Как сделать микроскоп из подзорной трубы

Добавил пользователь Дмитрий К.
Обновлено: 05.10.2024

Наверное, каждый в своей жизни хотя бы немного интересовался астрономией и хотел иметь при себе инструмент, позволивший бы рассмотреть поближе загадки звездного неба.

Хорошо, если у вас есть бинокль или подзорная труба — даже в такие достаточно слабые астрономические инструменты уже можно любоваться красотой звездного неба. Но если ваш интерес к этой науке достаточно сильный, а доступа к инструменту нет совсем или имеющиеся инструменты не удовлетворяют ваше любопытство, вам все же понадобится более мощный инструмент — телескоп, который можно сделать самостоятельно в домашних условиях. В нашей статье пошаговая инструкция с фото и видео о том, как сделать телескоп своими руками.

Телескоп заводского изготовления обойдется вам достаточно дорого, поэтому его покупка уместна лишь в случае, если вы хотите заниматься астрономией на любительском или профессиональном уровне. Но для начала, чтобы приобрести начальные знания и навыки, и, наконец, понять действительно ли астрономия — это ваше, вам стоит попробовать изготовить телескоп своими руками.

Во многих детских энциклопедиях и других научных изданиях вы можете найти описание изготовления простейшего телескопа. Уже такой инструмент позволит увидеть кратеры на Луне, диск Юпитера и 4 его спутника, диск и кольца Сатурна, серп Венеры, некоторые крупные и яркие звездные скопления и туманности, звезды, невидимые невооруженным глазом. Сразу же стоит обратить внимание, что такой телескоп не может претендовать на качество изображения в сравнении с телескопами заводского изготовления в следствие несоответствия назначения оптики, которая будет использоваться.

Устройство телескопа

Для начала — немного теории. Телескоп, как на фото, состоит из двух оптических узлов — объектива и окуляра. Объектив собирает свет от объектов, от его диаметра напрямую зависит максимальное увеличение телескопа и то, насколько слабые объекты можно будет наблюдать. Окуляр увеличивает изображение, формируемое объективом, за ним в оптической схеме следует глаз человека.

Существует несколько типов оптических телескопов, два из наиболее распространенных — рефрактор и рефлектор. Объектив рефлектора представлен зеркалом, а рефрактора — системой линз. В домашних условиях изготовление зеркала для рефлектора — достаточно трудоемкий и точный процесс, который под силу не каждому. В отличие от рефлектора, недорогие линзы для рефрактора нетрудно приобрести в магазине оптики.

Увеличение телескопа равно отношению Fоб/Fок (Fоб — фокусное расстояние объектива, Fок — окуляра). Наш телескоп будет иметь мксимальное увеличение порядка 50х.

Схема телескопа-рефрактора заводского изготовления

Для изготовления объектива необходимо приобрести заготовку линзы для очков с силой 1 диоптрия, что соответствует фокусному расстоянию 1 м. Такие заготовки обычно имеют диаметр около 70 мм. К сожалению, очковые линзы изготавливаемые в виде менисков, слабо подходят под такое применение, но можно остановиться и на них. Если у вас имеется длиннофокусная двояковыпуклая линза, рекомендуется использовать именно ее.

Окуляром может послужить обычное увеличительное стекло (лупа) небольшого диаметра порядка 30 мм. Хорошим вариантом может быть также окуляр от микроскопа.

В качестве корпуса можно использовать две трубы из плотной бумаги, одна короткая — порядка 20 см (окулярный узел), вторая около 1 м (основная часть трубы). Короткая труба вставляется в длинную. Корпус можно изготовить либо из широкого листа ватмана, либо из рулона обоев, свернутого в трубу в несколько слоев и проклеенного клеем ПВА. Количество слоев подбирается вручную, пока труба не станет достаточно жесткой. Внутренний диаметр основной трубы должен быть равен диаметру очковой линзы.

Объектив (очковая линза) крепится в первой трубе выпуклой стороной наружу с помощью оправы — колец диаметром, равным диаметру линзы и толщиной около 10 мм. Сразу за линзой устанавливается диск — диафрагма с отверстием по центру диаметром 25 — 30 мм — это необходимо с целью уменьшения значительных искажений изображения, получаемых за счет одиночной линзы. Это скажется на уменьшении количества света, собираемого объективом. Объектив устанавливается ближе к краю основной трубы.

Окуляр устанавливается в окулярном узле ближе к его краю. Для этого вам придется изготовить из картона крепление для окуляра. Оно будет состоять из цилиндра равного по диаметру окуляру. Этот цилиндр будет крепиться к внутренней стороне трубы двумя дисками диаметром равным внутреннему диаметру окулярного узла с отверстием равным по диаметру окуляру.

Фокусировка будет производиться изменением расстояния между объективом и окуляром, за счет движения окулярного узла в основной трубе, а фиксация будет происходить за счет трения. Фокусировку удобно выполнять на ярких и больших объектах, таких как Луна, яркие звезды, близлежащие здания.

При построении телескопа необходимо учитывать, что объектив и окуляр должны быть параллельны друг другу, а их центры должны находиться строго на одной линии.

Можно также поэкспериментировать с диаметром отверстия диафрагмы и найти оптимальный. Если использовать линзу с оптической силой 0.6 диоптрии (фокусное расстояние равно 1/0.6, а это около 1.7 м) — это позволит увеличить отверстие диафрагмы и повысить увеличение, однако увеличит длину трубы до 1.7 м.

Стоит всегда помнить, что в телескоп и любой другой оптический прибор нельзя смотреть на солнце. Это моментально повредит ваше зрение.

Итак, вы познакомились с принципом построения простого телескопа и можете теперь сделать его своими руками. Существуют другие варианты телескопа из очковых линз или телеобъективов. Любые детали изготовления, а также другую интересующую вас информацию вы можете найти на сайтах и форумах по астрономии и телескопостроению. Это очень широкая область, ею занимаются как совсем новички, так и профессиональные астрономы.

И помните, стоит лишь окунуться в неизвестный вам ранее мир астрономии — и при вашем желании он покажет вам множество сокровищ звездного неба, научит технике наблюдений, фотографирования совершенно разнообразных объектов и многому другому, о чем вы даже не догадывались.

Ясного неба вам!

Видео: как сделать телескоп своими руками

Рекомендуем для наглядности посмотреть видео изготовления телескопа в домашних условиях.

В этом артикле я расскажу, как можно с минимумом затрат (менее $70) сделать цифровой микроскоп для паяльных работ, который будет обеспечивать комфорт и качество работы, недоступные для промышленного решения, даже с ценником на порядок больше.

Начну со списка необходимых компонентов.

ЖК монитор с удобной для вас диагональю – можно и 15 дюймов поставить, а можно и побольше. Для этой цели я купил 17 дюймовый ЖК монитор ($11)– на местной барахолке это было наиболее доступный вариант в шаговой близости от меня.


Модуль камеры с VGA/DVI/HDMI выходом – зависит от типа входа вашего монитора. Я брал самый бюджетный вариант на таобао, два мегапикселя, VGA выход, $30.


Советский объектив с фокусным расстоянием 40-60мм. Подходят практически любые, главное, чтоб стекло не было совсем убитым, и диафрагма работала.


Переходник с CS Mount на M42 (или М39, зависит от модели, купленного объектива)


Макрокольца на М42 или М39, опять, это зависит от модели выбранного объектива.


Что-то массивное, для использования в качестве подставки. Я использовал шасси от старого лабораторного твердомера, которое купил в пункте сдачи металлолома по цене этого самого металлолома по весу.




А теперь, небольшая дополнительная информация по некоторым компонентам.

Модуль камеры: Не стоит гнаться за многомегапиксельным разрешением – у вас монитор с конечным разрешением в 1-2мегапикселя, и если купите модуль на 5мп, то улучшения картинки не получите, зато получите увеличение шумов, так как диагональ матрицы будет та же, но вот размер пикселей будет поменьше, и соответственно, шумов будет больше.



Еще важный момент – какая посадочная резьба у модуля камеры. Большинство имеют стандартную, C/CS Mount резьбу, но могут быть и варианты. В моем конкретном случае, у камеры была посадочная резьба в 27мм, но после моего уточнения, продавец (бесплатно), дополнил посылку переходной шайбой на C mount.


Если же вам нужно большее увеличение, чем дают стандартные 50мм объективы, то стоит посмотреть в сторону 85мм и 135мм объективов – они обеспечат комфортную работу с типоразмерами деталей 0402 и 0201 соответственно. К сожалению, фокусное расстояние в 85мм в советских объективах представлено только светосильными и дорогими Гелиос 40-2, Юпитер-9, МС Волна-9, но можно взять объектив от фотувеличителя — И90У, у него фокусное расстояние 75мм, но нет фокусировочного кольца. Если же вам нужно ещё большее увеличение, то стоит переходить на 135мм – советской (и не советской) оптики с этим фокусным расстоянием довольно много на вторичном рынке, и цены вполне доступные. В принципе, и с обычными, 50-60мм объективами можно добится нужного для пайки 0402 и 0201 увеличения, но для этого придётся ставить не одно, а два-три макрокольца, и сильно упадёт расстояние от камеры до детали – с 60см до 20-15см, что делает работу менее комфортной.

Про переходник ничего особенного сказать не могу. Главное, чтоб он, с одной стороны, подходил под вашу камеру, и с другой стороны – под ваш объектив. Процесс собирания микроскопа я бы начал с покупки объектива, а всё остальное – уже подбирать под стать ему. Я использовал самодельный переходник – купил на барахолке вместе с объективом. Разумеется, лучше купить заводской, если вам важен внешний вид.


Вес и прочность подставки – решающие звена в вопросе по качеству картинки. Хлипкая подставка — картинка будет плыть и дрожать, комфорта в работе не будет. так что, если у вас ничего подходящего купить не получается, вполне возможно воспользоваться несколькими кирпичами или шлакоблоками.

Аналогичные требования и к металлической трубе – она должна быть, с одной стороны, достаточно твёрдой, чтоб не прогибаться под весом камеры, и с другой стороны, она должна быть достаточно лёгкой, чтоб не опрокинуть подставку своим весом. При необходимости, можно снабдить трубу противовесом. Мне это не понадобилось, так как моя подставка весит в районе 20 кг.

На этом в принципе всё. Есть небольшая специфика по освещению. У меня рабочее место освещается сверху, стандартной LED панелью 60х60см, мощностью 40вт, но на светодиодах с Ra>97 и цветовой температурой 5500K. Такое освещение практически не даёт теней, и так как свет падает на плату практически прямо, то и отраженный свет тоже идёт прямо, и любые огрехи в пайке видны сразу. Но у такого подхода есть и минус — например, маркировка деталей, сделанная лазером, видна плохо, так как требует боковой подсветки для контраста. Но при боковой подсветке, могут появляться тени, что осложняет контроль за качеством пайки. В общем, решать вам, но в 99% случаев, верхний, рассеянный свет подходит для всех вариантов использования. Как всё это смотрится в реальной жизни, можете оценить на видео (с 0:49). Я специально снял его так, чтоб был бы вид как бы из головы — как вы будете видеть рабочее место и картинку на мониторе.


Микроскоп является довольно сложным оптическим прибором, с помощью которого можно производить наблюдения за невидимыми или плохо видимыми невооружённым глазом объектами. Любознательным людям он позволяет проникнуть в тайны “микрокосмоса”. Микроскоп можно попробовать сделать самим. Конструкций самодельных микроскопов довольно много и в этой статье мы рассмотрим одну из них.

Одна из наиболее удачных конструкций была предложена Л. Померанцевым. Для изготовления микроскопа вам нужно приобрести в аптеке или оптическом магазине две одинаковые линзы по +10 диоптрий, желательно диаметром около 20 миллиметров. Одна линза нужна для окуляра микроскопа, другая – для объектива. Но прежде давайте разберёмся в единицах измерения линз.

Что такое диоптрия линзы

Диоптрия – единица оптической силы (рефракции) линзы, обратная фокусному расстоянию. Одна диоптрия соответствует фокусному расстоянию в 1 метр, две диоптрии – 0,5 метра и т.д. Для определения числа диоптрий надо 1 метр разделить на фокусное расстояние данной линзы в метрах. И наоборот, фокусное расстояние можно определить, разделив 1 метр на число диоптрий. Фокусное расстояние линзы +10 диоптрий равно 0.1 метра или 10 сантиметрам. Знак плюс обозначает собирательную линзу, знак минус – рассеивающую.

Как смастерить самодельный микроскоп

Из бумаги склейте трубку длиной десять сантиметров по диаметру линз. Затем разрежьте её пополам, чтобы получились две трубки длиной по пять сантиметров. В них вставьте линзы.

В один конец каждой трубки вклейте картонное или склеенное из узкой полоски бумаги колечко с отверстием диаметром десять миллиметров. На это колечко изнутри положите линзу и прижмите её картонным цилиндриком, смазанным клеем. Внутри трубка и цилиндрик должны быть окрашены чёрной тушью. (Это надо сделать заранее)

Обе трубки вставьте в тубус – третью трубку длиной 20 сантиметров и таким диаметром, чтобы трубки окуляра и объектива входили в него туго, но могли передвигаться. Внутри тубус также должен быть окрашен в чёрный цвет.

На листе фанеры начертите две концентрические окружности: одну радиусом 10 сантиметров, другую радиусом 6 сантиметров. Получившийся круг выпилите, и разрежьте по диаметру на две части. Из этих полукругов сделайте корпус микроскопа С-образной формы. Полукруги соединяют тремя деревянными колодочками, толщиной 3 сантиметра каждая.

Верхняя и нижняя колодочки должны быть длиной по 6 и шириной по 4 сантиметра. Они выступают на 2 сантиметра за внутренний край фанерных полукругов. На верхней колодочке закрепите тубус с трубками и регулировочный винт. Для тубуса в колодочке вырежьте желобок, а для регулировочного винта просверлите сквозное отверстие и выдолбите квадратное углубление.


А – трубка с линзами; Б – тубус; В – корпус микроскопа; Г – соединительные колодочки; Д – регулировочный винт; Е – предметный столик; Ж – диафрагма; З – зеркальце; И – подставка.

Регулировочный винт – это деревянный стерженёк, на который туго насажен цилиндрик, вырезанный из резинки для карандаша или из намотанной изоляционной ленты. Лучше всего для этой цели использовать небольшой отрезок подходящей резиновой трубки.

Сборка винта производится так. Колодочку разрезаем по длине пополам. В отверстие одной половины продеваем стрежень винта, насаживаем на него, резиновый цилиндрик, затем другой конец продеваем в отверстие второй половины колодочки и склеиваем обе половины. Резиновый цилиндрик должен поместиться в квадратном углублении и свободно в нем вращаться. Колодочку с винтом приклеиваем к фанерным полукругам, сделав на концах их вырезы для стрежня винта. На концы стержня насаживаем ручки – половинки катушки от ниток.

Теперь тубус с трубками прикрепите к колодочке с помощью скобы, выгнутой из жести. Предварительно в скобе сделайте вырезы для винта и прибейте её или привинтите шурупами к колодочке.

Резиновый цилиндрик регулировочного винта должен плотно прижиматься к тубусу при вращении винта тубус будет медленно и плавно передвигаться вверх и вниз.

Микроскоп можно сделать и без регулировочного винта. В этом случае тубус достаточно приклеить к верхней колодочке, а наводить прибор на предмет только передвижением трубок с линзами в тубусе.

К нижней колодочке сверху прибейте или приклейте предметный столик – фанерную пластинку с отверстием диаметром около 10 миллиметров посредине. По бокам отверстия прибейте две выгнутые полоски жести – зажимы, которые будут придерживать стёклышко с рассматриваемым препаратом.

Снизу к предметному столику прикрепите диафрагму – деревянный или фанерный кружочек, в котором по окружности просверлите четыре отверстия разных диаметров: например, 10, 7, 5 и 2 миллиметра. Диафрагму закрепите гвоздём так, чтобы её можно было вращать и чтобы её отверстия при этом совпадали с отверстием предметного столика. С помощью диафрагмы изменяют освещение препарата, регулируют толщину пучка света.

Размеры предметного столика могут быть, например, 50х40 миллиметров, размер диафрагмы – 30 миллиметров. Но эти размеры можно или увеличить или уменьшить.

Ниже предметного столика к той же колодочке прикрепите зеркальце размером 50х40 или 40х40 миллиметров. Зеркальце приклеивают к дощечке, по бокам в неё забивают два гвоздика без шляпок (патефонные иголки). Этими гвоздиками дощечка вставляется в отверстие жестяной скобочки, привинченной шурупом к колодочке. Благодаря такому креплению зеркальце можно поворачивать – устанавливать с разным наклоном, направляя пучок света на отверстие предметного столика.

Третьей соединительной колодочкой корпус микроскопа прикрепите к подставке. Её можно вырезать из толстой доски любых размеров. Важно, чтобы микроскоп держался на ней устойчиво, не шатался. Снизу на колодочке вырежьте прямой шип, а в подставке выдолбите гнездо для него. Шип смажьте клеем и вставьте в гнездо.

Регулируют микроскоп, поворачивая зеркальце, передвигая винтом тубус и трубки с линзами в тубусе, увеличивая изображение в 100 раз и более.

3 комментария к “ Как сделать микроскоп в домашних условиях. Конструкция микроскопа из линз ”

Сделаю такой ребенку, а то он мой рабочий микроскоп sititek постоянно берет для своих опытов. Я думаю, на первое время будет вполне достаточно и такой модели.

В статье расскажем как сделать как сделать микроскоп своими руками с увеличением х200, пошаговая инструкция и результатами экспериментов: луковая кожица, кровь, лист.

Здравствуйте! все, вы когда-нибудь мечтали исследовать микроскопический мир? Могу поспорить, что большинство из вас скажет ДА! Но инструменты, которые требуются, очень дорогие. Но есть решение, которое дает достойные результаты, которое будет стоить всего несколько долларов. Микроскопы используют линзы высокой мощности, чтобы сделать изображение с большим увеличением. Просто если у нас есть мощный объектив мы сможем это сделать. В обычных микроскопах изображение сфокусировано прямо на наших глазах. Это требует очень сложной конструкции линзы. Используя смартфон и мощный объектив, мы можем сделать это очень простым способом. Просто нужно держать объектив перед камерой смартфона, прикасаясь друг к другу. Затем через камеру вы можете увидеть сильно увеличенное изображение. Но для того, чтобы постоянно наблюдать за образцом, мы должны создать установку. Итак, давайте приступим!

Подготовка объектива

В этом проекте мы используем линзы высокой мощности, эти линзы очень дороги на рынке. Но мы можем найти их в головке устройства чтения DVD / CD. На самом деле они обладают высокой способностью увеличения для считывания записанных данных в микромасштабе.

Как показано на изображениях, безопасно снимите линзу с ридера. Даже небольшая царапина испортит его.

Материалы и инструменты

В этом проекте мы собираемся использовать объектив высокой мощности, который можно найти в DVD/CD-ридере с камерой смартфона, чтобы получить сильно увеличенное изображение. В списке материалов я упомянул медную доску, она понадобится для подставки под смартфон. Можно использовать любой материал.

Материалы:

1. 1/2 дюйма ПВХ трубы (около 20 см)

2. Стеклянный лист — около 25 см х 16 см

3. 2 мм диаметром 1 ‘1/2 дюйма длиной гайки и болта

4. Медная доска или Акрил

5. Объектив от DVD/CD-ридера

6. Акриловый клей

Инструменты:

1. Ножовочная пила

3. Горячий клеевой пистолет

Платформа для телефона


Чтобы получить четкое представление об образце, нам нужно, чтобы вся установка была устойчивой. Для этого мы используем медный лист, чтобы он соответствовал смартфону. Размеры листа будут всего на 2 мм больше, чем у смартфона по длине и ширине

Теперь у нас есть платформа, которая подходит для нашего смартфона. Следующий шаг — сделать отверстия для объектива и четыре винта. Перед этим я должен кое-что рассказать о дизайне. Для держателя телефона требуется механизм, позволяющий идеально сфокусировать установку на наблюдаемом образце. Для этого я буду использовать четыре винта, которые позволят изменить расстояние между линзой и образцом. Эти винты будут размещены в четырех углах платы держателя. При сверлении отверстия для камеры уделите время и отметьте точку, где находится камера.

После сверления отверстий самое время поместить четыре гайки болтов в углы. С помощью сильного клея поместите их идеально выровненными. Следите за тем, чтобы клей не пролился на резьбу винтов.

После установки четырех гаек самое время разместить линзу. Перед установкой линзы очистите неровные края просверленного отверстия. Затем поместите линзу на просверленное отверстие. 2 мм отверстие идеально облегают линзу и она не падает. Затем приклейте линзу небольшим количеством клея. Это очень сложная часть. Будьте осторожны, любое крошечное смещение может привести к ложному результату. Подставка для телефона готова!

Создание подиума для микроскопа

До этого момента мы завершили держатель. Итак, теперь нам нужна подиум для образца. Я выбрал стеклянную пластину для этой цели. Это позволяет помещать образец непосредственно на подиум. В то время как смартфон может свободно перемещаться и наблюдать любую часть образца. Это может немного запутать вас, но это будет ясно на изображениях.

Для того, чтобы видеть через этот микроскоп, нам нужно освещение. Чтобы освободить место для освещения, я поднял сцену с помощью четырех труб из ПВХ, нарезанных на одинаковую длину около 5 см. Затем мы устанавливаем метод освещения под стеклянной сценой. В моем случае Я использую фонарик телефона. Это легко и идеально подходит для этого проекта. Я испробовал много источников света, но смартфон-фонарик дал лучшие результаты.

Проверяем наш самодельный микроскоп

Теперь у нас есть готовый микроскоп. Посмотрим, как с этим работать. Прежде всего мы должны сбалансировать платформу телефона. Для этого, повернув четыре винта, вы можете изменить высоту держателя телефона. Держите высоту примерно на 2-3 мм. Хорошо, теперь вы должны поместить камеру вашего телефона идеально выровненной с объективом на платформе телефона. Это можно сделать, включив приложение камеры и выровняв его до получения идеального изображения.

После этого нам нужен образец для наблюдения. Как вы можете видеть на изображении, я поместил 2 луковичные ткани. Поскольку у нас достаточно места, можно разместить более одного образца. Затем включите вспышку. Теперь вы можете сдвинуть платформу телефона на стекло, пока изображение с камеры не покажет сфокусированное изображение ткани. Фокусировка может быть выполнена с помощью двух винтов, которые наиболее близко расположены к камере.

Результаты экспериментов под самодельным микроскопом

Вы не поверите результатам этого микроскопа. Трудно поверить, что возможно получить такие результаты с помощью этого простого микроскопа DIY. Примерно увеличение составляет около 200x. Ниже будут результаты под данным самодельным микроскопом.

Луковая кожица под микроскопом

клеточные стенки и ядрышки хорошо видны.

Верхний слой эпидермиса листа под микроскопом


Клетка крови под микроскопом своими руками

Клетки крови кажутся красными, когда они слипаются. В распределенном виде они могут быть видны как маленькие пузырьки или рыбья икра.

Котовский 25.09.2010 16:58

Спасибо Анатолий за Ваш труд! У меня тоже телескоп-самоделка! МТО-1000 (телеобъектив для фотоаппарата "Зенит" фокусное расстояние 1 метр)и плюс окуляр-объектив с микроскопа. Над Луной летишь. Спутники Юпитера. Но это всё фигня по сравнению с энтузиастами изготовляющими своими руками зеркала для телескопов (есть у меня такая книжечка), умом надо тронуться. :-))

Всего Вам доброго! С уважением!

Мне пора! Потом почитаю Ваше. Инструмент для меня святое. Догадываетесь о чём это я.

Может ли получиться подзорная труба своими руками в домашних условиях? Конечно, сейчас в магазине можно купить любую оптику, но если вы хотите порадовать себя и своего ребёнка, изготовить такую поделку дома вполне реально. Главное — иметь под рукой подходящие линзы (стёкла) и изучить принцип работы простой трубы для наблюдений.

Подзорная труба своими руками

Начинаем работу!

Итак, в конструкцию самой простой увеличительной трубы входят два стекла (или линзы). Одна будет выполнять роль объектива, а из второй мы сделаем окуляр. Оба стёклышка должны быть двояковыпуклыми, а вычислять увеличение прибора следует согласно отношению расстояний фокусов окуляра (f) и объектива (F). Это выглядит так: K = F/f .

Стекла и линзы

Самый лучший вариант — стёкла от старых очков, желательно круглого формата, чтобы не было необходимости дополнительно их обрабатывать. Также подойдут:

  • стёкла от часовых луп;
  • линзы от старых фотоаппаратов;
  • стекло от кинопроектора и т. д.

Как провести измерения?

Измерение фокусного расстояния

Теперь возьмите линейку и замерьте расстояние от стёклышка до белого листка. Так получается искомый фокус. Для того чтобы провести вычисления максимально точно, понадобится помощник. Кстати, к процессу изготовления домашней подзорной трубы можно привлечь и ребёнка, который с удовольствием поможет в работе, а заодно многому научится.

Таким образом происходит простая подборка и объектива, и окуляра. После того как подбор линз и все измерения будут закончены, приступайте к сборке оптической конструкции. Вначале нужно взять одной рукой линзу для объектива, а другой — линзу для окуляра и рассмотреть какой-нибудь объект через оба стекла. Лучше, если он будет удалён от вас на несколько метров, но не забывайте о том, что наводить стёкла прямо на Солнце опасно для зрения.

Аккуратно перемещайте объектив и окуляр так, чтобы их условная оптическая ось оставалась примерно на одном месте. Так вы добьётесь максимально чёткой картинки.

Как правильно ориентировать картинку?

Собираем готовую трубу

Теперь можно начать собирать трубу. Из плотных листов ватмана сверните два тубуса для окуляра и объектива и скрепите их прочными резинками. Стёкла, помещённые внутрь тубусов, зафиксируйте пластилином. Перед тем как окончательно собрать конструкцию, не забудьте выкрасить внутреннюю сторону листов ватмана сплошной чёрной краской, чтобы исключить внешнюю засветку.

Читайте также: