Как сделать тождественные преобразования

Добавил пользователь Валентин П.
Обновлено: 05.10.2024

Итак, друзья, в прошлом уроке мы познакомились с числовыми и алгебраическими выражениями. Поняли, что означают слова "выражение не имеет смысла". А теперь пришла пора разобраться, что же такое преобразование выражений. И самое главное — зачем оно нужно.

Что такое преобразование выражения?

Ответ прост, до неприличия.) Это любое действие с выражением. И всё. Все эти преобразования вы делали с первого класса. Любое не буквально, конечно… Об этом чуть ниже будет.)

Например, возьмём какое-нибудь суперкрутое числовое выражение Скажем, 3+2. Как его можно преобразовать? Да очень просто! Хотя бы взять да посчитать:

Вот этот расчёт детского садика и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

А тут мы вообще ничего не считали. Просто взяли и переписали наше выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать и по-другому. Например, вот так:

И эта запись — тоже преобразование выражения.

Тоже преобразование выражения!

Если мы с вами постарше, с алгеброй дружим, то напишем:


Кто на "ты" с алгеброй, тот, даже особо не напрягаясь и ничего не считая, в уме сообразит, что слева и справа стоит обыкновенная пятёрка. Напрягитесь и попробуйте.)

А если мы совсем уж старшенькие, то можем записать и такие ужастики:


Внушает? И таких преобразований, очевидно, можно понаделать сколько хочешь! Насколько позволяет фантазия. И набор знаний математики.)

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто.

Простота, конечно, дело всегда хорошее и приятное, но за любую простоту где-то надо платить, да…. Есть здесь одно существенное "но". Все эти загадочные превращения всегда подчиняются одному оч-чень важному правилу. Правило это настолько важное, что его смело можно назвать главным правилом всей математики. И нарушение этого простого правила неизбежно будет приводить к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, от балды, как-нибудь вот так:

Преобразование? Конечно. Мы же записали выражение в другом виде! Но… что здесь не так?

Ответ: всё не так.) Дело всё в том, что преобразования "как попало и от балды" математику не интересуют вообще.) Почему? Потому, что вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Таково её жёсткое требование. И нарушение этого требования будет приводить к ошибкам. Три плюс два можно записать в каком угодно виде. В каком пример требует, в том виде и запишем. Но по своей сути это всегда должно быть пять. В каком бы виде мы эти самые 3+2 ни записали. А вот, если, вдруг, после записи выражения 3+2 в другом виде, у вас вместо пяти окажется двадцать пять, где-то вы ошиблись по дороге. Вернитесь да ляп-то и устраните.)

А теперь пришла пора мудрых зелёных мыслей.)

Запоминаем:

1. Любое действие над выражением, запись его в другом виде, называется преобразованием выражения.

2. Преобразования, не меняющие сути выражения, называются тождественными.

3. Вся математика построена на тождественных преобразованиях выражений.

Именно тождественные преобразования и позволяют нам, шаг за шагом, потихоньку-помаленьку, превращать сложный пример в простое, белое и пушистое выражение, сохраняя суть примера. Если, вдруг, в цепочке наших преобразований мы где-то ошибёмся, и на каком-то шаге сделаем НЕ ТОЖДЕСТВЕННОЕ преобразование, то дальше мы будем решать уже совсем другой пример. С другими ответами, да… Которые уже не будут иметь никакого отношения к правильным.) Нарушим тождественность и накосячим ещё где-то - приступим к решению уже третьего примера. И так далее, в зависимости от количества косяков, от задачки про поезд и автомобиль можно прийти к задачке про полтора землекопа.)

Но! Есть соблазн (скажем, в силу незнания формулы) при возведении в квадрат записать просто:

К сожалению, на данном простом и, казалось бы, очевидном переходе, тождественность наших преобразований нарушается. Слева всё как надо, 2209, а вот справа — уже другое число. 1649. Посчитайте — и всё станет понятно. Вот вам типичный пример НЕ тождественного преобразования. И соответственно вылезшей ошибки.)

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

А что же с алгебраическими выражениями? Всё то же самое! Только в алгебраических выражениях тождественные преобразования задаются формулами и правилами. Скажем, в алгебре есть формула:

Значит, в любом примере мы имеем полное право вместо выражения a(b-c) смело написать альтернативное выражение ab - ac. И наоборот. Это тождественное преобразование. Математика предоставляет нам на выбор эти два выражения. А уж какое из них писать - от конкретного примера зависит.

Опять же, два возможных варианта. Оба правильные.) Это тоже тождественное преобразование. Что выгоднее писать — разность квадратов или же произведение скобок — пример сам подскажет.)

Ещё пример. Одно из самых главных и нужных преобразований в математике - это основное свойство дроби. Подробнее можно (будет) по ссылочке почитать и посмотреть (когда урок сделаю), а здесь я просто напомню правило:

Если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится.

Вот вам пример тождественных преобразований по этому свойству:


Как вы, наверняка, догадались, эту славную цепочку можно продолжать до бесконечности…) Насколько хватит творческого порыва. Всякие там минусы, корни, синусы, логарифмы пусть вас не смущают. Это всё одна и та же дробь. По своей сути. Две трети. 2/3. Просто записанная в разном виде. :) Очень важное свойство. Именно оно очень часто позволяет превращать всякие монстры-примеры в белые и пушистые.)

Конечно же, формул и правил, задающих тождественные преобразования, - много. Я бы даже сказал, очень много. Но самых главных, без которых в математике хотя бы троечного уровня обойтись нельзя, - вполне разумное количество.

Вот одни из базовых преобразований:

1. Работа с одночленами и многочленами. Приведение подобных слагаемых (или коротко — подобных);

2. Раскрытие скобок и заключение в скобки;

3. Разложение на множители;

4. Формулы сокращённого умножения и разложение квадратного трёхчлена.

5. Работа с дробями и дробными выражениями.

Эти пять базовых преобразований широко используются во всей математике. От элементарной до высшей. И, если вы не владеете хотя бы одной из этих пяти простых вещей, то вас неминуемо ждут большие проблемы как во всей математике средней школы, так и в старших классах, а уж в ВУЗе — тем более. Поэтому именно с них и начнём. В следующих уроках этого раздела.)

Есть и более крутые преобразования. Для продвинутых школьников и студентов.) Будь то:

6. Тригонометрия, логарифмы и всё что с ними связано;

7. Выделение полного квадрата из квадратного трёхчлена;

8. Деление многочленов уголком или по схеме Горнера;

9. Разложение рациональной дроби в сумму элементарных (простейших) дробей. Полезнейшая фишка для студентов при работе с серьёзными интегралами.

Итак, всё ясно насчёт тождественности преобразований и важности её соблюдения? Отлично! Тогда пора двигаться на следующий уровень и шагать из примитивной арифметики в более серьёзную алгебру окончательно. И с блеском в глазах.)

Выражения называются тождественно равными , если равны их соответственные значения при любых допустимых значениях переменных.

Для тождественных преобразований можно использовать формулы сокращённого умножения, законы арифметики и т. д.

Чтобы доказать тождество, надо выполнить тождественные
преобразования одной или обеих частей равенства и получить слева
и справа одинаковые выражения.

Чтобы доказать, что равенство не является тождеством,
достаточно найти одно допустимое значение переменной, при котором
получившиеся числовые выражения не будут равны друг другу.

Вспомнить, что такое тождество, вы можете в предыдущей теме.

Для понимания данной темы представим, что в двух банках было одинаковое количество воды, например, $1$ стакан. Потом в обе банки долили еще по $2$ стакана воды. В результате в обеих емкостях все равно осталось одинаковое количество воды, так как мы добавили в каждую равный объем: $2$ стакана.

Другой пример: брата и сестру соседка угостила конфетами, каждому дала по $5$ штук. Затем они решили съесть по одной, и у них осталось все равно поровну конфет, но уже по $4$ штуки.

В обоих примерах были произведены какие-то действия (в первом случае прибавили, во втором – отняли), но прежнее равенство они не нарушили.

В математике тоже можно производить подобные действия над равенствами, и они называются тождественными преобразованиями.

Их главная цель – сделать решение более легким.

Пример тождественного преобразования

Выполним задание на упрощение равенства: $$0,5nt + \frac nt = \frac nt + \frac nt$$

Мы можем упростить правую и левую его части. Сначала преобразуем десятичную дробь в левой части равенства, чтобы все дроби привести к одному виду: $$\frac nt + \frac nt = \frac nt + \frac nt$$

Вынесем в обеих частях равенства за скобки общий множитель $nt$: $$(\frac + \frac )nt = (\frac + \frac )nt$$

Посчитаем действия в скобках, а также преобразуем дроби, приведя их к общему знаменателю, отдельно в правой и в левой части: $$(\frac )nt = (\frac )nt$$ $$(\frac )nt = (\frac )nt$$

Теперь осталось сократить дробь справа. Разделим для этого на $3$ и числитель, и знаменатель: $$\frac nt = \frac nt$$

Таким образом, мы упростили тождество и выполнили действия, которые не изменили наше равенство. Согласитесь, намного проще посчитать результат при подстановке значений $n$ и $t$ в получившееся равенство, чем в первоначальное.

Что называют тождественным преобразованием

Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения.

Приведем еще примеры совсем простых тождественных преобразований:

  • $b + b = 2b$
  • $a+b = b+a$
  • $y\times y\times y = y^3$
  • $2m\times \fracm = m^2$

Все свойства арифметических действий являются примерами тождественных преобразований, например:

То есть, арифметические действия над выражениями, которые вы выполняли ранее, относятся к тождественным преобразованиям выражений.

После каждого шага тождественного преобразования в записи между выражениями можно ставить знак $=$, например: $$(7-2)\times (4f-0,5)=5\times (4f-0,5)=20f-2,5$$

Каждое отдельно взятое выражение между знаками $=$ в записанной цепочке будет тождественно равно любому другому из нее.

Например, мы можем записать, что

Как понять, что преобразование было тождественным

Как мы можем доказать, что выполняемые нами действия сделаны по правилам, а преобразование было тождественным? Для этого необходимо следовать одному из следующих алгоритмов:

  • Если выражения числовые и не содержат переменных, каждое из них нужно решить. Итоговые результаты должны совпадать.

Рассмотрим на примере и докажем, что выражение $\color \frac +5$ тождественно равно выражению $\color10-2$:

Мы получили одинаковый результат $\color8=\color8$ и доказали, что исходные выражения тоже тождественно равны.

Логично, что если одно из числовых выражений в равенстве представляет собой число, то для доказательства нужно решить только второе.

  • Если выражения содержат переменную, то нужно подставить вместо нее в исходное и полученное выражения одно и то же число. Результат должен совпадать.

К примеру, докажем что выражение $\color2(7n+3-4n)$ тождественно равно выражению $\color6(n+1)$. Допустим $n=2$. Подставим в первое выражение $2$ вместо $n$:
$$\color2(7\times 2+3-4\times 2)=2\times 9=18$$
Подставим и во второе выражение $2$ вместо $n$:
$$\color6(2+1)=6\times 3=18$$ Мы получили одинаковые результаты, следовательно, наши выражения тождественны.

Попробуйте самостоятельно подставить вместо $n$ в каждое из выражений выше какое-то другое число, и проверьте, будет ли сохраняться тождество.

Все ли значения можно подставить вместо переменной?

Но любое ли значение для подставления вместо переменной можно брать при доказательстве? Далее вы будете изучать область допустимых значений (ОДЗ) для переменной. При доказательстве мы должны использовать только допустимые ее значения.

К примеру, возьмем тождество: $$\frac +5=-5-\frac $$ Какое число мы не можем подставить вместо $x$?
Вместо $x$ мы не можем подставить $0$, доказывая тождественность этих выражений, так как $x$ у нас в знаменателе. При умножении на $x=0$ в обоих знаменателях получится $0$, а на $0$ делить нельзя. $0$ не входит в ОДЗ для переменной в исходном выражении и не может в данном случае использоваться для доказательства тождества.

  • Другой способ доказать, что в результате преобразования выражения остались тождественными: вычесть из исходного выражения получившееся (или наоборот). В результате должен получиться $0$.

Возьмем пример выше и вычтем $6(n+1)$ из $2(7n+3-4n)$.
Решим:
$6(n+1)-2(7n+3-4n)=$
$6n+6-14n-6+8n=$
$(6n-14n+8n)+(6-6)=0$

Доказательство тождеств. В математике существует множество понятий. Одно из них тождество.

  • Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят.

Некоторые тождества мы уже знаем. Например, все формулы сокращенного умножения являются тождествами.

Доказать тождество – это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

  • Выполнить равносильные преобразования левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  • Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.
  • Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Рассмотрим несколько простых примеров

Пример 1.

Докажите тождество x*(a+b) + a*(b-x) = b*(a+x).

Решение.

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

Пример 2.

Докажите тождество a^2 + 7*a + 10 = (a+5)*(a+2).

Решение.

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.

Нужна помощь в учебе?

Предыдущая тема: Разложение многочлена на множители способом группировки
Следующая тема:   Возведение в квадрат суммы и разности двух выражений: формулы и примеры

Все неприличные комментарии будут удаляться.

Ответ

Тождество — это уравнение, которое удовлетворяется тождественно, т. е. справедливо для любых допустимых значений входящих в него переменных. Доказать тождество – значит установить, что при всех допустимых значениях переменных его левая и правая часть равны.
Способы докозания тождества:
1. Выполняют преобразования левой части и получают в итоге правую часть.
2. Выполняют преобразования правой части и в итоге получают левую часть.
3. По отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и тоже выражение.
4. Составляют разность левой и правой части и в рзультате её преобразований получают нуль.

Т. к. мы не можем преобразовать правую часть, следовательно, мы будем преобразовывать левую. ( Т. к. я не могу написать число, возведённое во вторую степень, например число- x в квадрате, я буду писать так: x умноженное на х, сокращённо х умн. на х)
Итак, преобразовываем:
х умн. на х + 8х – 5х – 40 – х умн. на х + х – 4х + 4=-36,
(Мы многие числа можем взаимно уничтожить! Это иксы в квадратных степенях, потому что один из них положительный, другой отрицательный, и подобные числа – 8х; -5х; х; -4х. Потому что 8х – 5х + х – 4х= 0).
В итоге, у нас получилось -40 + 4= -36.
Выполнив несложную математическую операцию 4-40, мы получим -36.
-36=-36.
Тождество доказано!

Тождества в основном применяются для решения линейных уравнений.

Тождеством называется равенство, которое верно при всех значениях переменных.

Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:

В этих выражениях при всех значениях a и b равенство верное.

2 выражения с равными значениями при всех значениях переменных являются тождественно равными.

Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.

Примеры тождеств.

– Тождество Эйлера (кватернионы);

– Тождество Эйлера (теория чисел);

– Тождество четырёх квадратов;

– Тождество восьми квадратов;

Тождественные преобразования.

Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.


Выполним тождественные преобразования с такой дробью: .



Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.

Доказательство тождеств.

Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.

Например, доказать тождество:


Вынесем х за скобки:





Это равенство есть тождество, при х≠0 и х≠1.

Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.


5−1 ≠ 5+1 — подставим, к примеру, 5.

Это равенство не тождество.

Разница между тождеством и уравнением.

Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.

Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:

Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.

К примеру, возведём двучлен a + b в четвертую степень:

Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена

Сомножитель (a + b) 3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:

А это обычное перемножение многочленов. Выполним его:

тпм рис 1

То есть при возведении двучлена a + b в четвертую степень получается многочлен a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b) 4 в виде произведения степеней (a + b) 2 (a + b) 2

Но выражение (a + b) 2 равно a 2 + 2ab + b 2 . Заменим в выражении (a + b) 2 (a + b) 2 квадраты суммы на многочлен a 2 + 2ab + b 2

А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:

тпм рис 2

Возведение трёхчлена в степень

Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.

Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c

Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму a + b в скобки:

В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:

Применим эту формулу к нашему примеру:

тпм рис 3

Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d

Представим многочлен в виде суммы двух выражений: a + b и c + d . Для этого заключим их в скобки:

Теперь воспользуемся формулой квадрата суммы двух выражений:

тпм рис 4

Выделение полного квадрата из квадратного трёхчлена

Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.

Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:

Идея выделения полного квадрата из таких трехчленов заключается в том, чтобы представить исходный квадратный трехчлен в виде выражения (a + b) 2 + c , где (a + b) 2 полный квадрат, а c — некоторое числовое или буквенное выражение.

Например, выделим полный квадрат из трёхчлена 4x 2 + 16x + 19 .

Для начала нужно построить выражение вида a 2 + 2ab + b 2 . Строить мы его будем из трехчлена 4x 2 + 16x + 19 . Для начала определимся какие члены будут играть роли переменных a и b

Роль переменной a будет играть член 2x , поскольку первый член трехчлена 4x 2 + 16x + 19 , а именно 4x 2 получается если 2x возвести в квадрат:

Итак, переменная a равна 2x

Теперь возвращаемся к исходному трёхчлену и сразу обращаем внимание на выражение 16x . Это выражение является удвоенным произведением первого выражения a (в нашем случае это 2x ) и второго пока неизвестного нам выражения b . Временно поставим на его место вопросительный знак:

Если внимательно посмотреть на выражение 2 × 2x × ? = 16x , то интуитивно станет понятно, что членом b в данной ситуации является число 4, поскольку выражение 2 × 2x равно 4x , и чтобы получить 16x нужно домножить 4x на 4 .

Отсюда делаем вывод, что переменная b равна 4

Значит, нашим полным квадратом будет выражение (2x) 2 + 2 × 2x × 4 + 4 2

Теперь у нас всё готово для выделения полного квадрата из трёхчлена 4x 2 + 16x + 19 .

Итак, возвратимся к исходному трехчлену 4x 2 + 16x + 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x) 2 + 2 × 2x × 4 + 4 2

Вместо 4x 2 записываем (2x) 2

Далее вместо 16x записываем удвоенное произведение, а именно 2 × 2x × 4

Далее прибавляем квадрат второго выражения:

А член 19 пока переписываем как есть:

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 + 19

Теперь обратим внимание на то, что полученный нами многочлен (2x) 2 + 2 × 2x × 4 + 4 2 + 19 не тождественен изначальному трёхчлену 4x 2 + 16x + 19 . Убедиться в этом можно приведя многочлен (2x) 2 + 2 × 2x × 4 + 4 2 + 19 к стандартному виду:

(2x) 2 + 2 × 2x × 4 + 4 2 + 19 = 4x 2 + 16x + 4 2 + 19

Видим, что получается многочлен 4x 2 + 16x + 4 2 + 19 , а должен был получиться 4x 2 + 16x + 19 . Это по причине того, что член 4 2 был искусственно внедрён в изначальный трёхчлен с целью организовать полный квадрата из трёхчлена 4x 2 + 16x + 19 .

Чтобы сохранить значение исходного многочлена, нужно после прибавления члена 4 2 сразу же вычесть его

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19

Теперь выражение (2x) 2 + 2 × 2x × 4 + 4 2 можно свернуть, то есть записать в виде (a + b) 2 . В нашем случае получится выражение (2x + 4) 2

тпм рис 5

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19

Оставшиеся члены −4 2 и 19 можно сложить. −4 2 это −16 , отсюда −16 + 19 = 3

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19 = (2x + 4) 2 + 3

Значит, 4x 2 + 16x + 19 = (2x + 4) 2 + 3

Пример 2. Выделить полный квадрат из квадратного трёхчлена x 2 + 2x + 2

Сначала построим выражение вида a 2 + 2 ab + b 2 . Роль переменной a в данном случае играет x, поскольку x 2 = x 2 .

Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x ) и второго выражения b (это будет 1).

Если b = 1 , то полным квадратом будет выражение x 2 + 2x + 1 2 .

Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x 2 + 2x + 1 2

x 2 + 2x + 2 = x 2 + 2x + 1 2 − 1 2 + 2 = (x + 1) 2 + 1

Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.

Рассмотрим следующее числовое выражение:

Значение этого выражения равно 17

Попробуем выделить в этом числовом выражении полный квадрат. Для этого сначала построим выражение вида a 2 + 2ab + b 2 . Роль переменной a в данном случае играет число 3 , поскольку первый член выражения 9 + 6 + 2 , а именно 9 можно представить как 3 2 .

Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1

То есть переменная b будет равна единице. Тогда полным квадратом будет выражение 3 2 + 2 × 3 × 1 + 1 2 . Внедрим его в исходное выражение:

3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2

Свернем полный квадрат, а члены −1 2 и 2 слóжим:

3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Получилось выражение (3 + 1) 2 + 1 , которое по прежнему равно 17

(3 + 1) 2 +1 = 4 2 + 1 = 17

Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см

три пр шаг 2

Вычислим площадь каждой фигуры. Площадь квадрата будет составлять 3 2 = 9 см 2 , площадь розового прямоугольника — 2 × 3 = 6 см 2 , площадь сиреневого — 1 × 2 = 2 см 2

три пр шаг 3

Запишем сумму площадей этих прямоугольников:

Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:

три пр шаг 4

Тогда получается фигура, площадь которой 17 см 2 . Действительно, в представленной фигуре содержится 17 квадратов со стороной 1 см.

Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.

Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:

три пр шаг 5

Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:

три пр шаг 6

Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?

три пр шаг 9

(3 + 1) 2

Выражение (3 + 1) 2 равно 16 , поскольку 3 + 1 = 4 , а 4 2 = 16 . Этот же результат можно получить, если воспользоваться формулой квадрата суммы двух выражений:

(3 + 1) 2 = 3 2 + 6 + 1 = 9 + 6 + 1 = 16

Действительно, в образовавшемся квадрате содержится 16 квадратов.

Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:

три пр шаг 7

(3 + 1) 2 + 1

Прикрепление маленького квадратика к имеющемуся большому квадрату описывается выражением (3 + 1) 2 + 1 . А это есть выделение полного квадрата из выражения 9 + 6 + 2

9 + 6 + 2 = 3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Выражение (3 + 1) 2 + 1 , как и выражение 9 + 6 + 2 равно 17 . Действительно, площадь образовавшейся фигуры равна 17 см 2 .

три пр шаг 8

Пример 4. Выполним выделение полного квадрата из квадратного трёхчлена x 2 + 6x + 8

x 2 + 6x + 8 = x 2 + 2 × x × 3 + 3 2 − 3 2 + 8 = (x + 3) 2 − 1

В некоторых примерах при построении выражения a 2 + 2ab + b 2 не бывает возможным сразу определить значения переменных a и b .

Например, выполним выделение полного квадрата из квадратного трёхчлена x 2 + 3x + 2

Переменной a соответствует x . Второй член 3x нельзя представить в виде удвоенного произведения первого выражения и второго. В этом случае второй член следует умножить на 2, и чтобы значение исходного многочлена не изменилось, сразу же выполнить деление на 2. Выглядеть это будет так:

тпм рис 6

Получившаяся дробь и содержит значения переменных a и b . Наша задача суметь правильно их распознать. Перепишем эту дробь в виде произведения множителя 2 , дроби и переменной x

тпм рис 8

Теперь второй член представлен в виде удвоенного произведения первого выражения и второго. Переменная a , как было сказано ранее, равна x . А переменная b равна дроби

Возвращаемся к нашему примеру и прибавляем квадрат второго выражения, и чтобы значение выражения не изменилось, сразу же вычитаем его:

тпм рис 10

Прибавляем оставшийся член 2

тпм рис 11

Свернём полный квадрат:

тпм рис 12

Оставшийся квадрат второго выражения и число 2 можно сложить. В итоге получим:

тпм рис 13

Пример 6. Выполним выделение полного квадрата из квадратного трёхчлена 9x 2 + 18x + 7

тпм рис 14

Пример 7. Выполним выделение полного квадрата из квадратного трёхчлена x 2 − 10x + 1

тпм рис 15

Пример 8. Выполним выделение полного квадрата из квадратного трёхчлена 16x 2 + 4x + 1

тпм рис 16

Пример 9. Разложить многочлен x 2 + 6x + 8 на множители при помощи выделения полного квадрата.

Сначала выделим полный квадрат:

тпм рис 17

Получившийся многочлена (x + 3) 2 − 1 является разностью квадратов, поскольку единица может быть представлена в виде 1 2 . Воспользуемся формулой разности квадратов и разложим многочлен (x + 3) 2 − 1 на множители:

Читайте также: