Поддержание оборотов бензинового двигателя под нагрузкой своими руками

Обновлено: 05.07.2024

В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.

Принцип работы

Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.

Среди используемых в промышленной и бытовой сфере следует выделить:

  • Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
  • Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
  • Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.

Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.

  • Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.

Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.

  • Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
  • Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.

Как выбрать?

Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.

Помимо этого для регулятора оборотов необходимо выбрать:

  • Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
  • Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
  • Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
  • Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
  • Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

Схема подключения регулятора

Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

Распиновка регулятора

Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

Проверьте цветовую маркировку

Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

tilarids

Obergan Alexey

Гуглил схемы девайсов для проверки транзисторов. Там обычно база соединена через резистор. Вообще, в реальной жизни база редко бывает полностью оторвана от эмиттера.

Nikolenko Evgeniy

Здравствуйте друзья, примерно с год назад покупал на Али Экспресс усилитель под названием MX 50 SE, набором конструктором, собрал звучание понравилось. А вот теперь захотел заказать ещё парочку, да вот проблема, именно такого как мне прислали в прошлый раз уже нет. А именно дело вот в чём, первый раз прислали конструктор на платах предвыходные транзисторы находились на раздельных радиаторах и номиналы их были B1186A И D1763A. А сейчас продают предвыходные установлены на один общий радиатор и номиналы другие. Ребята, в чём разница между ними? Какой лучше? Что то я не пойму, совсем запутался уже.

Ну и причём сдесь ЭХФИРЬ? Древний вы люд . всё никак не можите оторваться от завалинки. ;-) Разберитесь с формированием радиоволны и будет вам счастье в виде знаний о которых не писано в учебниках! ;-)

Александр2

Интересно, у меня до недавнего времени в ячейках памяти почти 50 лет стояли именно они 8400 штук. Ни с одним проблем не было.

Почену "не поверю" ?! Конструктив привязан к приёму отражённого сигнала. Всё в пределах понятий! ;-) Я тут наткнулся вааще на "умопомрачение" - окаатца диапазом 260мгц используют не только НАТО но и радиохулиганы всех мастей ! Лихо , млин! В моё время были только СВ и чуток позже /промежуточные/… Потом уже пошли 3,5мгц, и 6 мгц Но это уже связь за пару тысячь километров т.е. с челом уже не встретиться и не бухнуть … ;-)

При эксплуатации коллекторных электродвигателей нередко возникает необходимость в регулировании оборотов устройства. Важно при этом не снизить общие показатели мотора, чтобы работа не пошла насмарку. Рассмотрим же детально особенности самостоятельного регулирования.

Регулятор по схеме

Силовые агрегаты данного типа активно используются в бытовой электрической технике, инструментах: стиральных машинах, болгарках, пылесосах, дрелях, квадрокоптерах и др. это обусловливается высокой результативностью приборов, которые демонстрируют большое число оборотов и высоким крутящим моментом (также и пусковым). Данных технических характеристик с лихвой хватает на обеспечения работы техники и инструментов на требуемом уровне.

Сами моторы работают от сетей как постоянного, так и переменного токов, от обычных бытовых сетей. Чтобы осуществить управление скоростями оборотов ротора такого двигателя, необходимо использовать специальные регуляторы. При этом потери в мощностях будут минимальными.

Общие параметры

Принцип работы и общая конструкция таких силовых агрегатов известны большинству, ведь при создании или модернизации конструкции не обойтись без познаний в данной категории. Состоит мотор из таких ключевых элементов:

  • ротора;
  • статора;
  • коммутационного узла щеточно-коллекторного типа.

При подаче питания на ротор и статор, на каждом из них образовываются магнитные поля, которые взаимодействуют между собой. Это в свою очередь вызывает вращения у ротора.

Подача питания на этот компонент осуществляется с применением графитовых щеток, которые плотно прилегают к ламелям коллектора. Чтобы изменить направленность оборотов ротора, нужно поменять положение фаз напряжения на одном из двух элементов: статоре или роторе.

Обмотки этих приспособлений могут получать питание от источников, или подключаться друг к другу параллельно. Именно на основе этой особенности силовые агрегаты классифицируются на параллельные и последовательные. От этого зависит способ возбуждения медных обмоток.

Если говорить про коллекторные моторы последовательного типа, то именно они чаще всего применяются в бытовых электрических приборах. Это обусловливается тем, что именно такое возбуждение дает возможность получать самый устойчивый к перегрузкам мотор.

Регуляторы стандартные

Что касается данных компонентов, то они реализуются множеством способов. Первая и самая простая схема – тиристорная. Такая технология применяется в бытовых приборах: стиральных машинах, дрелях, шуруповертах, пылесосах, и др. С легкостью подключаются к сетям переменного тока, в том числе и бытового назначения.

Стандартная схема

Работа этой схемы довольно простая: на всех участках сетевых токов, конденсатор получает ток при помощи резистора. Зарядка осуществляется до уровня открытия динистора, который подключен к регулирующим электродам сисмстора. После этого последний открывается и через него проходит ток к нагрузкам КД.

Схема дает возможность продуктивно регулировать время подзарядки конденсатора в управленческой цепи, а также определяя среднюю мощность напряжения, подаваемую на мотор.

Давайте упорядочим все шаги работы данной схемы. Вот они:

  1. подача тока к конденсатору от источника питания на 220 вольт;
  2. напряжение для пробоя динистора подается также, но уже через резистор переменного типа;
  3. непосредственно пробой;
  4. открытие симистора. Компонент работает непосредственно с показателями нагрузки;
  5. чем выше напряжение – тем чаще симистор открывается.

Данная технология обеспечивает простое, но в то же время эффективное регулирование интенсивности оборотов. Но, в то же время применение стандартной схемы не обеспечивает обратной связи, что также стоит учитывать при ее реализации. Исходя из этого, нужно также знать, что при изменении показателей нагрузки, параллельно будут нуждаться в настройке обороты мотора.

Схема симисторная

Этот механизм имеет много общих параметров с диммером, применяемом для регулирования уровня яркости ламп накалывания. Обратная связь также отсутствует. Реализовать реверс по току моно, но с применением вспомогательной электроники. Это делается для того, чтобы беспрепятственно удерживать мощность на заданных показателях, не допуская перегревов и перегрузок.

Реостатная схема

Относится к модифицированным схемам, но, несмотря на это, ее реализация также отличается простотой. С помощью получается стабилизировать обороты, а также рассеивать огромное количество вырабатываемого тепла. Регулировка осуществляется с помощью радиатора, который нужно заранее заготовить. Надо обеспечить и эффективный отвод тепла, что приводит к потерям энергии и, как следствие – коэффициента полезного действия. Для того чтобы предотвратить эти недостатки, рекомендуют применять активное охлаждение на постоянной основе.

Реостатная схема

Интегральная

Стабилизация также относится к модифицированным схемам. Здесь в основе процесса регулирования лежит таймер интегрального действия. Его основная задача – контролировать уровни нагрузки на электродвигатель. Здесь также находят свое применение транзисторы. Особенность обусловливается микроконтроллером, входящим в состав системы, при этом, обладающим высокими параметрами выходного напряжения.

В ситуациях, когда имеет место нагрузка в 0,1 ампер, все токи поступают напрямую на плату, обходя транзисторы. Чтобы обеспечить эффективную работу регулятора, необходимо, чтобы на затворе было напряжение 12в. Следовательно, для слаженной работы, электрическая цепь и уровень напряжения в источнике питания должны соответствовать этому диапазону. Ресурс регулятора позволяет устанавливать компонент в мощных модификациях, для точного и быстрого регулирования их работы.

Интегральная схема

Самостоятельное создание регулятора

Заводские регуляторы представлены в широком ассортименте, как в интернете, так и обыкновенных магазинах. Но, если у вас нет желания приобретать готовый компонент и вы хотите собрать его самостоятельно – это реально осуществить. Чтобы задача была успешной – необходимо следовать алгоритму конструкции и иметь в наличии все необходимые компоненты.

  • проводки;
  • готовая схема;
  • конденсаторные схемы;
  • тиристор;
  • резистор;
  • паяльник.

Ориентируясь на схему компоновки, мощностной и оборотный регулятор будет отвечать за контроль первого полупериода. Самодельный стабилизатор имеет такой алгоритм работы (пример нашей модели):

  1. прибор, подключенный к стандартной сети питания на 220в, принимает ток на конденсатор;
  2. компонент сразу же срабатывает, после получения заряда;
  3. передача нагрузки к резисторам и нижним кабелям;
  4. соединение положительного конденсаторного контакта к тиристорному электроду;
  5. подача одного заряда напряжения на достаточном уровне;
  6. открытие второго полупроводника;
  7. конденсатор подает на тиристор нагрузку, он в свою очередь пропускает ее через себя;
  8. конденсатор разряжается;
  9. повторение полупериода;

Если мощность двигателя постоянного или переменного тока большая – регулятор обеспечивает экономную работу устройства. Для использования приспособления в своих бытовых, мощности и ресурса хватает. Но, когда нужно осуществлять регулирование оборотов без потери мощности и более крупных и производительных агрегатов, тогда стоит обратить внимание все же на заводские модификации. Несмотря на то, что такой вариант получится дороже, он обеспечит 100%-ю работоспособность и надежность.

А сейчас давайте рассмотрим другие, нестандартные, но довольно распространенные методы регулировки и стабилизации.

Способ 2

Пример собранной платы

В результате получается компактная двусторонняя плата, обеспечивающая точное регулирование.

Частотная регулировка

Для решения этой задачи применяются частотные преобразователи (драйверы, инверторы), которые присоединяются к прибору. Они обеспечивают выпрямление напряжения, поступающего от источника. Агрегаты внутри формируют напряжение и частоты на необходимых уровнях. Далее осуществляется подача этих параметров на эл двигатель.


Стабилизация коллекторного двигателя 12в Все характеристики, необходимые для регулирования работы, частотник рассчитывает сам, ориентируясь на внутренние алгоритмы, которые установлены производителем.

Из преимуществ такого способа стоит выделить:

  • быстрое достижение плавности регулировки частот оборотов электрического мотора;
  • возможность изменения скоростей и направлений вращения моторов;
  • требуемые параметры поддерживаются самостоятельно;
  • экономические выгоды.

Из слабых сторон стоит выделить обязательность наличия преобразователя, который нужно приобретать отдельно. Но, справедливости ради отметим, что цена на частотники невысокая и они легко впишутся в бюджет любого дома, хозяйства, предприятия.

Изменение числа полюсов

Уменьшение или увеличение количества пар полюсов – еще один эффективный способ провести регулировку. Этот вариант особо актуален для моделей двигателей многоскоростного действия со сложными роторными обмотками. Данные элементы разделены на определенные группы и чередуются в процессе работы. Осуществляется это посредством коммутации, подключением последовательным или параллельным способом.

К преимуществам такого варианта регулировки относят:

  • высокий КПД силового агрегата;
  • требовательные механические выходные характеристики.

Стоимость реализации – одна из самых высоких, если сравнивать с другими технологиями. Вес и размеры готовой установки также немаленькие, что требует наличия свободного места для монтажа. Сам мониторинг оборотов осуществляется со ступенью в 1500 – 3000 оборотов в минуту.

Проведение регулирование в моторах АС

Устройства, работающие от переменного напряжения, также поддерживают регулирование оборотов. Рассмотрим вкратце основные способы такого управления, характерные для АС модификаций с фазными роторами.

При помощи напряжения

Для этого используются автотрансформаторы типа ЛАТР, которые осуществляют изменение напряжения на моторных обмотках. Таким образом производится и регулирование оборотов вала.

Метод является подходящим также и для вариаций с короткозамкнутыми роторами. Оператор имеет возможность проводить управление в пределах от минимальных до номинальных параметров двигателя.

Регулятор

Определение сопротивления

Переменное сопротивление реостата (или несколько таких явлений) реализуется непосредственно в цепи ротора. Оно воздействует на роторное поле и показатели тока, из-за чего получается изменять величины скольжения и точное число оборотов электродвигателя. Существует закономерность: чем уровень тока меньше, тем выше показатель скольжения двигателя и меньше скорость.

  • широкий диапазон регулирования оборотов электрического оборудования;
  • сдержанные выходные характеристики машины.

К недостаткам относят:

  • уменьшение продуктивности мотора;
  • общее снижение рабочих параметров механизма.

Применение двойного питания

Здесь используются двигатели с двойным питанием, подающимся через вентильные приспособления. Основной упор делается на изменение показателей скольжения. При регулировании работы крупных специализированных машин, компонент подает и регулирует величину ЭДС (электродвижущей силы) на ротор от отдельно выбранных источников напряжения.

Вывод

При подаче напряжения у асинхронных моделей моторов наблюдаются рывки ротора. Это явление негативно влияет на работу, как самого агрегата, так и его привода. Именно поэтому, регулировка осуществляется по принципу плавного старта. Он обеспечивается такими факторами:

  • старт посредством ЛАТР;
  • разгон и работу мотора путем переключения обмоток по схемам треугольник/звезда;
  • применение защитных устройств, например, частотного преобразователя.

Важно при регулировании оборотов не потерять в мощности. Применение вышеописанных методов позволит определить вращения без снижения продуктивности. Широкий выбор заводских моделей, но, можно реализовать деталь и самостоятельно.

Виды и устройство регуляторов оборотов коллекторных двигателей

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности - выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Коллекторный двигатель

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Регулятор оборотов коллекторного двигателя на TDA1085

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения конденсатор заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего симистор открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Простейший регулятор оборотов коллекторного двигателя

Схема простого регулятора оборотов коллекторного двигателя

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный диммер для регулировки яркости ламп накаливания, обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Схема регулятора оборотов

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Блок управления коллекторного двигателя

Принцип регулирования с микросхемами на постоянном токе — это конечно ШИМ — широтно-импульсная модуляция. Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Читайте также: