Блок питания для 775 двигателя своими руками

Обновлено: 06.07.2024

Всем здравствуйте! Сегодня, по нескольким, просьбам решил написать краткую статью в которой мы слегка "пробежимся" по некоторым схемам блоков питания. И немного сравним плюсы и минусы тех и других.

В схемах первых блоков питания использовались понижающие (повышающие) трансформаторы. В зависимости от того что требовалось. Повысить или понизить напряжение. Схемы были достаточно просты, надёжны и имели не большое количество деталей. По большому счету можно обойтись всего тремя деталями. Трансформатор, диодный мост и фильтрующий электролитический конденсатор.

Вот схема простого не стабилизированного блока питания. Минус - не стабилизированное напряжение. Для некритичных схем.

Не стабилизированный он считается по тому, что если входное напряжение будет занижено, то и выходное напряжение станет ниже заявленного. Выходное напряжение зависит от данных трансформатора.

Так-же были простейшие схемы со стабилизацией.

Стабилизация данного блока осуществляется подбором стабилитрона VD2. В зависимости от напряжения стабилизации стабилитрона можно "настроить" выходное напряжение блока питания.Минусом этой схемы является слабый выходной ток такого блока.

Так-же были схемы со стабилизацией и защитой от короткого замыкания на транзисторах. Такие схемы можно использовать для изготовления лабораторных блоков питания. Минусом таких блоков является относительно бОльшее количество деталей, но есть и свои плюсы в защите и более высоком выходном токе.

И по проще ,с регулировкой, стабилизацией, но без защиты.

Ещё есть схемы со стабилизацией на микросхемах типа КРЕН или их современных собратьях типа LM78xx KIA78xx и прочих.

Есть стабилизаторы типа LM79xx- всё то-же самое но другой полярности .

Схема без регулировки выходного напряжения. Плюс - стабилизированное выходное напряжение до 35 вольт (зависит от включения крен) и хороший выходной ток до1,5 ампера, есть внутренняя защита. Минусом является то, что нужен хороший радиатор для охлаждения стабилизатора и мощный трансформатор.

Также на этих стабилизаторах (крен) можно собрать и регулируемую схему.Плюсы- плавная регулировка напряжения, хороший ток. Минусы - хороший радиатор и наличие трансформатора с большИм выходным напряжением и током.

Есть схемы блоков питания с более высоким выходным током. Так-же регулируемые. На стабилизаторах типа LM317- аналог крен. Выходной ток повышается за счёт добавления выходного транзистора.

Так-же есть схемы с двухполярным питанием. Эти схемы имеют так-же бОльший выходной ток. Так-как на "выходе" блока установлены силовые транзисторы.

А сейчас подведём краткий итог использования трансформаторных блоков питания.

Минусами является то, что в большинстве случаев требуется хороший трансформатор.С достаточно высоким КПД. А это в обычных трансформаторах требует большИх размеров. В таких блоках желательно примерять тороидальные трансформаторы. Нужно хорошее охлаждение для элементов. И конечно относительно не большой выходной ток. Хотя для начинающего радиолюбителя в начале практики вполне себе достаточно. Для схем на стабилизаторах типа КРЕН(LM78xx) выходное напряжение трансформатора должно быть выше стабилизируемого примерно на 15-20% выше! Пример если блок питания на 12 вольт, то трансформатор должен быть примерно 15 вольт.

Плюсами этих блоков является всё-же относительно не большое количество деталей, лёгкость в сборке схемы, практически не требуют никакой отладки и как правило работают с первого раза. Схемы сами по себе достаточно надёжны! Что опять-же важно и не только для начинающих, но и для профессионалов!

Ну вот вкратце и всё чем хотел на данный момент поделится.

В следующих публикациях рассмотрим другие схемы блоков питания, в том числе будут и импульсные.

Надеюсь для начинающих радиолюбителей статья будет полезна.

Всем спасибо за внимание!

Если статья поможет вам в решении некоторых проблем, буду очень рад.

Остались вопросы или пожелания? Не стесняйтесь, пишите в комментариях, с удовольствием пообщаемся.

Ставьте лайки и подписывайтесь на канал и вы всегда будете в курсе новых публикаций.

Приходите почаще будет много интересного, а также читайте и другие статьи нашей странички и смотрите видео.

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания. У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

лабораторные блоки питания

Ну еще есть и самопальный блок питания:

самодельный блок питания

Вот здесь можно прочитать про его сборку.

Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:

самодельный блок питания на 3 ампера

Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

— выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

— можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

— очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

— защита от перегрузки и неправильного подключения

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):

Цифры в кружочках — это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
— 1 и 2 к трансформатору.
— 3 (+) и 4 (-) выход постоянного тока.
— 5, 10 и 12 на P1.
— 6, 11 и 13 на P2.
— 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост. Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

tl081 распиновка

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А

Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!

кт827а

Вот его распиновка:

кт827 распиновка

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)

Лабораторный блок питания своими руками

Далее с помощью ЛУТа сделал печатную плату (печатка и описание работы блока питания будут в конце статьи по ссылке):

протравленная печатная плата

Лабораторный блок питания своими руками

Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:

Лабораторный блок питания своими руками

А вот так плата выглядит уже с полным монтажом:

Лабораторный блок питания своими руками

Подготавливаем место под платку в нашем корпусе:

Лабораторный блок питания своими руками

Приделываем к корпусу радиатор:

Лабораторный блок питания своими руками

Не забываем про кулер, который будет охлаждать наши транзисторы:

Лабораторный блок питания своими руками

Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?

Описание работы, печатку и список радиоэлементов я взял здесь в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке

P1020361c


Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное - мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это - напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

hy3005d

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи - низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Как уже говорил - девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 - TL494, VD1 - диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 - весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 - взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 - при входном напряжении около 40 В он начинал ужасно глючить - просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей - в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части - слаботочную и силовую.

P1020330c

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения - TL494 c обвязкой, и плата сигнализации - включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её "до ума". Там тоже были свои заморочки.

P1020338

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

P1020333c

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

P1020364c

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

Модификация № 1

New_bp.jpg

Драйвер полевика (точнее, двух параллельно - выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции



Модификация № 2


Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель - холодный, трансформатор тоже.

Внешний вид конструкции

PS03.JPG

PS05.JPG

PS04.JPG

PS02.JPG

PS01.JPG

Модификация № 3


На этой странице вы найдёте видеоинструкции, схемы и советы по сборке лабораторного блока питания из китайских модулей своими руками. Здесь представлены два варианта регулируемых блоков питания: полноразмерный “всё-в-одном” с мощностью около 100 Ватт и размерами корпуса 170х120х45 мм, а также мини-версия с отдельным блоком питания, мощностью 50 Ватт (100 Ватт пик), и компактным корпусом 100х60х25 мм. Оба проекта имеют регулируемое напряжение, регулируемый ток (ограничение по току), вольтметр и амперметр. Делитесь своими вариантами исполнения в теме проекта в нашем сообществе!

ВАМ ОБЯЗАТЕЛЬНО ПРИГОДИТСЯ

Паяльники, припой


Мультиметры


Радиодетали


Блоки питания


Инструменты


Шуруповёрты


КИТАЙСКИЕ ЛБП

blank

300W, 0-30V, 0-10A, CC/CV, QC

blank

300W, 30V/10A или 60V/5A, CC/CV

DIY ВЕРСИЯ









ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ










КОМПОНЕНТЫ

AC DC 24V 6A


DC ВС XL4016


40 мм вентилятор


Выключатель


Термореле


Термореле мини


Понижайка


Гнёзда С8


Гнёзда С8

Провод С8


Силовой провод


Гнёзда под банану


Клеммник


Банана – крокодилы


USB 1 выход 3A


USB 2 выхода


USB QC 4.0


МИНИ ВЕРСИЯ










ВИДЕО

КОРПУС ПОД 3D ПЕЧАТЬ

Крутой корпус от Андрея Бесараба (EVERYLIGHT). Файлы можно скачать с Яндекс.диска или из статьи (статья включает рекомендации по сборке)

Читайте также: