, расположенные ближе к нам. Кружка готова!

Уточним контур ручки кружки

Рисуем вазу

В этом упражнении поработаем с воображением. Придумаем свою вазу и потренируемся рисовать эллипсы.

В прошлом задании для построения кружки было достаточно нарисовать два эллипса. Две ключевые окружности (верхняя и нижняя) определяли ее форму. Диаметр кружки равномерно уменьшался от верха к низу. А, например, форма вазы из рисунка ниже зависит от четырех окружностей (причем верхняя находится на уровне глаз, поэтому превратилась в линию).

Рисуем вазу

Перейдем к рисованию. И помним важный принцип: чем дальше эллипс от уровня глаз, тем более он раскрыт.

Шаг 1. Проведем вертикальную ось. От нее симметрично отложим горизонтальные оси будущих эллипсов. Длину вертикальной и горизонтальных осей, а также количество эллипсов и расстояние между ними выбирайте сами.

Шаг 2. Обозначим боковые вершины эллипсов симметрично относительно вертикальной оси. Теперь перейдем к обозначению верхних и нижних вершин. И здесь пользуемся принципом постепенного раскрытия эллипсов по мере удаления от линии горизонта. Например, здесь мы рисовали вазу, расположенную в целом ниже уровня глаз. Для первого эллипса взяли высоту, примерно в пять раз меньше ширины. Измеряли это карандашом. Для последующих эллипсов постепенно увеличивали степень раскрытия. Так высота среднего эллипса укладывается в ширине примерно четыре раза, а для самого нижнего – примерно три раза. Чем ближе друг к другу эллипсы, тем ближе они по степени раскрытия. Чем дальше – тем больше разница. Намечая вершины, нижнюю половинку (ближнюю) делаем чуть-чуть больше верхней (дальней).

Проведем вертикальную ось, обозначаем вершины

Шаг 3. Через вершины легкими линиями рисуем прямоугольники. А затем вписываем в них эллипсы.

Вписываем эллипсы в прямоугольники нашей вазы

Шаг 4. Теперь самое интересное: надо соединить боковые вершины эллипсов линиями. Вам решать, какими они будут, прямыми или округлыми, вогнутыми или выпуклыми. Можно сделать пару вариантов. Постарайтесь наиболее симметрично повторить форму внешнего контура для двух половинок вазы. Чтобы проверить симметрию, пробуйте перевернуть работу вверх ногами. Взглянув на предмет по-новому, проще увидеть расхождения.

Соединяем боковые вершины эллипсов линиями

Шаг 5. Так же, как мы делали для кружки, здесь можно показать толщину стенки. Нарисуем внутри верхнего эллипса еще один поменьше, предварительно наметив его вершины. Смягчим ластиком оси и дальние половинки эллипсов. Можно чуть высветлить те эллипсы, в которых изменение формы вазы более плавное. Рисунок готов!

Рисунок вазы готов

Проверьте свои знания

Поместим на стол круглую банку из-под кофе и чертежный тубус.


Верх и дно этих цилиндров представляют собой круги.

Закройте один глаз. Держите эту картинку (картинка на бумаге) правым краем к себе и смотрите на эллипс в направлении, указанном стрелкой. В таком положении эллипс выглядит кругом, а круг кажется эллипсом.


Так мы обнаруживаем, что, когда мы смотрим на круг сбоку, он выглядит как эллипс.


На иллюстрации вверху показан круг, вписанный в квадрат, и тот же самый круг, вписанный в квадрат, но изображенный в перспективе.

Круг, нарисованный с применением перспективы, превращается в эллипс.

Торцы цилиндра, нарисованного в перспективе, принимают овальную форму.

Рисуем эллипс от руки.

Нарисуйте прямоугольник, длина и ширина которого соответствуют нужным вам длине и ширине эллипса. Эллипс будет касаться контуров прямоугольника в центральной точке каждой из сторон.


Попрактикуйтесь рисовать эллипс от руки, используя прямоугольник как основу. Удивительно, как при некоторой практике нарисованный от руки эллипс будет совпадать с тем же самым эллипсом, вычерченным с применением вспомогательных инструментов.

Элементы черчения для начинающих — построение эллипса техническими способами.

Первый способ начертить эллипс.

Давайте начертим эллипс, вписанный в прямоугольник А.

Сначала при помощи циркуля найдите, где круг (показанный на рисунке А) пересекает длинную среднюю линию. Эти пересечения обозначены точками (1) и (2).


Воткните в эти точки булавки, а третью булавку (3) — в конце средней линии.

Крепко обвяжите эти булавки прочной льняной ниткой, как показано на рисунке В.

Удалите булавку (3) и очертите карандашом эллипс, как показано на рисунке С. Нитка должна быть постоянно равномерно натянута.

Второй способ построения.

Вот еще один способ как начертить эллипс, вписанный в прямоугольник А.


Начертите два круга с центром в точке О. Диаметр одного круга должен быть равен ширине прямоугольника, а диаметр другого — длине прямоугольника, как показано на рисунке D.

Теперь проведите линии наподобие спиц колеса, как показано на рисунке Е.

Через точки пересечения спиц с малым кругом проведите линии, параллельные длинным сторонам. Через точки пересечения спиц с большим кругом проведите линии, параллельные коротким сторонам.


Эллипс проходит через точки пересечения линий, параллельных коротким сторонам и параллельных длинным сторонам, как показано на рисунке F.

Третий способ построения эллипса.

Приводим еще один способ начертить эллипс определенной величины.

Возьмите полоску бумаги и отметьте на ней половину длины данного в качестве основы прямоугольника. Обозначьте точку буквой L, как показано на рисунке G.


Далее положите полоску вдоль линии ширины и буквой W обозначьте точку, отмечающую половину этой ширины, как показано на рисунке Н.

Теперь поместите бумажную полоску так, чтобы точка L касалась линии ширины, а точка W касалась линии длины, как показано на рисунке I.

Кончик полоски (обозначенный буквой Е) показывает, где проходит контур эллипса.

Продолжайте двигать полоску по кругу, пока не отметите столько точек, сколько вам нужно.

Этот метод подходит для вычерчивания эллипсов любой величины. При черчении после обозначения точек можно вычертить контур эллипса по лекалу.

Длинные и короткие оси эллипса.

Самая длинная линия, пересекающая эллипс, называется длинной осью.

Самая короткая линия, пересекающая эллипс, называется короткой осью.


В месте своего пересечения длинная и короткая оси образуют прямые углы. Будем считать, что длинная ось образует поперечную перекладину буквы T, а короткая ось — ножку буквы T.

Это соотношение между осями и буквой T остается истинным вне зависимости от размера, конфигурации или положения эллипса.


Построение цилиндра в перспективе, вид сбоку.

Положим один кирпич поверх другого. Предположим, что их торцы образуют квадрат. Нарисуем на торцах диагонали и тем самым найдем центр. Это центр круга, который касается всех четырех сторон квадрата.


Рис. 13.11. Построение цилиндра в черчении без перспективы .

Этот круг можно расценивать как торец цилиндра, который проходит через всю толщу кирпича. На противоположном торце нарисуем еще один круг.

Линия, проведенная между центрами двух окружностей, — это центральная/осевая линия цилиндра или в нашем случае - ось двух колес. Эта ось — продолжение коротких осей двух эллипсов и ножка двух букв Т.

Длинная ось образует перекладину буквы Т.

Мы начали с предположения, что торцы двух кирпичей, положенных один на другой, образуют квадрат.

Теперь попробуем рисовать цилиндр в перспективе.

Нарисуем кирпичи с применением законов перспективы. Круг, вписанный в квадрат, становится эллипсом, касающимся сторон квадрата (нарисованного в перспективе) в центре каждой из сторон.



Рис. 13.12. Построение цилиндра в перспективе.

Линия, проведенная через центр круга до точки схода, должна быть центральной линией цилиндра или осью для двух колес.

Линия, проведенная через этот же центр и пересекающая эту ось под прямым углом, будет самой длинной линией или большой осью эллипса.

Большая ось всегда образует прямой угол с центральной осью цилиндра.

Нет никакой разницы, в каком направлении лежит цилиндр и лежит ли он на боку или стоит на торце, большая ось эллипса всегда будет образовывать букву Т с центральной/осевой линией цилиндра. Малая ось эллипса лежит вдоль этой центральной/осевой линии цилиндра. Малая ось эллипса становится центральной линией цилиндра, т.е. они должны совпадать.



Рис. 13.13 . Правильное положение осей эллипса цилиндра в пространстве.

Нарисуйте/начертите цилиндр с соблюдением правил перспективы. Затем поверните бумагу так, чтобы цилиндр оказался в вертикальном положении.



Рис. 13.14 . Цилиндр в перспективе в вертикальном положении.

Первое изображение цилиндра является правильным, второе - неправильное.

Рисуем конус, лежащий на боку.


Конус можно сделать из цилиндра, как показано на рисунке.


Теперь мы будем рисовать конус, лежащий на боку.

Сначала рисуем цилиндр, лежащий на боку вдоль черной линии, как показано на рисунке.


Затем из цилиндра, лежащего в этом положении, делаем конус.

Мы хотим разместить конус так, чтобы он лежал на плоской поверхности. Чтобы сделать это, мы наклонно приподнимаем поверхность так, чтобы она оказалась прижата к конусу. Верхушка конуса теперь лежит на черной линии.

Теперь давайте расположим всю композицию так, чтобы поверхность снова была горизонтальной, а конус оставался лежать на ней.


Таким образом, конус можно считать цилиндром, один торец которого на половину своего диаметра вдавлен в поверхность, на которой он лежит. Затем из этого цилиндра делается конус.

Основные выводы тринадцатого урока.

Круг, нарисованный в перспективе, выглядит как эллипс.

Цилиндр, нарисованный в перспективе, можно рассматривать как два колеса, ось которых образована центральной линией.

Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.

Определение и элементы эллипса

Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.

Характеристики эллипса


По форме график эллипса представляет замкнутую овальную кривую:

Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.

Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.

Точки эллипса, являющиеся концами осей, называются вершинами.

Расстояния от точки на линии до фокусов получили название фокальных радиусов.

Расстояние между фокусами есть фокальное расстояние.

Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.

Основные свойства эллипса

имеются две оси и один центр симметрии;

при равенстве полуосей линия превращается в окружность;

все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.

Уравнение эллипса

Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.

Эллипс

Для составления уравнения достаточно воспользоваться определением, введя обозначение:

а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);

c – половина фокального расстояния;

M(x;y) – произвольная точка линии.

В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)

100

101

После ввода ещё одного обозначения

получается наиболее простой вид уравнения:

a 2 b 2 - a 2 y 2 - x 2 b 2 = 0,

a 2 b 2 = a 2 y 2 + x 2 b 2 ,

Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).

В случае (b b) формула эксцентриситета (ε) принимает вид:

Чем меньше эксцентриситет, тем более сжатым будет эллипс.


Площадь эллипса

Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:

Площадь эллипса

a – большая полуось, b – малая.

Площадь сегмента эллипса

Часть эллипса, отсекаемая прямой, называется его сегментом.

108

Длина дуги эллипса

Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:

109

Радиус круга, вписанного в эллипс

В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:

Радиус круга, описанного вокруг эллипса

Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:

Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.


Как построить эллипс

Построение линии удобно выполнять в декартовых координатах в каноническом виде.

Построение эллипса

110

Строится прямоугольник. Для этого проводятся прямые:

111

Сглаживая углы, проводится линия по сторонам прямоугольника.

Полученная фигура есть эллипс. По координатам отмечается каждый фокус.

При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.


Читайте также: