Как сделать чтобы объект не проходил сквозь стены в unity

Добавил пользователь Евгений Кузнецов
Обновлено: 21.08.2024

Я создаю 3D-игру для Android от третьего лица в Unity. Я настроил сценарий бесплатного просмотра при касании, чтобы перемещать камеру вокруг игрока. Ниже приведен код. Но камера, следующая за моим игроком, движется сквозь стены и объекты, проходящие между игроком и камерой. Я хочу, чтобы камера настраивалась сама, если она сталкивается с объектом (камера не является потомком моего игрока). То, что я пробовал, но не помогло:

Применение коллайдера коробки / твердого тела / материала к камере

Создание пустого игрового объекта-родителя камеры и применение коллайдера / твердого тела / материала к этому игровому объекту

Я работаю над единством SDK с расширенной реальностью Кудана. Я видел учебники, в которых объекты кажутся статическими, но когда я пытался, чтобы объекты продолжали вращаться, которые не соответствуют моим требованиям, и я не могу остановить вращение. Если вы поможете остановить вращение, я буду благодарен вам!

Вы имеете в виду, что объект вращается относительно вашего собственного вращения телефона? Я столкнулся с этой проблемой, желая разместить двумерную плоскость перпендикулярно камере в Кудане без маркерного отслеживания. В зависимости от моего собственного вращения он будет поддерживать плоскость в одной и той же мировой ориентации, так что при разных поворотах она не будет перпендикулярной. Я решил это путем жесткого кодирования перевода ориентации, когда объект Augment активирован с помощью MarkerlessTransformDriver.

Я думаю, вы должны использовать безэкспериментальную дополненную реальность для этого и он не требует каких-либо sdk для этого только строк кода

Полный спектр компьютерных услуг!

' width='8' height='8' /> Внимание!

Рекламное место сдается


Decker


Мой странный творческий путь занес меня в разработку игр. Благодаря отличной студенческой программе от IT-компании, название которой СостоИт из одной Греческой МАленькой буквы, сотрудничающей с нашим университетом, удалось собрать команду, родить документацию и наладить Agile разработку игры под присмотром высококлассного QA-инженера (здравствуйте, Анна!)

Без особо долгих размышлений, в качестве движка был выбран Unity. Это замечательный движок, на котором действительно быстро и легко можно сделать очень плохую игру, в которую, в здравом уме, никто и никогда не будет играть. Чтобы создать хорошую игру, все же придется перелопатить документацию, вникнуть в некоторые особенности и набраться опыта разработки.

Наша игра использовала физический движок неожиданным для него способом, что породило множество проблем с производительностью на мобильных платформах. В этой статье, на примере нашей игры, описана моя борьба с физическим движком и все те особенности его работы, которые были замечены на пути к жизнеспособной бета-версии.

Гифка с игрой

Пару слов о том, как она сделана.

Сделана с помощью Blender и пары скриптов на питоне. На время съемки, в углу экрана находились 16 квадратиков, цвет которых кодировал 32 бита числа с плавающей запятой — вращение телефона в данный момент времени. R, G — данные, B — четность. 0 — 0, 255 — 1. Снятое на компьютере видео разбивалось на кадры с помощью ffmpeg, каждому кадру рендера в соответствие ставился расшифрованный угол. Такой формат позволил пережить любое сжатие в процессе съемки и поборол тот факт, что все программы имеют несколько разные представления о течении времени. В реальности игра играется так же как и на рендере.

Самолетик летит по бесконечной и непредсказуемой пещере, в которой есть бонусы, всякие монетки и враги, в которых можно стрелять самонаводящимися ракетами. Врезался в стену — сразу проиграл.

Отличительная особенность игры в том, что уровень прибит к горизонту и управление в ней гироскопическое, причем, абсолютное. Наклонил телефон на 45 градусов — самолетик полетел под углом 45 градусов. Нужно сделать мертвую петлю — придется крутить планшет. Никакой чувствительности нет, только хардкор.

Выделим две основные и очевидные проблемы для разработчика:

Проблема 1: Бесконечность

Unity хранит и обрабатывает координаты объектов в виде обычных 32-битных float, имеющих точность где-то до 6 знака после запятой. Проблема в том, что игра у нас бесконечная и, если мы достаточно долго будем лететь, начнутся различного рода безумные баги, вплоть до телепортации сквозь стены. Есть несколько подходов к решению этой проблемы:

В нашем случае, единственный допустимый вариант — третий, который и был реализован. О реализации — чуть позже.

Первый — игнорирование — абсолютно недопустим. Создание робота, который сможет вечно играть в нашу игру — интересная (и весьма простая) задача, которую кто-нибудь решит. Да и обычных корейских игроков недооценивать не стоит — самолетик быстрый, уровень генерируется непредсказуемо. И если до прохождений сквозь стены лететь и лететь, то куда более точная стрельба начнет очевидно подглючивать уже через 5 минут полета.

Второй — телепортация игрока и всего мира — ставит мобильные устройства на колени, в некоторых случаях — где-то на полсекунды. Это очень заметно, а потому — недопустимо. Но это вполне приемлемый вариант для простеньких бесконечных игр для ПК.

Проблема 2: Генерация уровня

Есть несколько основных подходов к строительству endless runner'ов:

  1. Использование готовых сегментов уровня, которые стыкуются случайным образом. Так сделано, например, в Subway Surfers. Это просто реализовать, но игрок к этому быстро привыкает и знает, к чему готовиться, что скучно.
  2. Уровень — просто прямая, на которой случайным образом расставляются препятствия. Так сделано в Joypack Joyride и Temple Run. В нашем случае, это сильно ограничило бы количество маневров.
  3. Все генерируется случайным образом. Самый сложный, непредсказуемый и интересный для игрока вариант.

Конечно же, мы выбрали самый сложный вариант. В его сердце находится весьма сложная машина состояний, которая выполняет по ним случайные переходы. Но в рамках данной статьи интересен не механизм, а процесс генерации уровня и его организация, с учетом выбранной точки отсчета.

Структура уровня

Летим мы в пещере, она имеет пол и потолок — пару блоков, элементарных строительных единиц. Блоки объединяются в сегменты, которые бесшовно стыкуются друг с другом. Сегменты, как единое целое, вращаются вокруг самолета и двигаются по его вектору скорости, создавая иллюзию полета. Если сегмент выходит из поля зрения камеры — он очищается от блоков, пристыковывается к последнему сегменту уровня и заполняется новыми блоками, согласно указаниям генератора. Совокупность таких сегментов — и есть уровень.

Опытные Unity-разработчики могли вполне оправданно поморщиться, прикинув объем работ и все возможные подводные камни. Но на словах все просто, а опыта разработки у меня не было…

Основные Законы Физики в Unity

За месяц разработки, экспериментов и чтения документации, я выделил три основных закона физики в Unity. Их можно нарушать, но плата за нарушение — производительность. Движок никак не будет предупреждать вас о допущенной ошибке, а без профайлера вы можете никогда о них и не узнать. Несоблюдение этих законов может замедлить вашу игру в десятки раз. Как я понял, нарушение любого закона приводит к тому, что физический движок помечает коллайдер-нарушитель как некорректный и пересоздает его на объекте, с последующим пересчетом физики:

1. Коллайдеры не должны двигаться, вращаться, включатьсявыключаться и менять размер.

Как только вы добавили коллайдер на объект — забудьте про какое-либо воздействие на него или объекты, в которых он содержится. Обычный коллайдер — исключительно статический объект. Дерево, например, может быть с одним коллайдером. Если дерево может упасть на игрока — дерево будет падать вместе с производительностью. Если это дерево растет из волшебного питательного облака, которое коллайдера не имеет, но может перемещаться — это будет сопровождаться падением производительности.

2. Если объект движется или вращается — он должен быть твердым телом т.е. иметь компонент Rigidbody.

Про это написано в документации, да. Которую не обязательно вдумчиво читать, чтобы начать делать игру, потому Unity очень прост и интуитивно понятен.

Rigidbody меняют отношение физического движка к объекту. На него начинают воздействовать внешние силы, он может иметь линейную и угловую скорости, а самое главное — твердое тело может двигаться и вращаться средствами физического движка, не вызывая полный пересчет физики.

Существует два типа твердых тел — обычные и кинематические. Обычные тела взаимодействуют друг с другом и обычными коллайдерами — одно тело не может пройти сквозь другое. Кинематические тела следуют упрощенным правилам симуляции — на них не воздействуют никакие внешние силы, гравитация — в том числе. Они свободно могут проходить через что угодно.

Если объекты не жалко отдать под контроль физического движка — используйте обычные твердые тела. Например, если вам нужно красиво скатить камни со скалы. Если ваши скрипты или аниматоры управляют объектом напрямую — используйте кинематические тела, так вам не придется постоянно бороться с движком и случайными столкновениями объектов. Например, если у вас анимированный персонаж или управляемая ракета, взрывающаяся при контакте с чем-то.

3. Если объект является твердым телом — двигаться и вращаться он должен через методы твердого тела.

Есть три уровня управления твердым телом:


— Самый высокий и, следовательно, естественный, уровень — через силы. Это методы AddForce и AddTorque. Физический движок учтет массу тела и правильно посчитает результирующую скорость. Все взаимодействия тел происходят на этом уровне.

— Самый низкий уровень — непосредственно координаты объекта и его ориентация в пространстве. Это методы MovePosition и MoveRotation. На следующей итерации вычисления физики (это важно, поскольку каждый последующий вызов метода в рамках одного кадра заменяет вызов предыдущего) они выполняют телепортацию объекта в новое положение, после которой он живет как раньше. В нашей игре используется именно этот уровень, и только он, потому что он предоставляет полный контроль над объектом.

Что остается за бортом? Включениевыключение объекта и масштаб. Я не знаю, есть ли способ изменить размер объекта, не смущая движок. Вполне возможно, что нет. Выключение объекта проходит безболезненно, а включение… да, вызывает пересчет физики, в окрестностях включенного объекта. Поэтому старайтесь не включать одновременно слишком много объектов, растяните этот процесс во времени, чтобы пользователь не заметил.

Есть закон, не влияющий на производительность, но влияющий на работоспособность: твердое тело не может быть частью твердого тела. Родительский объект будет доминировать, поэтому ребенок будет или стоять на месте относительно родителя, или вести себя непредсказуемо и неправильно.

Есть еще одна особенность Unity, не относящаяся к физике, но достойная упоминания: динамическое создание и удаление объектов через методы Instantiate/Destroy — БЕЗУМНО медленный процесс. Я боюсь себе даже представить, что там происходит под капотом во время создания объекта. Если вам нужно создавать и удалять что-то динамически — используйте фабрики и заправляйте их нужными объектами во время загрузки игры. Instantiate должен вызываться в крайнем случае — если у фабрики вдруг закончились свободные объекты, а про Destroy забудьте навсегда — все созданное должно использоваться повторно.

Применение законов на практике

(в этом разделе находится ход рассуждений при создании игры и ее особенности)

Уровень, очевидно, должен вращаться и двигаться.

Облегчим себе жизнь навечно, разместив ось вращения уровня — самолетик — в начале координат. Теперь мы сможем вычислять расстояние от точки до него, вычисляя длину вектора координат точки. Мелочь, а приятно.

Совместное движение объектов легко реализуется через иерархию объектов в Unity, потому что дети являются частью родителя. Например, описанная структура уровня логично реализуется следующим образом:

- - - - Блок 1 (Collider)

(Можно даже обойтись без объекта уровня)

Скрипт на оси получает данные с гироскопа и выставляет ей соответствующий угол… И нарушает сразу множество правил, потому что вращение передастся по иерархии на коллайдеры, что сведет физический движок с ума. Придется делать ось твердым телом и вращать ее через соответствующий метод. Но что с движением уровня? Очевидно, что ось вращения и объект уровня перемещаться не будут, каждый сегмент нужно двигать персонально, иначе мы сталкиваемся с проблемой бесконечности. Значит, твердыми телами должны быть сегменты. Но у нас уже есть твердое тело выше в иерархии и твердое тело не может быть частью твердого тела. Логичная и элегантная иерархия не подходит, все придется делать руками — и вращение, и перемещение, без использования объекта для оси вращения. Будьте готовы к такому, если у вас уникальные геймплейные фичи.

У нас есть враги, которые отталкивают самолет в стену, надеясь убить. Есть щит, который отталкивает самолет от стен, помогая выжить. Реализовано это тривиально — есть вектор смещения, который каждый кадр прибавляется к координатам каждого сегмента и сбрасывается после этого. Любой желающий пнуть самолетик, через специальный метод, может оставить вектор своего пинка, который прибавится к этому вектору смещения.

В конечном итоге, настоящие координаты сегмента, каждый кадр, вычисляются центром управления движением уровня как-то так:

Vector3 position = segment.CachedRigidbody.position;
Vector3 deltaPos = Time.deltaTime * Vector3.left * settings.Speed;
segment.truePosition = Quaternion.Euler( 0, 0, deltaAngle ) * ( position + deltaPos + movementOffset );

После всех вычислений и костылей, необходимых для работы точной стыковки сегментов при регенерации, segment.truePosition отправляется в метод MovePosition твердого тела сегмента.

Насколько все это быстро работает? На старых флагманах — Nexus 5 и LG G2 — игра летает на 60 FPS, с еле заметной просадкой во время включения новых коллайдеров во время генерации сегмента (это неизбежно и никак не обходится) и выдвигания червяков из земли (можно нагородить какой-то ад, чтобы это обойти, но сейчас там осознанное нарушение третьего закона). 40 стабильных FPS выдает любое устройство с гироскопом, которое нам попадалось. Без знания и учета всех законов, производительность была, мягко сказать, неудовлетворительной и телефоны перегревались. Настолько, что я думал написать свой простенький специализированный движок для 2д-физики. К счастью, физика в Unity оказалось достаточно гибкой, чтобы все проблемы можно было обойти и создать уникальную игру, достаточно было лишь пары недель экспериментов.

Теперь, зная все главные подводные камни физического движка Unity, вы сможете быстро склонировать нашу игру, разрушив мечты, жизни и веру трех бедных студентов в человечество. Я надеюсь, эта статья сэкономит вам много времени в будущем и поможет найти не совсем очевидные нарушения законов производительной физики в своих проектах.

Читайте документацию и экспериментируйте, даже если пользуетесь простыми и интуитивно понятными инструментами.

Unity - Полное руководство для начинающих по разработке игр 🔥

🎮 Игры

Unity - отличный инструмент для создания прототипов всего, от игр до интерактивных визуализаций. В этой статье мы рассмотрим все, что вам нужно знать, чтобы начать использовать Unity.

Вступление

Эта статья предназначена для всех, кто никогда раньше не использовал Unity, но имеет некоторый опыт программирования или веб-дизайна / разработки. К концу этой статьи у вас должен быть хороший общий обзор движка, а также всех необходимых функций и кода для начала создания базовой игры.

Почему Unity?

Если вы хотите делать игры

Когда дело доходит до разработки инди-игр, вариантов действительно очень мало. Если вы хотите создавать игры, есть три основных варианта: Unreal, Unity или GameMaker.

Unity, вероятно, наименее упрямая из трех платформ. Он дает вам очень сырой продукт из коробки, но он очень гибкий, хорошо документированный и расширяемый для создания практически любого жанра игры, о котором вы только можете подумать.

В Unity есть множество очень успешных игр, таких как Escape from Tarkov (FPS), Monument Valley (Puzzler) и This War of Mine (Стратегия / Выживание).

На самом деле движок, на котором вы создаете свою первую игру, вероятно, не критичен, поэтому мой совет — просто выберите один и используйте его.


Если вы хотите прототипировать пользовательский опыт

Поскольку Unity — это всего лишь движок с кучей физики, анимации и 3D-рендеринга в реальном времени, это также отличное место для создания полноценных интерактивных прототипов для исследований UX.

Unity полностью поддерживает VR и AR и, следовательно, может стать отличным инструментом для изучения архитектуры, автоматизации и моделирования с помощью клиентов.

Окно редактора Unity

Окно редактора разделено на несколько разделов. Мы расскажем об этом очень кратко, так как будем постоянно к нему обращаться на протяжении всей статьи. Если вы уже знакомы с этим, пропустите мимо!

Просмотр сцены: позволяет размещать и перемещать игровые объекты в сцене.

Просмотр игры: предварительный просмотр того, как игрок будет видеть сцену с камеры.

Инспектор: предоставьте подробную информацию о выбранном GameObject в сцене.

Assets / Project: здесь хранятся все префабы, текстуры, модели, скрипты и т. Д.

Иерархия: позволяет вложение и структурирование игровых объектов внутри сцены.

Теперь мы готовы начать!

Объекты Unity Game

Что такое GameObjects

Если у вас есть опыт веб-дизайна, вы можете думать о GameObjects как о элементах

! Чрезвычайно скучные контейнеры, но они легко расширяемы для создания сложной функциональности или визуальных эффектов.

Буквально все, от эффектов частиц, камер, игроков, элементов пользовательского интерфейса… (список продолжается) — это GameObject.

Создание иерархии

для создания разнообразных и желаемых макетов или абстракций, вы можете сделать то же самое с игровыми объектами.Логика вложения игровых объектов во многом такая же, как и при веб-разработке, я приведу несколько примеров …

Беспорядок и эффективность

Веб-аналогия: у вас есть много похожих элементов, которые могут динамически генерироваться на лету в ответ на взаимодействие с пользователем, и вы хотите, чтобы они оставались аккуратными.

Позиционирование

Unity Translation: вы создали группу дронов-помощников, которые летают вокруг игрока. На самом деле вы бы не стали писать код, чтобы они гонялись за игроком, поэтому вместо этого вы создаете их как дочерние элементы игрового объекта player.

Встроенные компоненты Unity

Компонентная модель актера

Unity работает на основе модели компонентов акторов, проще говоря, GameObjects — это актеры, а компоненты — ваши скрипты.

Если вы писали какие-либо веб-приложения раньше, вы будете знакомы с идеей создания небольших повторно используемых компонентов, таких как кнопки, элементы форм, гибкие макеты, которые имеют различные директивы и настраиваемые свойства. Затем собираем эти маленькие компоненты в большие веб-страницы.

Большим преимуществом этого подхода является возможность повторного использования и четко определенные каналы связи между элементами. Точно так же при разработке игр мы хотим минимизировать риск непреднамеренных побочных эффектов. Небольшие ошибки имеют тенденцию выходить из-под контроля, если вы не будете осторожны, и их чрезвычайно сложно отладить. Таким образом, создание небольших, надежных и повторно используемых компонентов имеет решающее значение.

Ключевые встроенные компоненты

Думаю, пришло время привести несколько примеров встроенных компонентов, предоставляемых движком Unity Games.

  • MeshFilter: позволяет назначать материалы для 3D-сетки GameObject.
  • MeshRender: позволяет назначать материалы 3D-сетке.
  • [Коробка | Mesh] Collider: позволяет обнаруживать GameObject во время столкновений.
  • Rigidbody: позволяет реалистичному физическому моделированию воздействовать на GameObjects с 3D-сетками и запускать события обнаружения на коллайдерах боксов.
  • Свет: освещает части вашей сцены.
  • Камера: определяет область просмотра игрока, которая будет прикреплена к GameObject.
  • Различные компоненты холста пользовательского интерфейса для отображения графического интерфейса пользователя

Их еще много, но это основные, с которыми вам нужно познакомиться. Один совет заключается в том, что вы можете получить доступ ко всем документам по ним через руководство по Unity и справочник по сценариям в автономном режиме, где бы вы ни находились:

Создание пользовательских компонентов

Структура моноповедения

Ключевые функции

Все компоненты наследуются от класса MonoBehaviour. Он включает в себя несколько стандартных методов, главное:

  • void Start (), который вызывается всякий раз, когда объект, содержащий скрипт, создается в сцене. Это полезно в любое время, когда мы хотим выполнить некоторый код инициализации, например. установить экипировку игрока после того, как он появится в матче.
  • void Update (), который вызывается каждый кадр. Это то место, где будет выполняться основная часть кода, включающего пользовательский ввод, обновляющего различные свойства, такие как движение игрока в сцене.

Переменные инспектора

Часто мы хотим сделать компоненты максимально гибкими. Например, все оружие может иметь разный урон, скорострельность, has_sight и т. Д. Хотя все оружие, по сути, одно и то же, мы можем захотеть иметь возможность быстро создавать различные вариации с помощью редактора единства.

Другой пример, когда мы можем захотеть это сделать, — это создание компонента пользовательского интерфейса, который отслеживает движения мыши пользователя и помещает курсор в область просмотра. Здесь мы можем захотеть контролировать чувствительность курсора к движениям (если пользователь использовал джойстик или геймпад, а не компьютерную мышь). Таким образом, имеет смысл сделать эти переменные легко изменяемыми как в режиме редактирования, так и поэкспериментировать с ними во время выполнения.

Переменные в окне инспектора можно изменить в любой момент во время выполнения или в режиме редактирования. Примечание. Изменения, внесенные во время выполнения, не будут постоянными.

Мы можем сделать это легко, просто объявив их как общедоступные переменные в теле компонента.

Обратите внимание, как мы можем сделать переменные с разными уровнями доступа, частными, общедоступными или общедоступными, но не отображаемыми в окне инспектора.

Принятие пользовательского ввода

Конечно, мы хотим, чтобы наша игра реагировала на ввод пользователя. Наиболее распространенные способы сделать это — использовать следующие методы в функции Update () компонента (или в любом другом месте, которое вам нравится):

Управление игровыми объектами

Трансформации

Все GameObjects имеют свойство transform, которое позволяет выполнять различные полезные манипуляции с текущим игровым объектом.

Вышеупомянутые методы довольно понятны , просто обратите внимание, что мы используем gameObject в нижнем регистре для ссылки на GameObject, которому принадлежит этот конкретный экземпляр компонента.

В общем, рекомендуется использовать локальное [Положение, Вращение], а не глобальное положение / поворот объекта. Обычно это упрощает перемещение объектов разумным образом, поскольку ось локального пространства будет ориентирована и центрирована на родительском объекте, а не на мировом начале координат и направлениях x, y, z.

Преимущества локального пространства станут немного более очевидными с диаграммой!

Если вам нужно преобразовать между локальным и мировым пространством (что часто бывает), вы можете использовать следующее:

Создание новых игровых объектов

Поскольку GameObjects — это в основном все в вашей сцене, вы можете иметь возможность генерировать их на лету. Например, если у вашего игрока есть какая-то пусковая установка для снарядов, вы можете захотеть создавать снаряды на лету, у которых есть собственная инкапсулированная логика для полета, нанесения урона и т. Д.

Сначала нам нужно ввести понятие префаба . Мы можем создать их, просто перетащив любой GameObject в иерархии сцены в папку с ресурсами.

По сути, это хранит шаблон объекта, который только что был в нашей сцене, со всеми теми же конфигурациями.

Пример пользовательского объекта-кирпича, который используется для динамического создания кубиков Lego в сцене, к нему прикреплен набор компонентов с различными значениями по умолчанию.

Когда у нас есть эти сборные компоненты, мы можем назначить их переменным инспектора (как мы говорили ранее) для любого компонента в сцене, чтобы мы могли создавать новые GameObject, как указано в сборке, в любое время.

Доступ к другим игровым объектам и компонентам

После этого вы можете получить доступ к любому из общедоступных методов / переменных компонента, чтобы управлять GameObject. Это простой момент, однако на самом деле получить ссылку на GameObject можно несколькими способами …

Доступ через переменную инспектора

Это самый простой способ. Просто создайте общедоступную переменную для GameObject, как мы продемонстрировали ранее с префабами, и вручную перетащите ее на компонент через инспектор. Затем перейдите к переменной, как указано выше.

Доступ через теги

Мы можем пометить GameObjects или prefabs через инспектор, а затем использовать функции поиска игровых объектов, чтобы найти ссылки на них.

Доступ через преобразование

Доступ через SendMessage

Raycasting

Есть два сценария, в которых это может пригодиться (вероятно, их гораздо больше):

Обнаружение столкновений

Ранее мы упоминали компоненты Collider и Rigidbody, которые можно добавить к объекту. Правило для столкновений состоит в том, что один объект в столкновении должен иметь твердое тело, а другой — коллайдер (или оба имеют оба компонента). Обратите внимание, что при использовании raycasting лучи будут взаимодействовать только с объектами, к которым прикреплены компоненты коллайдера.

После настройки в любом настраиваемом компоненте, прикрепленном к объекту, мы можем использовать методы OnCollisionEnter, OnCollisionStay и OnCollisionExit для реагирования на коллизии. Получив информацию о столкновении, мы можем получить ответственность за GameObject и использовать то, что мы узнали ранее, для взаимодействия с прикрепленными к нему компонентами.

Следует отметить, что твердые тела обеспечивают физику, такую ​​как гравитация, для объектов, поэтому, если вы хотите отключить это, вам нужно будет включить is_kinematic .

Расширенные возможности

Мы не будем вдаваться в подробности сейчас, но, возможно, в следующей статье — просто чтобы вы знали, что они существуют.

Создание графического интерфейса

Unity имеет полноценный движок пользовательского интерфейса для создания графического интерфейса для вашей игры. В целом эти компоненты работают примерно так же, как и остальная часть двигателя.

Расширение редактора Unity

Unity позволяет вам добавлять пользовательские кнопки к вашим инспекторам, чтобы вы могли влиять на мир в режиме редактирования. Например, чтобы помочь в построении мира, вы можете разработать собственное окно инструментов для строительства модульных домов.

Анимация

Unity имеет систему анимации на основе графиков, которая позволяет вам смешивать и управлять анимацией для различных объектов, таких как игроки, реализующие систему анимации на основе кости.

Материалы и PBR

Unity использует физический движок рендеринга, который обеспечивает освещение в реальном времени и реалистичные материалы. Реальность такова, что вам нужно либо сначала изучить 3D-моделирование, либо использовать модели, созданные и оптимизированные кем-то другим, прежде чем вы доберетесь до этого, чтобы создавать вещи, которые действительно хорошо выглядят.

Совет новичкам по Unity

Если вы планируете написать свою первую игру, не стоит недооценивать сложность и время, необходимое для написания даже самых тривиальных игр. Помните, что над большинством игр, которые выходят в Steam, команды работают над ними в течение многих лет!

Выберите простую концепцию и разбейте ее на небольшие достижимые этапы. Настоятельно рекомендуется разделить вашу игру на как можно более маленькие независимые компоненты, так как у вас гораздо меньше шансов столкнуться с ошибками, если вы сохраните компоненты простыми, а не монолитными блоками кода.

Прежде чем вы начнете писать какой-либо код для любой части вашей игры, поищите, что кто-то сделал раньше, чтобы решить ту же проблему — скорее всего, у них будет гораздо более удобное решение.

Хорошие ресурсы для разработки игр в Unity

Сообщество разработчиков игр — одно из лучших среди всех, и в индустрии есть множество высококвалифицированных профессионалов, которые размещают контент бесплатно или почти бесплатно. В этой области требуются 3D-моделисты, концептуальные художники, геймдизайнеры, программисты и так далее. Я связал несколько отличных общих ресурсов, с которыми я столкнулся, для каждого из этих полей ниже:

Читайте также: