Как сделать электричество на необитаемом острове

Добавил пользователь Morpheus
Обновлено: 19.09.2024

Электричество есть везде, взять его, вот наша задача. Наука до конца не определилась с этим понятием, однако это не мешает учёным и практикам извлекать энергию из различных компонентов среды и трансформировать её в другие виды энергий, получая блага в виде тепла и света. Ниже я расскажу о способах получить электричество из земли своими руками.

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Фото: Unsplash

С каждым годом нам нужно больше электроэнергии. Ученым приходится изобретать нетрадиционные способы ее получения — недорогие и безопасные для атмосферы. Рассказываем о необычных разработках в области электроэнергетики

Энергия из морских волн

В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.

Установка Blue X

Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.

Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.

Энергия из ДНК

Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели синтезировать супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.

Структура супрамолекулы

Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.

Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.

Респираторы с солнечными батареями

Берлинский изобретатель Хайнц Кнупске превратил респиратор в устройство, генерирующее электроэнергию. По сути, это привычная для нас маска, на поверхности которой закреплена маленькая солнечная батарея.

Схематично респиратор с солнечной батареей выглядит так

Солнечные паруса

В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.

LightSail 2 во время развертывания

Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.

Фото:Pixabay

В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.

Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы

Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы (Фото: UMass Amherst / Yao and Lovley labs)

С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.

Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.

Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Так выглядит древесина после растворения лигнина

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Жидкое топливо из солнечной энергии

Сейчас электричество получают с помощью сжигания органического топлива, например угля и природного газа. У этого способа есть две проблемы: органическое топливо вредит экологии и когда-нибудь закончится. Это заставляет ученых искать замену органике.

С 2001 года китайские ученые пытались преобразовать солнечную энергию в жидкое топливо. Спустя 20 лет у них это получилось.

Исследователям удалось получить жидкий продукт с минимумом примесей — содержание метанола в нем достигает 99,5%. Для этого потребовалось три шага:

  • превратить свет, полученный с помощью солнечных батарей, в энергию;
  • с помощью этого электричества разложить воду на водород и кислород;
  • соединить водород и оксид углерода и получить метанол.

Чтобы получить нужное количество солнечного света, исследователи используют целые фермы солнечных батарей

Чтобы получить нужное количество солнечного света, исследователи используют целые фермы солнечных батарей

Как это применять: в отличие от нефти и угля, это топливо сгорает чисто. Если у Китая получится сделать производство жидкого метанола массовым, углекислого газа в атмосфере станет намного меньше — на долю Китая приходится около 29% мировых выбросов.

Что делать если на вашем участке нет электричества или возникают частые перебои? Ответ один – получить его из природных источников!

Сила водяного потока для выработки электроэнергии верой и правдой служит человечеству вот уже более 100 лет. Но что первое может придти на ум пользователям FORUMHOUSE когда речь заходит о гидроэнергетике? Обычно, воображение рисует циклопическое сооружение в виде гидроэлектростанции перегородившей реку.

А теперь представьте себе небольшую водяную турбину, изготовленную из современных композитных материалов, которую силами двух человек можно установить в водяной поток и мощности которой хватит на то чтобы запитать холодильник, телевизор и ноутбук. Звучит как фантастика, не правда ли? Но японские инженеры из компании Ibasei так не считают, анонсировав в прошлом году свою самую последнюю разработку - миниатюрную гидротурбину под названием Cappa.


Турбина не требует проведения земляных работ и может быть установлена в водяной поток на специальных креплениях. А при скорости потока в 2,0 м/сек, эта система может вырабатывать 250 Вт мощности.

По заявлениям представителей компании - в основе турбины используется диффузор особой формы, благодаря чему даже небольшой поток воды ускоряется, и вращает лопасти турбины, вырабатывая электрический ток.

Выработанная энергия преобразуется в электричество с помощью генератора. Затем, с помощью контроллера, постоянный ток преобразовывается в переменный, частотой в 50/60 Гц, который может быть использован в домашних условиях.

В этом разделе нашего форума вы сможете узнать все особенности использования инверторов.


Как надеются инженеры компании, при цене около 10000$ эта турбина станет незаменимой помощницей для частных домов. При необходимости, можно установить несколько таких турбин последовательно друг за другом, что существенно увеличит выработку электрического тока. Главное только, чтобы рядом с вашим домом протекала река.

Ловец ветра


Но что делать, если реки нет? Обратиться за помощью к ловцу ветра или, как его чаще всего называют ветрогенератору, но не к простому.

Все мы привыкли, что ветрогенератор вырабатывает электричество при помощи вращения лопастей. И, несмотря на то, что энергия ветра распространена практически повсеместно, её, зачастую не хватает для выработки электричества необходимой мощности.

Причина проста - эффективность лопастной установки практически достигла потолка. Но современные технологии не стоят на месте, и одной из новейших разработок компании из жаркого Туниса, Saphon Energy, стал ветрогенератор Saphonian. Отказавшись от лопастей, инженеры разработали ветрогенератор больше напоминающий спутниковую тарелку. Так в чём же заключается принцип работы этого устройства?


Поменяв турбину на парус, который имеет высокий коэффициент аэродинамического сопротивления, инженеры компании добились того, что парус, под действием потока ветра, совершает колебательные движения и, захватывая в два раза больше кинетической энергии, передаёт свои движения с помощью системы поршней - гидравлической системе, которая, вращая вал генератора, преобразовывает энергию в электрический ток.

Благодаря такому подходу, как заявляют представители компании, достигается практически бесшумная работа установки, степень выработки тока по сравнению с аналогичными по размеру установками вырастает в 2.5 раза, а стоимость ветрогенератора Saphonian почти в два раза меньше.


О самостоятельном строительстве установки для альтернативных источников электроснабжения дома подробно рассказано в этой статье.

Как показали предварительные испытания ветрогенератор, с диаметром паруса в 120 см, вырабатывает электроэнергию мощностью от 400 до 600 Ватт. И в данный момент инженеры компании работают над усовершенствованием конструкции установки.


Таким образом, с помощью современных технологий выбор источника альтернативной энергии существенно расширяется, что позволяет дать вашему загородному дому большую автономию и независимость от поставщиков энергоносителей.

Узнать больше об альтернативной энергии пользователи FORUMHOUSE могут из соответствующей ветки форума. В этой теме раскрывается вопрос использования ветрогенератора. Применение тепловых насосов обсуждается здесь.

А ознакомившись с этим видео вы увидите, как геотермальный насос обеспечивает теплом дом в случае отсутствия магистрального газа.

Вашему вниманию предлагаются интересные решения для слаботочных подручных электроприборов — фонариков, зарядных устройств, зажигалок. В статье приведены подробные фотографии и видеоинструкции, как собрать оригинальные источники электричества из подручных средств своими руками.

Лайфхак. Электричество своими руками

Ни для кого не секрет, что энергия буквально окружает нас и её носителями могут быть не только ценные полезные ископаемые — нефть, газ, уголь, но и металлы, углеводы, объекты, движущиеся в силу естественных причин. Рассмотрим подробнее, как же из подручных средств можно извлечь электрическую энергию.

В этом разделе мы наглядно продемонстрируем возможность извлекать электричество при помощи химической и электролитической реакции.

Угольные батареи из алюминиевых банок

Обычные угольные батарейки можно сделать своими руками. Для этого нам понадобится:

  1. Две жестяные банки из-под напитков по 0,5 л.
  2. Два графитовых стержня Ø 15–20 мм длиной по высоте банки + 20–30 мм.
  3. Обычный уголь или зола.
  4. Парафин или воск.
  5. Несколько медных проводов, нож.

Способ предусматривает воссоздание в увеличенном виде миниатюрных батареек для бытовых приборов.

  1. Вырезать верха банок, оставляя борта.
  2. Установить на дно пенопласт толщиной 30 мм.
  3. Установить стержни внутрь банок, притопив их в пенопласт.
  4. Засыпать пазухи углём. До края банки должно остаться 10–15 мм.
  5. Залить пазухи подсоленной водой (1 ст. ложка на 1 литр).
  6. Залить растопленным парафином или воском свободное место в банке (до верха).

Каждая из банок будет идентична по энергоёмкости одной пальчиковой батарейке 1,5 В. Их можно соединять последовательно, подзаряжать и использовать в бытовых приборах — часах, приёмнике, светодиодных светильниках.

Батарейки из жестяных банок — пошаговое видео

Электричество из окисления

Белки, жиры и углеводы — источники энергии для организма человека. Она извлекается благодаря реакциям, проходящим в желудке и кишечнике. А именно — при воздействии желудочной кислоты на углевод высвобождается энергия, заключённая в нём. Что если попробовать заменить желудочную кислоту на более привычную — уксусную?

Для опыта нам понадобится:

  1. Сахар-рафинад — 2 куска.
  2. Анодированные саморезы 15 мм — 2 шт. (омеднённые и оцинкованные).
  3. Диодная лампочка на 1,5 В с проводами.
  1. Просверливаем (не до конца!) отверстия в сахаре.
  2. Аккуратно, чтобы не раздавить рафинад, вкручиваем саморезы.
  3. Подсоединяем проводки лампочки к головкам саморезов.
  4. Смачиваем рафинад уксусом.

Видео, как извлечь электричество из сахара

Разумеется, дело тут не в сахаре, а в химическом процессе окисления меди и цинка. Рафинад является только средством для удержания кислоты. В точке контакта окисляемых поверхностей и кислоты происходит электрохимическая реакция с выделением небольшого количества энергии. Теоретически рафинад можно заменить на плотную губку, но саморезы со временем полностью окислятся и придут в негодность.

Более наглядно и точно этот эффект описан в аналогичном опыте с лимонами.

Электричество из лимона — видеоурок

И совсем народный способ с применением картофеля.

Видео — как извлечь ток из картошки

Аварийный источник энергии

Описанный выше принцип можно использовать для создания зарядного устройства из подручных средств. Для этого понадобятся простые детали, которые можно обнаружить в остатках материала на выброс после ремонта.

Для создания источника энергии понадобится:

  1. П-образные оцинкованные подвесы для гипсокартона (толщина значения не имеет) — 10 шт.
  2. Тонкая медная проволока — 15 м.
  3. Тонкая х/б ткань — несколько лоскутов, в крайнем случае — туалетная бумага.
  4. Нитки.
  5. Вода, соль.

Лайфхак. Электричество своими руками

Ход работы (для одного элемента питания):

1. Обернуть пластины материей (или бумагой) в 2 слоя.

2. Намотать проволоку поверх материи (не густо, материя должна просматриваться).

3. От каждого элемента выпустить медный проводок.

4. Обернуть элемент материей ещё раз и зафиксировать нитками.

Лайфхак. Электричество своими руками

5. Смочить подсоленной водой материю и поддерживать в мокром состоянии.

Один элемент выдаёт примерно 0,33 В. Для горения светодиода достаточно 5-ти элементов, для подзарядки телефона 13–14 шт.

Лайфхак. Электричество своими руками

Электричество будет вырабатываться, пока идёт реакция окисления, т.е. пока между разными металлами есть электролит (подсоленная вода). Если элемент высох, достаточно его смочить, и реакция возобновится, пока соляной раствор не разъест цинковое покрытие. В идеале лучше использовать полностью цинковые пластины.

Отдельные детали и соль можно взять с собой в поход или держать уже готовые элементы вместе со свечой на случай отключения электричества. При наступлении темноты останется только соединить их вместе и смочить.

Пневматическая зажигалка

Для работы понадобится:

  1. Стержень круглого сечения, возможно из мягкого металла (медь, алюминий) Ø 30 мм и длиной 200 мм.
  2. Стержень стальной Ø 10 мм и длиной 200 мм.
  3. Резиновые кольца из сантехнического набора.
  4. Х/б ткань, фольга.
  5. Доступ к токарному станку.
  1. Высверлить толстый стержень под диаметр тонкого + 1 мм (цилиндр).
  2. На тонком стержне (поршень) сделать канавки для компрессионных колец.
  3. Высверлить углубление на конце поршня.
  4. Установить резиновые кольца в канавки.
  5. Ткань завернуть в фольгу и прожечь на огне (трут).

Для того чтобы использовать зажигалку, нужно в углубление поршня уложить трут и вставить его в цилиндр. Затем резко приложить усилие вдоль оси поршня и извлечь его из цилиндра. Трут на конце будет тлеть и из него можно раздуть пламя. Именно этот эффект использован в дизельных двигателях.

Пневматическая зажигалка в действии на видео

Примеры, описанные выше, может быть и не имеют высокой практической ценности, но наглядно демонстрируют возможности получения альтернативной энергии для решения ежедневных задач. В следующих статьях мы рассмотрим другие способы реализации природной и магнитной энергии.

Волонтёр отправилась на работу и не переживает, что ей будут мешать. Её деятельность вне зоны доступа сети

Волонтёр из Австралии провела две недели, собирая мусор и помогая туристам на острове Шутен в Тасмании, где можно забыть про душ, электричество и даже интернет. Женщина рассказала, каково работать в месте, где вскипятить чайник с водой — уже достижение. Вы будете ей завидовать.

Волонтёр отправилась на работу и не переживает, что ей будут мешать. Её деятельность вне зоны доступа сети

Рейчал Эдвардс уже три раза отправлялась на остров Шутен, чтобы быть волонтёром в национальном парке

Остров Шутен находится к югу от полуострова Фрейсине, и вместе они составляют Национальный парк Фрейсине, куда и поехала Рейчал. Благодаря предыдущему опыту женщина точно знала, что её ждёт: красота дикой природы, холодные воды Тасманова моря, а также отсутствие горячей воды, душа и электричества.

На острове нет абсолютно никаких магазинов, развлечений и удобств — поэтому он так привлекателен туристов, которые приезжают на несколько дней отдохнуть с палатками на пляже.

Планирование в таких поездках — наше всё. Я собирала всё необходимое на троих человек — себя и своих друзей. Сначала составила список продуктов на две недели вперёд, продумав при этом меню. Более того, от выбора подходящей одежды тоже многое зависит, так как погода в Тасмании крайне изменчива.

Команда вооружилась продуктами и подходящей одеждой (лёгкой и тёплой одновременно), а также прихватила с собой чайник, палатку, спальные мешки, мини-плиту и заряженные на максимум аккумуляторы.

Волонтёр отправилась на работу и не переживает, что ей будут мешать. Её деятельность вне зоны доступа сети

Фактически необитаемый остров Шутен в хорошую погоду

Рейчал и её друзья работали смотрителями парка, рассказывали туристам про достопримечательности, проводили экскурсии по пляжу и следили за безопасностью каждого гостя.

Как смотрители лагеря, мы рассказывали посетителям об истории острова, о суровых условиях жизни местных обитателей, показывали старые хижины, где раньше жили моряки и фермеры, а также демонстрировали шахты, где когда-то давно добывали олово. Мы гуляли по пляжу, поднимались вверх на скалы, чтобы любоваться морем.

Ванну Рейчал приходилось принимать в солёной холодной воде, а чтобы с утра выпить чашку час — экономить заряды аккумуляторов. Со связью тоже были проблемы — это для волонтёров было самым неприятным.

Я слышу пение птиц — и тут же лезу в карман, думая, что мне кто-то звонит по телефону. Звонка не было, как и меня в зоне доступа сети.

К такому быстро привыкаешь, уверяет женщина. Две недели на острове проходят практически незаметно. Сама Рейчал признаётся, что отправляется снова и снова в такие экстремальные условия лишь по одной причине — её привлекает красота природы.

Сидеть вечером на берегу моря в окружении пищащих комаров, смотреть, как солнце заходит за горизонт, — бесценно. Побывать на природе — это благословение и вызов одновременно, но я рада, что могу участвовать в таких мероприятиях, потому что они помогают мне отвлечься от повседневной суеты и подумать о важном.

Отдых или работа в подобных условиях — не для всех, но мы точно знаем, куда отправится в следующий раз блогер Чед Зубер. Парень показал на видео, как год выживал на диком острове в Карибском море, и самое интересное — он даже смог приготовить для себя вино.

Суровые условия не испугали и парня, который отправился на самый северный остров мира, чтобы отвезти своей подруге суши. Фото их экспедиции и её результаты уже здесь.

Читайте также: