Как сделать стабилизатор напряжения 220в своими руками

Обновлено: 05.07.2024



В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Содержание / Contents



Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги — контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

↑ Принципиальная схема




Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт , включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

↑ Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

↑ Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт , что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1, а вспомогательные LIMING JZC — 22F.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).







↑ Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки "Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт". Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

↑ Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

↑ Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

↑ Использованы источники

Стабилизаторы и их роль

  • уменьшает срок службы элементов сети;
  • становится виновником сбоя в работе электроники — управляющей, контрольной;
  • значительно увеличивает потребление электроэнергии;
  • приводит к перегреву ТЭНов.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Этих последствий и чрезмерных трат можно избежать, если сделать стабилизатор напряжения своими руками. Перед тем как принять окончательное решение о том, быть или не быть самодельному устройству, с ним и его видами лучше познакомиться поближе.

Разновидности приборов

Задача стабилизатора — поддерживать выходное напряжение в узких рамках, независимо от того, насколько сильны изменения входных значений. Помимо допустимых пределов надо учитывать максимальный ток, мощность имеющегося оборудования.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Прежде чем начать обдумывать, как создать стабилизатор напряжения своими руками, нужно познакомиться с ассортиментом этих приборов, узнать их особенности, преимущества, а также недостатки.

Сервоприводные (электромеханические)

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

В этом случае в корректировке выходного напряжения главную роль играет движущийся контакт, который изменяет параметры вторичной обмотки. Перемещается этот ползунок с помощью электромеханического привода. Самые большие преимущество этого стабилизатора — точность корректировки, плавность регулировки, способность выдерживать высокую нагрузку, если все его элементы качественны. Вполне приемлемую цену тоже можно отнести к плюсам.

Нельзя замолчать существенные минусы. К ним относится:

  • ограничение рабочего диапазона — 150-250 вольт;
  • шумность прибора из-за механических элементов;
  • относительно медленная реакция на входные изменения параметров;
  • износ деталей, требующий регулярно заменять подвижные угольные контакты — ролик или щетку.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Повышенный шум может стать причиной дискомфорта, особенно ночью. Открытый контакт может начать искрить из-за попавшей пыли. Заклинивание электропривода приведет к его разрушению либо к возгоранию, поэтому обслуживание устройства, замена токосъемных элементов прибора необходима как минимум раз в год.

Релейные (цифровые) стабилизаторы

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Эти устройства часто называют ступенчатыми. Релейный корректор — трансформатор, имеющий несколько выходов вторичной обмотки, где один из них принимается за общий. Регулировку выходного напряжения производит датчик, отслеживающий состояние электросети, переключающий реле. Если срабатывают несколько приборов, то нагрузка переключается на тот вывод, где она в данный момент отличается от заданного значения минимально.

Преимущества этого типа:

  • простота конструкции;
  • ее ремонтопригодность;
  • довольно большая надежность;
  • неплохая точность корректировки;
  • приемлемая (самая низкая) цена релейных стабилизаторов.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Эти приборы не требуют регулярного обслуживания, поэтому достаточно популярны. Но они, как и все другие, не лишены недостатков. В этом списке:

  • ступенчатая регулировка напряжения на выходе, она ограничивает их применение;
  • выход силовых реле из строя, если происходят частые переключения режимов;
  • падение мощности, когда напряжение низкое — менее 190 В;
  • некоторая погрешность стабилизации — от 5 до 8%;
  • звонкие щелчки при переключении.

Если сравнить минусы и плюсы, то можно сделать логичный вывод, что релейный стабилизатор справляется с большинством задач, возложенных на него в бытовых условиях. Высокую скорость прибор обеспечивает, а в точности корректировки необходимость есть не всегда.

Электронные (симисторные, тиристорные)

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Эта разновидность стабилизаторов отличается от других устройств полным отсутствием каких-либо механических, перемещающихся элементов. В этом случае за диагностику входного напряжения и управление отвечает микропроцессор или блок электронных схем. Работают они в автоматическом режиме.

Стабилизация напряжения электронных приборов тоже происходит благодаря подключению определенных обмоток, однако это делается с помощью полупроводниковых ключей — симисторных, тиристорных либо транзисторных. К плюсам электронного типа стабилизаторов можно отнести:

  • большой диапазон рабочего входного напряжения;
  • долгий срок службы тиристоров и симисторов;
  • высокую скорость и точность стабилизации;
  • небольшие размеры, бесшумную работу.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Недостатки у этих стабилизаторов есть:

  • ступенчатое выравнивание тока вызывает видимое мерцание лампочек при отключении или подключении обмоток;
  • замедление скорости реакции, есть количество ступеней большое;
  • максимальная чувствительность к помехам электрической сети;
  • возможность перегорания ключей при сильных нагрузках;
  • сложность конструкции, высокая цена.

К этой же категории относят недостаточную перегрузочную способность — от 20 до 40% в первые секунды. Преимущества выигрывают у недостатков, так как последние все же относительны. Из-за положительных качеств такие приборы предпочтительнее покупать, однако изготовить такой стабилизатор напряжения своими руками можно, но без навыков очень сложно.

Инверторные (бестрансформаторные)

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

В этих стабилизаторах используют схему двойного преобразования напряжения. Их основные отличия от конкурентов — отсутствие автотрансформаторов, любых подвижных деталей. Необходимости в анализе входного напряжения также нет. Интересен сам принцип работы таких приборов. Переменный ток сначала преобразуется в постоянный. Затем он снова превращается в переменный, но уже со стабильным значением — 200 вольт. Допустимая погрешность составляет всего 1%.

Главные достоинства моделей:

  • точная, мгновенная коррекция напряжения;
  • выходной сигнал с чистой синусоидой;
  • широкий рабочий диапазон.

Недостаток у инверторных стабилизаторов один: это более высокая цена, чем у остальных приборов. Однако чтобы собрать стабилизатор напряжения своими руками, именно эту схему используют чаще остальных.

Феррорезонансные устройства

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Если сравнивать эту конструкцию с приборами-конкурентами, то она отличается элементарностью. В составе ее два дросселя и конденсатор. В работе используется принцип магнитного резонанса. Для этих стабилизаторов характерна высокая скорость, точность корректировки, длительный срок эксплуатации, широкий диапазон входящего напряжения.

Недостатки — низкий коэффициент мощности, образование электромагнитных помех, довольно большие габариты и вес, шумность. Еще один минус — цена. Она нередко выше стоимости источника бесперебойного питания (ИБП). В быту эти устройства, как правило, не используют. Чаще всего их можно увидеть в медицинских учреждениях.

Стабилизатор напряжения своими руками

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Если нет большого желания переплачивать, то можно самостоятельно собрать разные виды корректоров напряжения, однако одним из самых эффективных является симисторный стабилизационный прибор. Его характеристики:

  • нечувствительность к частоте напряжения, подающегося через общую сеть;
  • возможный рабочий диапазон — от 130 до 270 В;
  • напряжение на выходе — от 205 до 230 В, если общая мощность подключенных приборов равняется 6 кВт;
  • быстрое переключение нагрузки — 10 мс (миллисекунд).

Схема и ее элементы

Чтобы сделать подобный стабилизатор своими руками, необходимо сначала рассмотреть следующую схему:

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

На ней обозначены:

  1. Блок питания, состоящий из диода VD1, конденсаторов С2, С5, компаратора DA1, трансформатора Т1.
  2. Узел, задерживающий включение нагрузки. В него входят конденсатор С1, резисторы R1-R5, транзисторы VT1-VT3.
  3. Выпрямитель, измеряющий амплитуду напряжения — делители R14 и R13, диод VD2, конденсатор С2, стабилитрон VD2.
  4. Компаратор напряжения, состоящий из компараторов DA2 и DA3, а также резисторов R15-R39.
  5. Усилители, включающие резисторы R40-48 и транзисторы VT4-12.
  6. Семь оптронных ключей, каждый из которых оснащается оптосимисторами U1-U7, резисторами R6-12 и симисторами VS1-7.
  7. Логический контроллер — DD1-5. Индикаторные диоды — HL1-HL9.
  8. Автотрансформатор Т2 и выключатель-предохранитель QF1.

Чтобы разобраться в схеме, надо представлять, каким образом прибор работает.

Принцип работы

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

После включения питания стабилизатора конденсатор (С1) находится в разряженном состоянии, один транзистор (VT2) открыт, другие (VT2, VT4) закрыты. Через последний элемент будет идти ток на все светодиоды, а также на симисторный оптотрон. Светодиоды не светятся, так как нагрузки нет. Ток, проходящий через резистор R1, попадает в конденсатор (С1), который заряжается.

Задержка составляет лишь 3 секунды: этого времени хватает, чтобы завершить все переходные процессы. Затем следует срабатывание несимметричного триггера — триггера Шмитта. Его основу составляют транзисторы — VT1, VT2. Потом открывается третий элемент цепи, включается нагрузка. Диод VD2 и конденсатор С2 выпрямляют напряжение, выходящее с третьей обмотки Т1.

Затем ток следует в делитель (R13-14). Из него он попадает к не инвертирующему входу компараторов. Их восемь, находятся они на микросхемах DA2, DA3. В тот же самый момент на их инвертирующий вход поступает образцовый постоянный ток. За его подачу отвечают резисторные делители (R15-23). Процесс завершает контроллер, обрабатывающий сигнал на входе компараторов.

Особенности прибора

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

При напряжении до 130 В транзистор VT4 остается открытым. В это время мигает первый светодиод, сообщающий о том, что в электросети слишком мал уровень напряжения, поэтому прибор функционировать не в состоянии.

При нагрузке от 130 до 150 В открывается другой транзистор — VT5 и загорается второй светодиод. Открываются симистор VS2 и оптосимистор U1-2. Через первый пройдет нагрузка, которая последует в верхний вывод обмотки автотрансформатора Т2.

Если напряжение находится в пределах 150-170 В, то открывается транзистор VT6, а загорается уже третий светодиод. Параллельно происходит открытие второго симистора VS2, а ток передается на тот вывод трансформатора Т2, который находится ниже первого.

Самодельный корректор будет переключать соединение и в том случае, если входящее напряжение достигнет 190-250 вольт. Чтобы изготовить функционирующий стабилизатор напряжения своими руками, необходима печатная плата, ее размеры — 90х115 мм. Подходящий материал для нее — стеклотекстолит, фольгированный, односторонний. Размещение показано ниже.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Чтобы не допустить ошибок, лучше эту схему скачать и распечатать на лазерном принтере, недавно заправленном. Для переноса используют утюг. Проще всего воспользоваться программой Sprint Loyout, ее предназначение — помощь в изготовлении печатных плат.

Стабилизатор напряжения своими руками

Изготовление трансформаторов

Альтернатива — использование пары готовых трансформаторов — ТПК-2-2×12В, их соединяют последовательно:

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Трансформатор Т2 должен иметь мощность 6 кВт. Для его изготовления используют тороидальный магнитопровод. Для обмотки берут тот же ПЭВ-2, количество витков в этом случае — 455. Здесь делают 7 отводов. Для первых трех нужен провод с диаметром 3 мм. Оставшиеся 4 требуют шин сечением 18 мм 2 . Цель — предупреждение нагревания трансформатора. Отводы делают на 203, 232, 266, 305, 348 и 398, отсчет ведут снизу. Ток из сети обязан проходить через отвод на 266 витке.

Что потребуется купить еще?

Все остальные элементы необходимо приобрести в магазине. В набор входят:

  • симисторные оптроны MOC3041 — 7 деталей;
  • симисторы BTA41-800B — тоже семь;
  • по 2 диода DF005M (VD1 и VD2) и компаратора LM339N (для DA2, DA3);
  • стабилизатор КР1158ЕН6А (DA1), выключатель-предохранитель;
  • конденсаторы: 4 оксидных (для С1-3, С-5), столько же пленочных либо керамических (С4, С6-С8);
  • резисторы с разным процентом допуска: 7 штук С2-23 для R16-22 с 1%, 30 любых с 5%;
  • 3 проволочных резистора для R13-14, R25 — СП5-2 либо СП5-3;
  • 7 токоограничительных резисторов (16 мА) — для R41-47.

Возможна полноценная замена: MOC3041 на MOC3061, КР1158ЕН6А на КР1158ЕН6Б, LM339N на К1401СА1. Подходящими диодами будут КЦ407А.

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Стабилизатор КР1158ЕН6А монтируют на теплоотвод. В этом качестве используют алюминиевую пластину. Ее площадь более 15 см 2 . На нее же устанавливают симисторы. Все элементы можно монтировать на один теплоотвод, но он обязательно должен иметь довольно большую охлаждающую поверхность. Площадь ее как минимум 0,16 м 2 .

Целесообразность создания своими руками

Стабилизатор напряжения своими руками: принцип работы, виды и схемы

Что лучше: сделать стабилизатор напряжения своими руками или все-таки лучше приобрести готовое устройство? Каждый решает сам.

Если создание самодельного стабилизатора кажется довольно сложным, то лучше пойти традиционным, но нерациональным путем — приобрести готовый прибор. В этом случае в его надежности можно не сомневаться.

Тот, кто все же решился сделать стабилизатор напряжения своими руками, должен увидеть, какая работа ему предстоит. Лучше начинать с простых моделей, а полезную информацию можно почерпнуть из этого видео:

Пайка платы

Бытовая техника восприимчива к перепадам напряжения: она быстрее изнашивается и выходит из строя. А в сети вольтаж часто скачет, проваливается или вовсе обрывается: это связано с удаленностью от источника и несовершенством линий электропередач.

Чтобы питать приборы током с устойчивыми характеристиками, в квартирах используют стабилизаторы напряжения. Независимо от параметров вводимого в устройство тока на его выводе он будет обладать почти неизменными параметрами.

Выравнивающее ток устройство можно купить, выбирая из широкого ассортимента (отличия по мощности, принципу действия, управлению и параметром выводимого напряжения). Но наша статья посвящена тому, как сделать стабилизатор напряжения своими руками. Оправдана ли в этом случае самоделка?

Пайка платы

Преимущества и недостатки самодельного преобразователя тока

У самодельного стабилизатора есть три преимущества:

  1. Дешевизна. Все детали покупаются отдельно, а это экономически выгодно по сравнению с теми же деталями, но уже собранными в единое устройство – выравниватель тока;
  2. Возможность ремонта своими руками. Если один из элементов купленного стабилизатора вышел из строя, вряд ли вы его сможете заменить, даже если разбираетесь в электротехнике. Вы просто не найдете, чем заменить износившуюся деталь. С самодельным устройством все проще: вы изначально все элементы купили в магазине. Останется лишь снова сходить туда и купить то, что поломалось;
  3. Легкий ремонт. Если вы сами собрали преобразователь напряжения, то вы знаете на 100% его конструкцию и принцип работы. А понимание устройства и действия поможет вам быстро выявить причину выхода из строя стабилизатора. Выяснив ее, вы без труда почините самодельный агрегат.

У стабилизатора собственного производства есть три серьезных минуса:

  1. Низкая надежность. На специализированных предприятиях устройства более надежны, поскольку их разработка основана на показаниях высокоточных контрольно-измерительных приборов, которых в быту не найти;
  2. Широкий диапазон выводимого напряжения. Если стабилизаторы промышленного производства могут выдавать относительно постоянный вольтаж (например, 215-220В), то самодельные аналоги могут иметь в 2-5 раз больший диапазон, что может быть критичным для сверхчувствительной к изменению тока техники;
  3. Сложная настройка. Если вы покупаете стабилизатор, то этап настройки минуется, вам останется лишь подключить устройство и управлять его работой. Если же вы создатель выравнивателя тока, то и вам его настраивать. Это трудно, даже если вы изготовили самый простой стабилизатор напряжения своими руками.

Самодельный выравниватель тока: характеристики

Стабилизатор характеризуется двумя параметрами:

  • Допустимый диапазон вводимого напряжения (Uвх);
  • Допустимый диапазон выводимого напряжения (Uвых).

В этой статье рассматривается симисторный преобразователь тока, потому что он обладает высокой эффективностью. Для него Uвх составляет 130-270В, а Uвых – 205-230В. Если большой диапазон входного напряжения – это преимущество, то для выходного – это недостаток.

Однако для бытовой техники этот диапазон остается допустимым. Это легко проверить, потому что допустимыми колебаниями вольтажа являются скачки и провалы не более 10%. А это 22,2 Вольта в большую или меньшую сторону. Значит допустимо изменение вольтажа от 197,8 до 242,2 Вольта. По сравнению с этим диапазоном ток на нашем симисторном стабилизаторе получается еще ровнее.

Подходит устройство для подключения к линии нагрузкой не больше 6 кВт. Ее переключение осуществляется за 0,01 секунды.

Конструкция стабилизирующего ток устройства

Схема стабилизатора напряжения

Самодельный стабилизатор напряжения 220В, схема которого представлена выше, включает в себя следующие элементы:

  • Блок питания. Для него использованы накопители С2 и С5, трансформатор напряжения Т1, а также компаратор (сравнивающее устройство) DA1 и светодиод VD1;
  • Узел, откладывающий начало нагрузки. Для его сборки понадобятся сопротивления от R1 до R5, транзисторы от VT1 до VT3, а также накопитель С1;
  • Выпрямитель, замеряющий значение вольтажных скачков и провалов. В его конструкцию входит светодиод VD2 с одноименным стабилитроном, накопитель С2, резистором R14 и R13;
  • Компаратор. Для него понадобятся сопротивления от R15 до R39 и сравнивающие устройства DA2 с DA3;
  • Контроллер логического типа. Для него нужны микросхемы DD от 1 до 5;
  • Усилители. Для них понадобятся сопротивления для ограничения тока R40-R48, а также транзисторы от VT4 до VT12;
  • Светодиоды, играющие роль индикатора, — HL от 1 до 9;
  • Оптронные ключи (7) с симисторами VS от 1 до 7, резисторами R от 6 до 12 и оптронными симисторами U от 1 до 7;
  • Автовыключатель с предохранителем QF1;
  • Автотрансформатор Т2.

Как будет работать этот аппарат?

После включения в сеть накопителя узла с отложенной нагрузкой (С1) еще разряжен. Транзистор VT1 включается, а 2 и 3 – закрываются. Через последний впоследствии пойдет ток на светодиоды и оптронные симисторы. Но пока транзистор закрыт, диоды не дают сигнал, и симисторы еще закрыты: нагрузки нет. Но ток уже идет через первый резистор к накопителю, который начинает накапливать энергию.

Описанный выше процесс занимает 3 секунды, после чего срабатывает триггер Шмитта, основанный на транзисторах VT 1 и 2, после чего включается транзистор 3. Теперь можно считать нагрузку открытой.

Выходящее напряжение с третьей обвивки трансформатора на блоке питания выравнивается вторыми диодом и конденсатором. Затем ток направляет к R13, проходит по R14. На данный момент напряжение пропорционально вольтажу в сети. Затем ток подается компараторам не инвертирующим. Тут же на инвертирующие сравнивающие устройства входит уже выровненный ток, который подается на сопротивления от 15 до 23. Затем подключается контроллер, обрабатывающие входные сигналы на устройствах для сравнения.

Нюансы стабилизации в зависимости от подаваемого на вход напряжения

Если вводится напряжение до 130 Вольт, то на выводах компараторов обозначается логический уровень (ЛУ) низкого вольтажа. Четвертый транзистор открыт, а светодиод 1 моргает и говорит о том, что наблюдается сильный провал в линии. Вы должны понять, что стабилизатор не в состоянии выдать напряжение нужной величины. Поэтому все симисторы закрыты, и нагрузка отсутствует.

Если вольтаж на вводе составляет 130-150 Вольт, то на сигналах 1 и А наблюдается высокий ЛУ, однако для других сигналов он по-прежнему низкий. Включается пятый транзистор, светится второй диод. Оптронный симистор U1.2 и симистор VS2 открываются. Нагрузка пойдет по последнему и дойдет до вывода обвивки второго автотрансформатора сверху.

При входном вольтаже 150-170 Вольт высокий ЛУ наблюдается на 1, 2 и В сигналах, на остальных он все еще низкий. Тогда включается шестой транзистор и включается третий диод, включается VS2 и ток подается на второй (если считать сверху) вывод обвивки второго автотрансформатора.

Аналогично описывается работа стабилизатора при диапазонах напряжения 170-190В, 190-210В, 210-230В, 230-250В.

Изготовление печатной платы

Для симисторного преобразователя тока нужна печатная плата, на которой будут размещаться все элементы. Ее размер: 11,5 на 9 см. Для ее изготовления понадобится стеклотексолит, покрытый фольгой с одной стороны.

Плату можно напечатать на принтере лазерного типа, после чего в ход пойдет утюг. Изготовить плату самостоятельно удобно с помощью программы Sprint Loyout. А схема размещения элементов на ней приведена ниже.

схема платы для стабилизатора

Как сделать трансформаторы Т1 и Т2?

Первый трансформатор Т1 мощностью 3 кВт изготавливается с использованием магнитопровода с площадью поперечного сечения (ППС) 187 кв. мм. И трех проводов ПЭВ-2:

  • Для первой обвивки ППС всего 0,003 кв. мм. Количество витков – 8669;
  • Для второй и третьей обмоток ППС всего 0,027 кв. мм. Количество витков – 522 на каждой.

Если же нет желания наматывать провод, то можно приобрести два трансформатора ТПК-2-2×12В и соединить их последовательно, как на рисунке ниже.

Схема последовательного соединения трансформаторов на стабилизаторе напряжения

Чтобы изготовить автотрансформатор второй мощностью в 6 кВт, вам понадобится тороидальный магнитопровод и провод ПЭВ-2, из которого будет сделана обвивка в 455 витков. И тут нужны отводы (7 штук):

  • Обвивка 1-3 отводов из провода с ППС 7 кв. мм;
  • Обвивка 4-7 отводов из провода с ППС 254 кв. мм.

Отводы делаются на витках (считать снизу вверх): 203, 232, 266, 305, 348, 398. Из сети вольтаж должен подводиться к витку №266.

Что купить?

В магазине электро и радиотехники купите (в скобках обозначение на схеме):

  • 7 оптронных симисторов MOC3041или 3061 (U от 1 до 7);
  • 7 простых симисторов BTA41-800B (VS от 1 до 7);
  • 2 светодиода DF005M или КЦ407А (VD 1 и 2);
  • 3 резистора СП5-2, можно 5-3 (R 13, 14, 25);
  • Выравнивающий ток элемент КР1158ЕН6А или Б(DA1);
  • 2 сравнивающих устройства LM339N или К1401СА1 (DA 1 и 2);
  • Включатель с предохранителем;
  • 4 конденсатора пленочных или керамических (С 4, 6, 7, 8);
  • 4 конденсатора оксидных (С 1, 2, 3, 5);
  • 7 сопротивлений для ограничения тока, на их выводах он должен быть равен 16 мА (R от 41 до 47);
  • 30 сопротивлений (любых) с допуском 5%;
  • 7 сопротивлений С2-23 с допуском от 1% (R от 16 до 22).

Особенности сборки устройства для выравнивания напряжения

Микросхема стабилизирующего ток устройства устанавливается на теплоотводе, для которого подходит пластинка из алюминия. Ее плошать не должна быть меньше 15 кв. см.

Теплоотвод с охлаждающей поверхностью необходим и симисторам. Для всех 7 элементов достаточно одного теплоотвода с площадью не меньше 16 кв. дм.

Чтобы изготавливаемый нами преобразователь переменного напряжения работал, понадобится микроконтроллер. С его ролью отлично справляется микросхема КР1554ЛП5.

Вы уже знаете, что в схеме можно найти 9 мигающих диодов. Все они расположены на ней так, чтобы они попадали в отверстия, которые имеются на лицевой панели устройства. И если корпус стабилизатора не допускает их расположения, как на схеме, то вы можете видоизменить ее так, чтобы светодиоды выходили на ту сторону, которая будет для вас удобна.

Вместо мигающих светодиодов допускается использование немигающих. Но в таком случае нужно брать диоды с ярким красным свечением. Подходят элементы марок: АЛ307КМ и L1543SRC-Е.

Теперь вы знаете, как сделать стабилизатор напряжения на 220 вольт. И если ранее вам уже приходилось делать что-то подобное, то эта работа для вас не окажется сложной. В результате вы сможете сэкономить несколько тысяч рублей на покупке стабилизатора промышленного производства.

Читайте также: