Как сделать серную кислоту из медного купороса

Обновлено: 05.07.2024

Получение серной кислоты из раствора медного купороса при помощи электролиза. Проверим различные электроды: .

Серную кислоту и медный купорос роднит наличие в этих двух химических соединениях одного кислотного остатка и .

ВСЕ ВИДЕО СОЗДАННЫЕ С ЦЕЛЬЮ ОЗНАКОМЛЕНИЯ и РАЗВЛЕЧЕНИЯ! Я не навязываю свою точку зрения и не говорю, .

Сегодня хотел бы вам показать как делать серную кислоту из медного купороса путем электролиза нам потребуется .

Ну здорова сударь. Хочешь получить самое бесполезное знание? Если да то можешь оставаться, ну а если нет то.

Увеличение концентрации серной кислоты в электролите при помощи выпаривания раствора. Использование простой и .

Делаю серную кислоту из аккумуляторного электролита методом выпаривания воды до получения серной кислоты 80%.

Всем привет! Попробовал необычный способ получения медного купороса ( CuSO4). Он не быстрый, но рабочий получил .

Супер-Быстро Как Вырастить Кристалл Из Медного Купороса Своими Руками. Самый Простой Способ. ♥DIY♥Идеи .

Производство серной кислоты Рассмотрим процесс производства серной кислоты и серного колчедана. На первом этапе с .

Получение медного купороса (сульфата меди) из разбавленной серной кислоты и меди при помощи электролиза для .

Сегодня мы получим красивейшую на вид, голубую соль меди - медный купорос из едкой и опасной серной кислоты.

Как получить концентрированную серную кислоту дома? Нам понадобится всего лишь сходить в автомаг, купить кислотный .

Получение медного купороса из меди, серной кислоты и нитрата аммония. Растворяем медь в смеси серной кислоты и .


Органические производные двухвалентной меди — это, прежде всего, соли карбоновых кислот (карбоксилаты), а также различные комплексы меди с многоатомными спиртами, аминокислотами и другими органическими веществами. Хорошо известно, что соединения меди подавляют жизнеспособность живых организмов, причем отрицательное воздействие катионы Cu 2+ оказывают как на растения и грибы, так и на животных и человека. Особенно ядовиты соединения меди для микроорганизмов, и в этой связи препараты меди широко используются в качестве наружных лекарственных средств для лечения бактериальных, грибковых поражений кожи [1–4]. Поэтому нами была поставлена цель: изучить реакции синтеза некоторых органических производных двухвалентной меди. В качестве реагентов выбраны легкодоступные и практически важные органические кислоты — винная, лимонная и салициловая (в виде калиевых и натриевых солей). Стартовым соединением меди послужил также легкодоступный и устойчивый медный купорос — пятиводный кристаллогидрат сульфата меди.

Синтез тартрата меди (виннокислой меди).

Исходными веществами для синтеза виннокислой меди (тартрата меди) были двойная соль — виннокислый калий-натрий (сегнетова соль) и медный купорос:


Тартрат меди получали реакцией обмена между виннокислым калием-натрием (сегнетовой солью) и медным купоросом по следующей схеме:


Методика синтеза. Вначале получали водные растворы исходных веществ. Для этого навески сегнетовой соли (10,5 г; 0,05 моль) и медного купороса (12,5 г; 0,05 моль) растворяли в 50 мл дистиллированной воды в химических стаканах на 100 мл (вместо стаканов можно использовать плоскодонные конические колбы). Полученные растворы сливали, в результате чего выпадал осадок виннокислой (тартрата) меди. Осадок отфильтровывали на воронке с бумажным фильтром, промывали 20 мл дистиллированной воды и сушили на воздухе. Масса полученной соли — 10,5 г.

Как известно, соли меди кристаллизуются и образуются в реакциях в виде кристаллогидратов. Поэтому нами проведен анализ полученного соединения на содержание кристаллизационной воды. Для этого навеску соли массой 2,7 г на часовом стекле помещали в сушильный шкаф и выдерживали при температуре 85–90 о С до постоянной массы (4–5 часов). При этом происходило обезвоживание навески, и ее масса оказалась равной 2,2 г. Следовательно, масса кристаллизационной воды была равна 0,5 г.

Из полученных данных рассчитывали состав полученного кристаллогидрата:

n (H2O) = m (H2O)/M (H2O) = 0,5 г/18 г/моль = 0,028 моль;

n (соли) = m (соли)/M (соли) = 2,2 г/212 г/моль = 0,01 моль;

отсюда n (соли): n (H2O) = 0,01: 0,028 ≈ 1: 3, следовательно, полученная соль — виннокислая (тартрат) медь представляет собой трехводный кристаллогидрат состава CuC4H4O6 · 3 H2O:


Затем рассчитывали массовую долю выхода соли. Из уравнения реакции находили теоретический выход — масса продукта составила 13,3 г; тогда, как практически получили 10,5 г. Поэтому практический выход трехводного кристаллогидрата тартрата меди: 10,5 г/13,3 г ≈ 0,8 (80 %) от теоретически возможного.

Экспериментально нами установлено, что при повышении температуры выход продукта уменьшался. Это можно объяснить тем, что при нагревании растворимость продукта в воде возрастала и он гидролизовался водой, а скорость гидролиза, как известно, при повышении температуры увеличивается, что и приводило к снижению массовой доли выхода продукта реакции.

Синтез цитрата меди (лимоннокислой меди).

Исходными веществами для синтеза лимоннокислой меди (цитрата меди) были лимонная кислота и медный купорос:


Лимонная кислота не способна реагировать с медным купоросом, так как она намного слабее вытесняемой серной кислоты, поэтому лимонную кислоту вначале переводили в соль реакцией с гидроксидом калия. Для этого навеску лимонной кислоты массой 9,6 г (0,05 моль) растворяли в 20 мл воды и в полученный раствор добавляли при перемешивании 8,4 г (0,15 моль) гидроксида калия. Полученный цитрат калия (его теоретическая масса равна 15,3 г; количество 0,05 моль) использовали без предварительного выделения и очистки:


Цитрат меди получали реакцией обмена между лимоннокислым калием и медным купоросом по следующей схеме:


Методика синтеза. Навеску медного купороса (18,7 г; 0,075 моль) растворяли в 50 мл дистиллированной воды в химическом стакане на 100 мл (вместо стакана можно использовать плоскодонную коническую колбу). Приготовленный раствор смешивали с раствором цитрата калия (15,3 г; 0,05 моль). Полученную смесь помещали в холодильник на ночь. При охлаждении смеси выпадали изумрудно-зеленые кристаллы цитрата меди, которые отфильтровывали на воронке с бумажным фильтром, промывали 20 мл дистиллированной воды и сушили на воздухе.

Далее нами проведен анализ полученного соединения на содержание кристаллизационной воды. Для этого навеску соли массой 2,0 г на часовом стекле помещали в сушильный шкаф и выдерживали при температуре 85–90 оС до постоянной массы (4–5 часов). При этом происходило обезвоживание навески, и ее масса оказалась равной 1,5 г. Следовательно, масса кристаллизационной воды была равна 0,5 г.

Из полученных данных рассчитывали состав полученного кристаллогидрата:

n (H2O) = m (H2O)/M (H2O) = 0,5 г/18 г/моль = 0,028 моль;

n (соли) = m (соли)/M (соли) = 1,5 г/570 г/моль = 0,0026 моль;

отсюда n (соли): n (H2O) = 0,0026: 0,028 ≈ 1: 10, следовательно, полученная соль — лимоннокислая (цитрат) медь представляет собой десятиводный кристаллогидрат состава Cu3(C6H5O7)2 · 10 H2O.

Фильтрат после отделения выпавших кристаллов десятиводного цитрата меди использовали для изучения свойств полученного соединения. Так было выяснено, что при нагревании этого фильтрата из него выпадает осадок голубого цвета. Этот осадок отфильтровывали и сушили на воздухе. Высушенный осадок разделили на две части. К одной из них добавили раствор серной кислоты: осадок сразу растворился с образованием голубого раствора. К другой части добавили избыток 7 %-ного раствора гидроксида аммония: осадок растворился с образованием темно-синего раствора. Данные испытания позволили сделать вывод о том, что этот осадок — гидроксид меди (II). Вторичный фильтрат содержал кислоту: лакмусовая бумажка в нем окрашивалась в красный цвет. Полученные экспериментальные данные свидетельствовали о том, что при незначительном нагревании цитрат меди в растворе полностью гидролизовался до гидроксида меди (II) и лимонной кислоты. Поэтому синтезировать его можно только при сравнительно низкой температуре, используя насыщенные растворы исходных веществ для более эффективной кристаллизации продукта.

Синтез салицилата меди (салициловокислой меди).

Исходными веществами для синтеза салициловокислой меди (салицилата меди) были натриевая соль салициловой кислоты (салицилат натрия) и медный купорос:


Салицилат меди получали реакцией обмена между салициловокислым натрием и медным купоросом по следующей схеме:


Методика синтеза. Вначале получали водные растворы исходных веществ. Для этого навески салицилата натрия (8,0 г; 0,05 моль) и медного купороса (6,25 г; 0,025 моль) растворяли в 50 мл дистиллированной воды в химических стаканах на 100 мл (вместо стаканов можно использовать плоскодонные конические колбы). Полученные растворы медленно сливали при перемешивании, в результате чего выпадал осадок салициловокислой (салицилата) меди, который отфильтровывали на воронке с бумажным фильтром, промывали 20 мл дистиллированной воды и сушили на воздухе. Масса полученной соли — 7,4 г.

Затем нами проведен анализ полученного соединения на содержание кристаллизационной воды. Для этого навеску соли массой 1,7 г на часовом стекле помещали в сушильный шкаф и выдерживали при температуре 85–90 оС до постоянной массы (4–5 часов). При этом происходило обезвоживание навески, и ее масса оказалась равной 1,4 г. Следовательно, масса кристаллизационной воды была равна 0,3 г.

Из полученных данных рассчитывали состав полученного кристаллогидрата:

n (H2O) = m (H2O)/M (H2O) = 0,3 г/18 г/моль = 0,016 моль;

n (соли) = m (соли)/M (соли) = 1,4 г/338 г/моль = 0,004 моль;

отсюда n (соли): n (H2O) = 0,004: 0,016 = 1: 4, следовательно, полученная соль — салициловокислая (салицилат) медь представляет собой четырехводный кристаллогидрат состава CuC14H10O6 · 4 H2O:


Затем рассчитывали массовую долю выхода соли. Из уравнения реакции находили теоретический выход — масса продукта составила 10,2 г; тогда, как практически получили 7,4 г. Поэтому практический выход четырехводного кристаллогидрата салицилата меди: 7,4 г/10,2 г = 0,73 (73 %) от теоретически возможного.

Экспериментально также было установлено, что при повышении температуры выход продукта значительно уменьшался. Так при сливании горячих растворов (температура выше 70 оС) салицилата натрия и медного купороса наблюдалось интенсивное образование осадка тягучей полимерной массы темно-зеленого цвета. Вероятно, это связано со способностью соединений Cu2+ катализировать поликонденсацию активированных ароматических соединений, в частности исходного салицилата натрия. Предположительная схема процесса поликонденсации может быть такой:


Таким образом, полученные экспериментальные данные свидетельствуют о том, что салицилат меди можно получить реакцией обмена только при невысоких температурах.

Нами осуществлен синтез в условиях школьного химического кабинета органических солей меди: тартрата (виннокислой), цитрата (лимоннокислой) и салицилата (салициловокислой). Полученные соединения выделены в чистом виде, доказано, что они представляют собой кристаллогидраты. Химическим путем установлен состав кристаллогидратов синтезированных веществ. А также исследованы реакции пятиводного кристаллогидрата медного купороса с органическими кислотами (винной, лимонной и салициловой) и их солями. Установлено, что при повышении температуры реакции резко снижается выход целевых продуктов, что связано либо с их гидролизом, либо с предполагаемыми побочными процессами поликонденсации.

  1. Диланян Э. Р., Овсепян Т. Р., Арсенян Ф. Г., Степанян Г. М., Гарибджанян Б. Т. Противоопухолевая активность некоторых бистиосемикарбазонов метилглиоксаля и их хелатов с ионами меди (II). // Химико-фармацевтический журнал. 2008. Т. 42. № 9. С. 9–11.
  2. Цапков В. И., Присакарь В. И., Бурачева С. А., Лазакович Д. В., Гуля А. П. Синтез и противомикробная активность сульфазинсодержащих комплексов меди (II) с бензоилгидразонами замещенных производных салицилового альдегида. // Химико-фармацевтический журнал. 2008. Т. 42. № 9. С. 28–31.
  3. Пулина Н. А., Собин Ф. В., Краснова А. И., Юшкова Т. А., Юшков В. В., Мокин П. А., Яценко К. В., Бабушкина Е. Б. Синтез, гипогликемическая и противовоспалительная активность комплексных соединений на основе N-гетериламидов 4-арил-2-гидрокси-4-оксо-2-бутеновых кислот. // Химико-фармацевтический журнал. 2011. Т. 45. № 5. С. 18–21.
  4. Stephen B. Howell, Roohangiz Safaei, Christopher A. Larson, and Michael J. Sailor. Copper Transporters and the Cellular Pharmacology of the Platinum-Containing Cancer Drugs // Molecular Pharmacology. 2010. Vol. 77, № 6. P. 887–894.

Основные термины (генерируются автоматически): медный купорос, моль, кристаллизационная вода, дистиллированная вода, медь, соль, лимонная кислота, полученная соль, масса, реакция обмена.

Медный купорос (медь сернокислая, сульфат меди (II) ) — неорганическое соединение, медная соль серной кислоты с формулой CuSO 4. Нелетучее вещество, не имеет запаха. В безводном виде — белый порошок, очень гигроскопичное. В виде кристаллогидратов — прозрачные негигроскопичные кристаллы различных оттенков синего с горьковато-металлическим вяжущим вкусом, на воздухе постепенно выветриваются (теряют кристаллизационную воду).

Сульфат меди(II) хорошо растворим в воде. Из водных растворов кристаллизуется голубой пентагидрат CuSO4·5H2O — медный купорос. Токсичность медного купороса для теплокровных животных относительно невысока, в то же время, он высокотоксичен для рыб.

Обладает дезинфицирующими, антисептическими, вяжущими свойствами. Применяется в медицине, в растениеводстве как антисептик, фунгицид или медно-серное удобрение.

Реакция гидратации безводного сульфата меди (II) экзотермическая и проходит со значительным выделением тепла.

Содержание

  • 1 Нахождение в природе
  • 2 Получение
    • 2.1 В промышленности
    • 2.2 В лабораторных условиях
    • 2.3 Очистка
      • 2.3.1 Глубокая очистка
      • 3.1 Строение кристаллогидрата
      • 3.2 Термическое воздействие
      • 3.3 Растворимость
      • 4.1 Электролитическая диссоциация
      • 4.2 Реакция замещения
      • 4.3 Реакция с растворимыми основаниями (щелочами)
      • 4.4 Сокращённое ионное уравнение (Правило Бертолле)
      • 4.5 Реакция обмена с другими солями
      • 4.6 Прочее

      Нахождение в природе

      В природе встречается в виде минералов халькантита (CuSO4·5H2O), халькокианита (CuSO4), бонаттита (CuSO4·3H2O), бутита (CuSO4·7H2O) и в составе некоторых других минералов.

      Получение

      В промышленности

      В промышленности загрязненный сульфат меди(II) получают растворением меди и медных отходов в разбавленной серной кислоте H2SO4 при продувании воздуха:

      растворением оксида меди(II) CuO в H2SO4:

      сульфатизирующим обжигом сульфидов меди и как побочный продукт электролитического рафинирования меди.

      В лабораторных условиях

      В лаборатории CuSO4 можно получить действием концентрированной серной кислоты на медь при нагревании:

      температура не должна превышать 60 °С, при большей температуре в значительных количествах образуется побочный продукт — сульфид меди(I):

      Также в лабораторных условиях сульфат меди (II) может быть получен реакцией нейтрализации гидроксида меди(II) серной кислотой, для получения сульфата меди высокой чистоты используют соответственно чистые реактивы:

      Чистый сульфат меди может быть получен следующим образом. В фарфоровую чашку наливают 120 мл дистиллированной воды, прибавляют 46 мл химически чистой серной кислоты плотностью 1,8 г/см 3 и помещают в смесь 40 г чистой меди (например, электролитической). Затем нагревают до 70—80 °С и при этой температуре в течение часа постепенно, порциями по 1 мл, прибавляют 11 мл конц. азотной кислоты. Если медь покроется кристаллами, прибавить 10—20 мл воды. Когда реакция закончится (прекратится выделение пузырьков газа), остатки меди вынимают, а раствор упаривают до появления на поверхности пленки кристаллов и дают остыть. Выпавшие кристаллы следует 2—3 перекристаллизовать из дистиллированной воды и высушить.

      Очистка

      Очистить загрязненный или технический сульфат меди можно перекристаллизацией — вещество растворяется в кипящей дистиллированной воде до насыщения раствора, после чего охлаждается до приблизительно +5 °С. Полученный осадок кристаллов отфильтровывается. Однако даже многократная перекристаллизация не позволяет избавиться от примеси соединений железа, которые являются наиболее распространенной примесью в сульфате меди.

      Для полной очистки медный купорос кипятят с диоксидом свинца PbO2 или пероксидом бария BaO2, пока отфильтрованная проба раствора не покажет отсутствия железа. Затем раствор фильтруют и упаривают до появления на поверхности пленки кристаллов, после чего охлаждают для кристаллизации.

      Глубокая очистка

      Существует более сложный способ очистки, позволяющий получить сульфат меди особой чистоты, с содержанием примесей около 2·10 -4 %.

      Для этого готовится водный, насыщенный при 20°С раствор сульфата меди (вода используются только бидистиллированная). В него добавляют перекись водорода в количестве 2-3 мл 30 % раствора на 1 литр, перемешивают, вносят свежеосаждённый основной карбонат меди в количестве 3-5 грамм, нагревают и кипятят 10 минут для разложения H2O2.

      Затем раствор охлаждают до 30—35 °С, фильтруют и приливают 15 мл 3%-ного раствора диэтилдитиокарбамата натрия и выдерживают в мешалке три-четыре часа не понижая температуры. Далее раствор быстро процеживают от крупных хлопьев комплексов и вносят активированный уголь БАУ-А на полчаса при перемешивании. Затем раствор следует отфильтровать вакуумным методом.

      После промывки кислотами медь снова моют водой и растворяют в 15—20%-ной серной кислоте (ОСЧ 20-4) без её большого избытка с добавлением перекиси водорода (ОСЧ 15-3). После прохождения реакции полученный кислый раствор сульфата меди кипятят для разложения избытка перекиси и нейтрализуют до полного растворения вначале выпавшего осадка перегнанным 25%-ным раствором аммиака (ОСЧ 25-5) или приливают раствор карбоната аммония, очищенного комплексно-адсорбционным методом до особо чистого.

      После выстаивания в течение суток раствор медленно фильтруют. В фильтрат добавляют серную кислоту (ОСЧ) до полного выпадения голубовато-зелёного осадка и выдерживают до укрупнения и перехода в зелёный основной сульфат меди. Зелёный осадок выстаивают до компактности и тщательно промывают водой до полного удаления растворимых примесей. Затем осадок растворяют в серной кислоте, фильтруют, устанавливают рН=2,5—3,0 и перекристаллизовывают два раза при быстром охлаждении, причем при охлаждении раствор каждый раз перемешивают для получения более мелких кристаллов сульфата меди. Выпавшие кристаллы переносят на воронку Бюхнера и удаляют остатки маточного раствора с помощью водоструйного насоса. Третья кристаллизация проводится без подкисления раствора с получением чуть более крупных и оформленных кристаллов.

      Физические свойства

      Пентагидрат сульфата меди (II) (медный купорос) — синие прозрачные кристаллы триклинной сингонии. Плотность 2,284 г/см 3 . При температуре 110 °С отщепляется 4 молекулы воды, при 150 °С происходит полное обезвоживание.

      Строение кристаллогидрата

      Структура медного купороса приведена на рисунке. Как видно, вокруг иона меди координированы два аниона SO4 2− по осям и четыре молекулы воды (в плоскости), а пятая молекула воды играет роль мостиков, которые при помощи водородных связей объединяют молекулы воды из плоскости и сульфатную группу.

      Термическое воздействие

      При нагревании пентагидрат последовательно отщепляет две молекулы воды, переходя в тригидрат CuSO4·3H2O (этот процесс, выветривание, медленно идёт и при более низких температурах [в том числе при 20—25 °С]), затем в моногидрат (при 110 °С) CuSO4·H2O, и выше 258 °C образуется безводная соль.

      Выше 650 °C становится интенсивным пиролиз безводного сульфата по реакции:

      Растворимость

      Растворимость сульфата меди (II) по мере роста температуры проходит через плоский максимум, в течение которого растворимость соли почти не меняется (в интервале 80—200 °C). (см. рис.)

      Как и все соли, образованные ионами слабого основания и сильной кислоты, сульфат меди (II) гидролизуется, (степень гидролиза в 0,01 М растворе при 15 °C составляет 0,05 %) и даёт кислую среду (pH указанного раствора 4,2). Константа диссоциации составляет 5⋅10 −3 .

      Химические свойства

      Электролитическая диссоциация

      CuSO4 — хорошо растворимая в воде соль и сильный электролит, в растворах сульфат меди(II) так же, как и все растворимые соли, диссоциирует в одну стадию:

      Реакция замещения

      Реакция замещения возможна в водных растворах сульфата меди с использованием металлов активнее меди, стоящих левее меди в электрохимическом ряду напряжения металлов:

      Реакция с растворимыми основаниями (щелочами)

      Сульфат меди(II) реагирует с щелочами с образованием осадка гидроксида меди(II) голубого цвета:

      Сокращённое ионное уравнение (Правило Бертолле)

      Реакция обмена с другими солями

      Сульфат меди вступает также в обменные реакции по ионам Cu 2+ и SO4 2-

      Прочее

      С сульфатами щелочных металлов и аммония образует комплексные соли, например, Na2[Cu(SO4)2]·6H2O.


      ✅ Например, хранящиеся в сарайчике сверла/метчики/развертки со временем покрылись следами коррозии. Этого можно избежать, если покрыть их тонким слоем меди.

      Для эксперимента возьмем пару метчиков.

      легким движением руки…


      получаем такой результат.
      Слишком толстый слой покрытия нам не нужен, он будет хуже держаться, поэтому достаточно буквально нескольких секунд обработки.

      В описанном примере, кроме защитных свойств, нанесенный слой способствует более мягкой и легкой работе с метчиком, так как трение меди со сталью в два раза ниже, чем стали со сталью

      ИМХО описываемый способ защиты металла не самый плохой и не самый сложный- сама обработка занимает всего несколько секунд (гораздо больше времени потребуется на очистку и обезжиривание).


      ✅ Металл, кстати, не обязательно окунать в раствор, можно намочить тупфер и им протирать выбранные участки или даже поупражняться в каллиграфии-наносить надписи на металлические поверхности.

      Для эксперимента отшлифовал поверхность вала, чтобы подшипник на нем болтался
      пошловатая правда какая-то картинка получилась :)

      После нескольких окунаний в раствор подшипник уже рукой не натягивается — необходимо впрессовывать.

      Макнул пару деталек для пробы. Даже без дополнительной обработки поверхности, выглядит довольно интересно

      Пробовал царапать металл- покрытие получается относительно прочное…

      Для работы с алюминием (а так же усиления и ускорения процесса), необходим дополнительный источник питания и медный электрод, для поддержания нужной концентрации меди в растворе.
      -Плюс подаем на медный электрод-донор, минус на обрабатываемую деталь

      Любопытно, что нанесение покрытия возможно не только на металлы, но и на дерево, засушенные растения, насекомых и прочие неметаллические поверхности.
      Подобная возможность просто находка для любителей изготовления различных декоративных предметов.

      Технология нанесения не сильно отличается от описанной, просто сначала на поверхность наносится электропроводный лак или графитовый порошок, затем все по описанному выше сценарию. Понадобится некоторая сноровка и (возможно) дополнительные присадки, для получения матового или зеркального покрытия и получения необычных эффектов на поверхности (патинирование и другие).

      -под слоем меди находится действительно то, что Вы видите!




      -Варианты применения меднения не ограничиваются перечисленными выше, а главный плюс описанной технологии: простота, доступность компонентов и их мизерная стоимость.
      Вероятно, описанным методом, при необходимости, можно экранировать небольшой корпус устройства (на манер корпуса ноутбука), металлизировать поверхность, в некоторых случаях восстановить или добавить дорожку на плате, сделать надпись, покрыть ручку аппаратуры в стиле стимпанк Можно покрыть медью кусок свинца и сдать в металлолом :))) и т.п…
      Кстати, подобным же образом делают копии отдельных предметов (например редкой монеты) :).

      На этом пожалуй и все ;) Надеюсь идея статьи Вам понравилась.
      Всем удачи и хорошего настроения!☕

      Читайте также: