Как сделать селекцию

Обновлено: 05.07.2024

селекция, слайд

Можете себе представить лигра или плуот? Звучит как заклинание и выглядит совершенно невероятно. Однако это результат вовсе не магического действа, а пошаговое достижение селекции – науки для создания новых и улучшения существующих пород животных, растений и штаммов микроорганизмов.

Иван Владимирович Мичурин - русский селекционер

Иван Владимирович Мичурин - русский селекционер

От интуиции до науки

Селекция – одно из самых ранних достижений человечества. Она появилась во время первых земледельческих опытов племен, когда люди начали выращивать растения и приручили животных. Примитивная селекция носила случайный характер. Так, например, жители Анд не любили есть горькие клубни картофеля. Они отдавали их скоту, а себе оставляли сладкие клубни, их же оставляли для посева, будучи уверенными, что картошка будет сладкой. Похожая история была и с морковью. Разветвлённые корни считались изъяном, их не использовали для посева и целостность корня накапливалась в сортах на протяжении нескольких поколений.

Следом за Францией возникают семеноводческие фирмы в Германии, Австрии и США. Семена вывозились во многие страны и приносили прибыль селекционерам. Однако в XIX веке селекция все еще не считалась наукой. Это, скорее, был прибыльный бизнес, где секрет выведенной культуры передавался так же втайне и по наследству, как старинные рецепты известных кондитеров.

Капуста романеско - цветная капуста и брокколи

Селекция развивалась и совершенствовалась. Среди русских ученых самое громкое имя в этой отрасли – Иван Владимирович Мичурин. В работе было задействовано свыше тысячи растений, полтора десятка плодовых и ягодных культур, несколько десятков ботанических видов. В своем питомнике он собрал уникальную коллекцию растений с Дальнего Востока, Кавказа, Тибета, из Китая, Канады и других стран.

То, что сегодня нам кажется привычными фруктами и овощами, на самом деле когда-то стало прорывом в науке. Он прорастил даже сорт качественного табака. Дело в том, что сорта желтого турецкого табака не вызревали в нашей стране. Тогда селекционер вывел сорт табака более раннего срока созревания, с меньшим процентом никотина. Желтый болгарский ранний табак при скрещивании с суматринским мелколистным дали новый скороспелый ароматный сорт, способный вызревать даже на Урале.

Помимо табака, Мичурин вывел около тридцати сортов роз и других декоративных растений. Голландцы предлагали ему 20 тысяч царских рублей золотом за секрет создания лилии фиалковой. Это было невероятно: цветок выглядел, как лилия, но пах фиалкой. Мичурин не стал делиться открытием. Знаменитые Мичуринские яблоки сорта Пепин шафранный легко восстанавливаются после зимних заморозков, сладкие на вкус и могут пролежать до февраля. Сливы благодаря Мичурину тоже стали устойчивыми к морозу. Скрестив с ними терн, ученый получил три сорта терносливы. Самым известным стал Ренклод колхозный.

Сегодня селекция в мире растений не перестаёт удивлять. Можно попробовать желтые арбузы, фиолетовый картофель, гибрид сливы и абрикоса, смесь брюссельской и савойской капусты, яблоко с грушей, землянику со вкусом ананаса и многое другое. Приведем интересные, но при этом не самые экзотичные примеры:

Плуот - смесь сливы и абрикоса

Плуот - смесь сливы и абрикоса

3. Арбузный редис = редька + редис. Выглядит это как редис наизнанку: изнутри – малиновый, сверху – бежево-желтый. На пробу жесткий и не такой сочный, но по вкусу напоминает обыкновенный редис. Выглядит эффектно и легко может расти на вашей даче.

4. Нэши = яблоко + груша. Круглое яблоко, грушевое на вкус. Твердое, поэтому прекрасно переносит транспортировку и хранение. Было придумано в Азии.

5. Томтато = картофель + помидор. Два в одном: внизу растет картофель, а сверху – крошечные помидоры-черри.

Лигр – детеныш льва и тигрицы

Селекция животных бывает разных видов: инбриндинг, аутбриндинг и отдаленная гибридизация. Инбриндинг – это скрещивание близкородственных представителей: братьев, сестер и их родителей. Именно так появились бройлерные куры, которые превосходят обыкновенных мясных по весу. Аутбриндинг – скрещивание межпородное. Так, например, Михаил Федорович Иванов вывел породу свиней, скрестив беспородную украинскую свинью и белого английского хряка. Получился неприхотливый вид, мясо которого обладало высоким качеством. Отдаленная гибридизация – способ скрещивания разных видов. Так появились мулы (кобыла + осел), покладистые, как лошади, и выносливые, как ослы. Обратный гибрид (ослица+ конь) вышел не очень удачным и не получил широкого распространения: лошаки обладали невероятно упрямым характером. Удачным примером стал бестер – гибрид белуги и стерляди. Очень вкусная и большая по весу рыба.

В основном селекция животных необходима для пропитания и выполнения каких-либо работ. Однако есть и менее практичные, но при этом любопытные примеры.

Саванна – помесь дикого сервала и домашней сиамской кошки

  1. Лигр – детеныш льва и тигрицы. Они могут обитать лишь в неволе, потому что в реальной жизни их места обитания не совпадают. Лигры весят около 400 килограммов. Они – самые крупные из всех известных существующих представителей семейства кошачьих.
  2. Саванна – помесь дикого сервала и домашней сиамской кошки. От кошки у нее только благородный и слегка высокомерный внешний вид. По характеру саванны преданы, как собаки, очень игривы и любят купаться.
  3. Домашняя лиса. В 1950–м году советский генетик Дмитрий Беляев одомашнил лису. Произошло это за счет скрещивания самых послушных представителей вида серебристо-черной лисы.
  4. Кама – верблюд + лама. По росту эти животные совсем не подходят друг другу, поэтому ученые вывели каму искусственным путем, исключив возможность естественного оплодотворения. Интересно, что в случаях отдаленной гибридизации возможны даже случаи суррогатного материнства среди животных, или метод подсаживаемого эмбриона.
  5. Гролар– гибрид гризли и полярного медведя. Несмотря на то, что генетически эти виды похожи, в реальной жизни они избегают друг друга. Гризли живут и размножаются на земле, а полярные медведи чаще пребывают на льду. Гролары могут выжить как в условиях неволи, так и в дикой природе.

Микроорганизмы

Кажется, что после того, как люди научились выводить новые виды растений и животных, селекция микроорганизмов не выглядит так внушительно. Однако на самом деле это очень важный раздел селекции, который заходит в область биотехнологий и генную инженерию. Селекция микроорганизмов крайне важна в промышленности и сельском хозяйстве. Например, от качества дрожжей зависит качество хлеба на прилавках, а от кисломолочных бактерий – вкус йогуртов в магазине. Селекция микроорганизмов используется для выщелачивания металлов, при очистке сточных вод (об этом читайте в нашем материале), образовании метана как горючего газа, в медицине при синтезе лекарственных форм. Например, интерферон (противовирусный препарат) или инсулин (необходимый для диабетиков). Основными методами селекции при работе с микроорганизмами считается отбор и мутагенез.


Селекция — наука о методах создания новых и улучшения уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для практики признаками и свойствами.

Сорт, порода, штамм — устойчивая группа (популяция) живых организмов одного вида, искусственно созданная человеком и имеющая определенные наследственные особенности.

■ Все особи внутри породы, сорта и штамма имеют идентичные, наследственно закрепленные морфологические, физиологобиологические и хозяйственные свойства и признаки и однотипную реакцию на действие факторов внешней среды.

❖ Основные задачи селекции:

■ достижение высокой урожайности сортов культурных растений, плодовитости и продуктивности пород животных;

■ достижение необходимого качества и химических свойств продукции: вкуса, внешнего вида и лежкости плодов и овощей, содержания белка, клейковины, нужных аминокислот в зерне, жирности и содержания белков в молоке и т.д.;

■достижение необходимых физиологических свойств: скороспелости, засухоустойчивости, морозостойкости, устойчивости к болезням и вредителям и т.д.;

■ получение пород, сортов и штаммов, пригодных для механизированного или промышленного выращивания и разведения.

Теоретическая база селекции:
■ законы и методы генетики как науки о наследственности и изменчивости;
■ учение о структуре гена, молекулярные основы наследственности;
■ теория мутаций;
■ учение о роли среды в фенотипических проявлениях генотипа;
■ учение о формах искусственного отбора, направленного на выявление и закрепление нужных признаков у селектируемых организмов.

❖ Общие методы селекции:

■ направленный подбор исходного материала для селекции из имеющегося разнообразия растений и животных;
■ близкородственная и неродственная гибридизация;
■ массовый и индивидуальный искусственный отбор;
■ индуцированный мутагенез’,
■ искусственное получение полиплоидов и др.

❖ Основа успеха селекционной работы — генетическое разнообразие исходного материала.

Гибридизация — получение гибридов от скрещивания генетически разнородных организмов.

Инбридинг — это близкородственное скрещивание (близкородственная гибридизация) организмов.

Аутбридинг — неродственное (внутри- или межвидовое) скрещивание (при внутривидовом аутбридинге скрещиваемые особи не должны иметь общих предков в ближайших 4-6 поколениях).

Искусственный отбор — отбор, производимый человеком с целью сохранения для дальнейшего размножения особей, имеющих желаемую комбинацию признаков.

Массовый искусственный отбор — отбор по фенотипу целой группы особей с нужными признаками, от которой получают потомство. В нескольких поколениях потомков отбор приходится повторять, так как у них возможно появление расщепления.

Индивидуальный искусственный отбор — отбор одной особи с нужными признаками и выращивание ее потомков с обязательным контролем наследования данных признаков.

■ Индивидуальный отбор бывает однократным (отбор только родительской особи) или повторяющимся (и родительской особи, и потомков).

■ В результате индивидуального отбора увеличивается число гомозигот, т.е. полученное поколение становится генетически однородным.

Линия — группа родственных организмов, воспроизводящих в ряду поколений устойчивые наследственные признаки. Линия происходит от одного предка или от одной пары общих предков.

Чистая линия — группа организмов, гомозиготных по большинству генов, воспроизводящих в ряду поколений устойчивые наследственные признаки и являющихся потомками одной гомозиготной самоопыляемой особи (у растений) или пары близко-родственных особей (у животных).

■ Чистые линии нередко имеют сниженную жизнеспособность, что связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые преимущественно являются вредными.

■ Чистые линии имеют максимальную степень гомозиготности и представляют очень ценный материал для селекции.

Селекция растений

Селекция растений — наука о выведении новых сортов сельскохозяйственных культур, характеризующихся высокой продуктивностью и качеством урожая, устойчивостью к болезням, вредителям и неблагоприятным условиям окружающей среды.

tsentryi-proishozhdeniya-kulturnyih-rasteniy

■ Сорт фенотипически проявляет свои признаки лишь в тех условиях, для которых он был создан.

Исторические этапы селекции растений:
■ начальный этап — окультуривание диких предковых видов растений путем простейшего (бессознательного) искусственного отбора;
■ следующие этапы: направленный массовый и индивидуальный искусственный отбор и гибридизация с последующим отбором.

❖ Методы селекции растений:
■ подбор подходящих родительских пар по месту их происхождения (географически удаленных) или генетически отдаленных (неродственных);
■ индуцированный мутагенез используют при невозможности найти нужный исходный материал; мутации получают с помощью ионизирующих излучений, среди них иногда удается найти полезные, пригодные для дальнейшей селекционной работы;
■ гибридизация (скрещивание);
■ экспериментальная полиплоидия — авто- и аллополиплоидия;
■ искусственный отбор — массовый и индивидуальный;
■ воздействие условиями среды.

Близкородственная гибридизация (инбридинг) у растений основана на искусственном опылении своей пыльцой перекрестно опыляемых (в естественных условиях) растений. Самоопыление ведет к повышению гомозиготности и закреплению наследственных свойств.
■ Посредством инбридинга получают чистые линии особей.

Межлинейная гибридизация — гибридизация путем скрещивания разных чистых линий между собой.
Пример: межлинейная гибридизация позволяет повысить урожайность семян кукурузы на 20-30%.
■ При межлинейной гибридизации обычно наблюдается гетерозис.

Гетерозис (или гибридная мощность) — явление повышенной жизнеспособности и плодовитости гибридов первого поколения по сравнению с обеими родительскими формами.
■ Гетерозис объясняется высоким уровнем гетерозиготности межлинейных генов.
■ Гетерозис у растений можно закрепить их вегетативным размножением (клубнями, черенками, луковицами и т.д.).
■ У второго и последующих поколений эффект гетерозиса постепенно снижается и исчезает, так как нарастает количество гомозигот, снижающих жизнеспособность организмов.

Отдаленная гибридизация (аутбридинг) — внутривидовое, межвидовое или межродовое (т.е. межсортовое) скрещивание, ведущее к гетерозиготизации и позволяющее сочетать в одном организме ценные признаки разных видов и даже родов.

■ Межвидовые гибриды обычно бесплодны. Это объясняется содержанием в их геноме различных хромосом, полученных от родительских особей разных видов, которые (хромосомы) при мейозе не конъюгируют.

Экспериментальная полиплоидия — искусственно вызванное (действием повышенной температуры, ионизирующего излучения или некоторых химических соединений) нарушение нормального расхождения хромосом в мейозе или митозе, приводящее к полиплоидии — увеличению числа хромосом в клетке, кратному гаплоидному.
Примеры культур-полиплоидов: тритикале — гибрид пшеницы и ржи, клубника, сахарная свекла.
■ Различают автополиплоидию и аллополиплоидию.

Автополиплоидия — кратное увеличение хромосом одного вида. Автополиплоиды часто имеют крупные размеры клеток и всего растения, повышенное содержание ряда хозяйственно ценных веществ, другие желаемые признаки и свойства, обладают повышенной жизнеспособностью, устойчивостью к патогенным организмам (вирусам, бактериям, грибам) и неблагоприятным факторам среды.

■ Автополиплоиды обычно стерильны и размножаются только вегетативно.

Аллополиплоидия — изменение (обычно удвоение) числа наборов хромосом при межвидовой и межродовой гибридизации.

■ Аллополиплоидия используется для восстановления способности к размножению межвидовых диплоидных гибридов. Она приводит к удвоению числа хромосом такого гибрида, что создает возможность конъюгации гомологичных хромосом, и гибрид становится плодовитым.

Пример: с помощью аллополиплоидии Г.Д. Карпеченко впервые (в 1924 г.) получил способный к размножению межвидовый гибрид редьки и капусты.

Искусственный отбор производится после получения гибридов.

■ Массовый отбор применяется в отношении перекрестноопыляющихся растений.

■Индивидуальный отбор применяется в отношении самоопыляющихся растений с последующим выделением чистых линий, являющихся исходным материалом для дальнейшей селекции. При индивидуальном отборе результат достигается быстрее, но потомков получается значительно меньше.

Другие методы преодоления межвидовой нескрещиваемости:

■ предварительное вегетативное сближение — одно растение прививается на другое, а затем их цветки переопыляются;

nekotoryie-dostizheniya-selektsionerov

■ смешение пыльцы материнского растения с пыльцой отцовского (своя пыльца раздражает рыльце, и оно воспринимает чужую пыльцу).

Селекция животных

Селекция животных — наука о выведении новых пород домашних и сельскохозяйственных животных, обладающих высокой продуктивностью, жизнеспособностью, устойчивостью к болезням и неблагоприятным условиям окружающей среды.

❖ Особенности животных, вытекающие из природы их организма и затрудняющие и замедляющие процесс их селекции:
■ животные, имеющие хозяйственное значение, размножаются только половым способом (отсутствует вегетативное размножение и самооплодотворение);
■ половая зрелость у них наступает относительно поздно, и поэтому смена поколений происходит очень редко;
■ самки приносят немногочисленное потомство.

❖ Исторические этапы селекции животных:
■ начальный этап — одомашнивание диких предковых видов животных путем бессознательного искусственного отбора;
■ следующие этапы: направленный, осознанный массовый и индивидуальный искусственный отбор и гибридизация с последующим отбором.

tsentryi-proishozhdeniya-domashnih-zhivotnyih

В селекции животных важен учет экстерьера и технологических признаков.

Экстерьер — совокупность фенотипических признаков, характеризующих наружные формы животных, их телосложение и соотношение частей тела (примеры: телосложение скаковой лошади, форма вымени коровы и др.).

Примеры технологических признаков: скорость отдачи молока, характер поведения в группе и др.).

❖ Методы селекции животных:

■ подбор подходящих родительских пар с учетом их родословных, в которых должны быть отмечены экстерьерные особенности и продуктивность в течение ряда поколений;

■ гибридизация (скрещивание) — инбридинг и последующая межлинейная гибридизация, приводящая к гетерозису (примеры: бройлерные цыплята, белая украинская степная свинья); а также внутривидовый аутбридинг (скрещивание домашних животных с дикими предками, дающее плодовитое потомство; пример: тонкорунные овцы меринос + дикий баран архар = архаромеринос) и межвидовый аутбридинг (дающий бесплодное, но представляющее хозяйственную ценность — из-за ярко выраженного гетерозиса — потомство; примеры: лошадь + осел = мул; дромадер + бактриан = нары; белуга + стерлядь = бестер и др.);

■ индивидуальный искусственный отбор по хозяйственным признакам и экстерьеру;

■ испытание производителя по потомству: от производителя получают немногочисленное потомство и сравнивают его продуктивность со средней продуктивностью породы. Если продуктивность дочерей выше, чем матерей, то это свидетельствует о ценности производителя, и его используют для дальнейшего улучшения породы;

■ искусственное осеменение (трансплантация): оплодотворенные яйцеклетки или полученные в пробирке эмбрионы ценных пород животных (крупного рогатого скота, овец и др.) вводят в матку беспородных или низкопродуктивных животных для дальнейшего развития. Это позволяет значительно ускорить селекционную работу, интенсивно использовать высокоценных племенных животных;

■ экспериментальное получение полиплоидов (применяется в селекции тутового шелкопряда): нагреванием или воздействием рентгеновских лучей добиваются слияния ядер и цитоплазмы половых клеток двух близких пород; полиплоиды в дальнейшем размножаются партеногенезом;

nekotoryie-dostizheniya-selektsionerov-zhivotnovodov

■ клеточное клонирование: методом клеточной инженерии в яйцеклетках, полученных от ценных племенных животных, гаплоидные ядра замещаются диплоидными из соматических клеток. Развивающиеся зиготы имплантируются в матку жи-вотных-реципиентов; в результате получается клон особей, которые по генотипу полностью повторяют друг друга.

Селекция микроорганизмов

Роль микроорганизмов в хозяйственной деятельности человека: продуцирование десятков видов органических веществ — аминокислот, нуклеиновых кислот, белков, липидов, сахаров, ферментов, пигментов, антибиотиков, витаминов и др.

❖ Особенности селекции микроорганизмов:
■ селекционер для работы имеет неограниченное количество особей микроорганизмов, выращиваемых на питательных средах;
■микроорганизмы содержат значительно меньше генов, чем клетки высокоорганизованных видов;
■ они имеют простую регуляцию генной активности;
■ они очень быстро размножаются;
■ их гаплоидный геном позволяет проявляться фенотипически любой мутации уже в первом поколении.

♦ Основные методы селекции микроорганизмов:
■ индуцированный мутагенез (для получения мутаций используются ионизирующие излучения и химические мутагены); при этом вероятность возникновения мутаций у микроорганизмов в —100—10000 раз меньше, чем у других организмов, но вероятность выделения мутаций по любому конкретному гену выше в сотни тысяч и более раз; для выявления мутаций используются селективные среды, на которых мутанты растут, а немутировавшие (дикие) клетки погибают;
■ рекомбинирование генов: конъюгация (обмен генетическим материалом между бактериями), трансдукция (перенос гена из одной бактерии в другую с помощью бактериофагов), трансформация (перенос ДНК из одних изолированных клеток в другие), амплификация (увеличение числа копий нужного гена);
■ гибридизация разных штаммов бактерий путем слияния их протопластов;
■ искусственный отбор по продуктивности и технологическим свойствам.

Биотехнология

Биотехнология — производство (как наука и процесс) необходимых человеку продуктов с помощью живых организмов, культивируемых клеток и биологических процессов.

Объекты биотехнологии: микроорганизмы (вирусы, бактерии, протесты, грибы и др.), растения, животные, изолированные из них клетки и субклеточные структуры (органеллы).

❖ Основные направления биотехнологии (как правило, с применением микроорганизмов и/или культивируемых клеток):
■ производство биологически активных соединений (ферментов, витаминов, гормонов и др.) и лекарственных препаратов (антибиотиков, вакцин, сывороток и др.);
■ производство аминокислот и кормовых белков из углеводородов нефти и газа;
■ охрана окружающей среды (разрушение загрязняющих веществ);
■ извлечение ценных металлов из руд и промышленных отходов;
■ создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.д.

Генная инженерия — создание новых организмов путем целенаправленного изменения существующих или создания новых молекул ДНК, способных размножаться в клетке-хозяине и детерминировать необходимые биологические процессы.

❖ Этапы генной инженерии:
■ получение нужного гена (искусственный синтез или выделение природного гена из ДНК);
■ получение рекомбинантной молекулы ДНК (включение полученного гена в молекулу ДНК-переносчик или соединение отдельных фрагментов ДНК в единую молекулу);
■ введение рекомбинантной ДНК в клетку-реципиент, где она встраивается в генетический аппарат;
■ копирование (клонирование) этого гена путем отбора трансформированных клеток;
■ введение клонированных генов в яйцеклетки млекопитающих или протопласты растений и выращивание организмов с измененным геномом.

Трансгенные организмы — организмы, геном которых изменен путем генноинженерных операций.

■ Примеры достижений генной инженерии: освоение промышленного производства белка инсулина и интерферонов (белков, подавляющих размножение вирусов); получение гибридов соматических клеток разных видов; создание гибридов лимфоцитов с опухолевыми клетками, способных к длительному синтезу антител определенного типа; создание растений, способных усваивать атмосферный азот и др.

Клеточная инженерия — создание новых организмов путем соматической гибридизации, гаплоидии, клеточной селекции и др. и культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях.

■ Для культивирования клеток растений их клеточные стенки разрушают с помощью особых ферментов и получают изолированный протопласт, который культивируют так же, как и клетки животных.

Соматическая гибридизация — слияние двух различных соматических клеток (разных видов клеток одного организма или клеток разных, даже очень далеких, видов организмов) в культуре тканей.


Учение Н. И. Вавилова о центрах происхождения и многообразия культурных растений

Селекция — наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:

Изучения сортового, видового и родового разнообразия интересующей нас культуры;

Влияния среды на развитие интересующих селекционера признаков;

Изучения наследственной изменчивости;

Знаний закономерностей наследования признаков при гибридизации;

Особенностей селекционного процесса для само- или перекрестноопылителей;

Стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала, с этой целью Н.И.Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара. К 1940 году во Всесоюзном институте растениеводства насчитывалось 300 тыс. образцов. Но с позиций лысенковщины, занявшей в то время руководящие позиции в биологической науке России и считавшей, что определяющую роль в создании новых форм играет окружающая среда, эта коллекция была не нужна. Работы по пополнению коллекции были прекращены. В настоящее время коллекция пополняется и является основой для работ по селекции любой культуры.

Н.И.Вавилов установил центры происхождения культурных растений, где находится наибольшее видовое и сортовое многообразие культурных растений.

Центры происхождения культурных растений (по Н.И.Вавилову).

1. Южноазиатский тропический

Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии

Центральный и Восточный Китай, Япония, Корея, Тайвань

Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия

Страны по берегам Средиземного моря

Абиссинское нагорье Африки

Западное побережье Южной Америки

Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)

Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)

Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)

Капуста, сахарная свекла, маслины, клевер (11% культурных растений)

Твердая пшеница, ячмень, кофейное дерево, бананы, сорго

Кукуруза, какао, тыква, табак, хлопчатник

Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений.

Основные методы селекции растений

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

1. Массовый отбор применяют при селекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.


Рис. 339. В центре гетерозисная кукуруза, слева и справа чистые линии родительских форм.

3. Инбридинг используют при самоопылении перекрестноопыляемых растений, например, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса — жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии — на протяжении ряда лет, производят принудительное самоопыление — срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Затем скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии — тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

Р ААbbCCdd x aaBBccDD F1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности.

Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

Рис. 340. Растения диплоидной (2n = 16) и тетраплоидной (2n = 32) гречихи.

4. Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

5. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена . Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются аутополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становится тетраплоидными (рис. 340).

6. Отдаленная гибридизация — скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными.

Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами.


Рис. 341. Восстановление плодовитости капустно-редечного гибрида.

7. Использование соматических мутаций применимо для селекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

8. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции животных

Создание пород домашних животных началось вслед за их приручением и одомашниванием, которое началось 10-12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора (сначала бессознательный, а затем методический) приводят к созданию всего многообразия пород домашних животных.

В селекции животных, по сравнению с селекцией растений, есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой. Оценка качеств самцов, которые внешне у них не проявляются (яйценоскость, жирномолочность), оцениваются по потомству и родословной. Во-вторых, у них часто поздняя половозрелость, смена поколений происходит через несколько лет. В-третьих, потомство немногочисленное.

Основными методами селекции животных являются гибридизация и отбор. Различают те же методы скрещивания — близкородственное скрещивание, инбридинг, и неродственное — аутбридинг. Инбридинг, как и у растений, приводит к депрессии. Отбор у животных проводится по экстерьеру (определенным параметрам внешнего строения), т.к. именно он является критерием породы.

1. Внутрипородное разведение направлено на сохранение и улучшение породы. Практически выражается в отборе лучших производителей, выбраковке особей, не отвечающих требованиям породы. В племенных хозяйствах ведутся племенные книги, отражающие родословную, экстерьер и продуктивность животных за много поколений.

2. Межпородное скрещивание используют для создания новой породы. При этом часто проводят близкородственное скрещивание, родителей скрещивают с потомством, братьев с сестрами, это помогает получить большее число особей, обладающих нужными свойствами. Инбридинг сопровождается жестким постоянным отбором, обычно получают несколько линий, затем производят скрещивание разных линий.

Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней — украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были получены чистые линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, по выносливости — от украинских свиней.

3. Использование эффекта гетерозиса. Часто при межпородном скрещивании в первом поколении проявляется эффект гетерозиса, гетерозисные животные отличаются скороспелостью и повышенной мясной продуктивностью. Например, при скрещивании двух мясных пород кур получают гетерозисных бройлерных кур, при скрещивании беркширской и дюрокджерсейской пород свиней получают скороспелых свиней с большой массой и хорошим качеством мяса и сала.

4. Испытание по потомству проводят для подбора самцов, у которых не проявляются некоторые качества (молочность и жирномолочность быков, яйценоскость петухов). Для этого производителей-самцов скрещивают с несколькими самками, оценивают продуктивность и другие качества дочерей, сравнивая их с материнскими и со среднепородными.

5. Искусственное осеменение используют для получения потомства от лучших самцов производителей, тем более что половые клетки можно хранить при температуре жидкого азота любое время.

6. С помощью гормональной суперовуляции и трансплантации у выдающихся коров можно забирать десятки эмбрионов в год, а затем имплантировать их в других коров, эмбрионы так же хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.

7. Отдаленная гибридизация, межвидовое скрещивание, известно с древних времен. Чаще всего межвидовые гибриды стерильны, у них нарушается мейоз, что приводит к нарушению гаметогенеза. С глубокой древности человек использует гибрид кобылицы с ослом — мула, который отличается выносливостью и долгожительством. Но иногда гаметогенез у отдаленных гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары, могут пастись высоко в горах, а, как мериносы, дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного крупного рогатого скота с яками и зебу. При скрещивании белуги и стерляди получен плодовитый гибрид — бестер, хорька и норки — хонорик, продуктивен гибрид между карпом и карасем.

Селекция микроорганизмов. Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия



Рис. 342. Образование рекомбинантных плазмид.

Второй путь — синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

Очень перспективен метод гаплоидов, основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 — 3 года вместо 6 — 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии.

Выращивание клеточных культур. Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Клонирование. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных. Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.


Из данного видеоурока вы узнаете об основных методах селекции, массовом отборе, индивидуальном отборе, гибридизации, искусственном (индуцированном) мутагенезе. В данном уроке приводятся следующие понятия: отбор, скрещивание (гибридизация), межвидовая (отдалённая) гибридизация, внутривидовая гибридизация, искусственный отбор, гибриды, депрессия, гетерозис, стерильность


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Методы селекции растений, животных и микроорганизмов"

Селекция — это наука о методах создания новых и улучшении уже существующих пород животных, сортов растений, штаммов микроорганизмов, которые имеют полезные для человека свойства.


Что благодаря селекции можно разработать новые формы, которые имеют какие-либо особенности, отличающие их от исходных диких видов.

Каким же образом это происходит?

Сегодня на уроке мы рассмотрим основные методы селекции. Их достаточно много, однако все они направлены на создание новых улучшенных форм.


Основными методами селекции являются, отбор, который подразделяется на массовый отбор и индивидуальный отбор. А также (скрещивание) гибридизация, которая подразделяется на неродственное скрещивание, включающее межвидовую (отдаленную) гибридизацию и внутривидовую гибридизацию, и близкородственное скрещивание.

А также к основным методам селекции относят искусственный (индуцированный) мутагенез.

Давайте с ними познакомимся с перечисленными методами.

На прошлом уроке мы говорили, что основным методом селекции является искусственный отбор. Так искусственным отбором называют выбор человеком наиболее ценных в хозяйственном или декоративном отношении особей животных и растений для получения от них потомства с желаемыми свойствами.

То есть отбираются формы с какими-либо измененными и лучшими признаками, либо приспособлениями, которых нет у других форм. Полезные не для животного или растения, а для самого человека.

В селекции различают два основных типа отбора: массовый и индивидуальный.

При массовом отборе, отбираются группы особей по внешним (фенотипическим) признакам без проверки их генотипа.

Скрещивают их между собой, получая гибриды второго поколения. Среди них опять производят массовый отбор особей с нужными признаками и так далее.

К примеру, возьмём целое поле высаженной люцерны на котором произрастает около одной тысячи растений.

Люцерна посевная ─ многолетнее травянистое растение из семейства бобовых, одна из самых ценных кормовых трав.

Внимательно рассмотрев каждое растение, учтя их продуктивность по семенам и зеленой массе при уборке. Мы выбираем 100 лучших по всем показателям. Объединив семена лучших растений, высаживаем их на следующий год. И ожидаем получить улучшенную продуктивность. Если все прошло удачно, и мы добились улучшения, то можно считать, что массовый отбор был эффективен.

Так, например, в хозяйствах из всей популяции кур оставляют для размножения особей с большой яйцекладностью. Которые при размножении дают аналогичное потомство. Таким образом, благодаря этому методу возможно быстро улучшить сорта и породы.

Индивидуальный отбор

Он проводиться уже не по фенотипу, а по генотипу. В таком случае полученное потомство четко оценивают на наличие интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с лучшими показателями.

Для примера вернёмся к тому же полю с люцерной. Опять отбираем из тысячи высаженных растений 100 лучших по всем показателям.

Однако, в случае индивидуального отбора мы не станем объединять их семена, а посеем в следующем году семена каждого растения отдельно. Затем оценим и генотипы отобранных растений, и их фенотипические показатели.

Если каждое отобранное из популяции по выдающимся показателям растение или животное сохраняет свои показатели в потомстве, то индивидуальный отбор продолжается и в последующих поколениях.

Сейчас при искусственном осеменении коров, от одного быка с интересующими свойствами можно получить до тридцати пяти тысяч телят.

Благодаря индивидуальному отбору от одного вида дикого сизого голубя выведено около ста пятидесяти пород домашних голубей;

Большинство сортов пшеницы, ячменя, овса были получены методом индивидуального отбора.


Метод индивидуального отбора наиболее применим к самоопыляющимся растениям (пшеница, ячмень, овес). Потомство одной самоопыляющейся особи называют чистой линией. Так как в размножении участвует одна особь, которая опыляет себя сама. Чистая линия, в которой генетическая информация не меняется.

В отличие от перекрёстного опыления, где происходит обмен генетической информацией между особями.

Гибридизация — это процесс скрещивания родительских особей и получения от них гибридов.

То есть объединяются генетические материалы разных клеток в одной клетке.

Гибрид – это организм или клетка, полученные в результате скрещивания генетически различающихся форм.


Фрукты-гибриды клементины, танжерины, плуоты, пичерины удивительны на слух и превосходны на вкус. Кроме того, они ещё и полезны для здоровья.

Клементи́н — гибрид мандарина и апельсина-королька.

Грейпфрут получился путем естественного скрещивания апельсина с помело.

Пичерин − результат скрещивания персика и нектарина. По вкусу — нечто среднее между нектарином и персиком.

Перейдём к родственной гибридизации.

Инбридинг — это близкородственное скрещивание (внутрипородное или внутрисортовое), при котором в качестве исходных форм используются потомки одних и тех же родителей, либо потомки скрещиваются с родительскими формами.


Такое скрещивание применяется для того, чтобы перевести большинство генов породы или сорта в гомозиготное состояние и избежать расщепления по хозяйственно ценным признакам в ряду поколений.

Например, заводчики животных для поддержания породы часто пользуются таким методом гибридизации. Инбридинг позволяет закрепить уникальный, неожиданно возникший признак и передать его по наследству.

Если скрещивать близкородственные особи, то появляется потомство с необходимыми усиленными признаками. Однако другие признаки могут резко ухудшаться.

Такие неблагоприятные последствия близкородственного скрещивания называют депрессией. Снижение жизнеспособности и продуктивности потомства.

Например, щенки будут рождаться больными, нежизнеспособными, с генетическими отклонениями, и от них нельзя будет получить потомство.

При депрессии, родственные спаривания характеризуются генетическими изменениями.

Ещё Дарвин проанализировал данные результаты самоопыления растений и открыл закон, согласно которому, все существа, получающиеся при скрещивании особей, не состоящих в родстве, получают от этого только пользу. В то время как скрещивание родственных особей приносит только вред.

Чем объясняется такое неблагоприятное влияние? Одной из основных причин служит переход большинства генов в гомозиготное состояние.

Рассмотрим внутривидовую неродственную гибридизацию.

Внутривидовое скрещивание — это скрещивание между особями, принадлежащими к одному виду, которое приводит к образованию гибридного организма.

При скрещивании между собой разных сортов растений или пород животных одного вида первое гибридное поколение будет отличаться улучшенными признаками. Например, крупными размерами, повышенной устойчивостью и плодовитостью.

Гетерозис — это увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей.


Сущность гетерозиса заключается в том, что первое гибридное поколение обладает повышенной урожайностью и жизнеспособностью. Однако уже начиная со второго поколения эффект гетерозиса обычно снижается.

Гетерозис наблюдается как между видами, так и внутри видов.

Межвидовая гибридизация.

Это ещё один главный метод селекции.

Межвидовая (отдалённая) гибридизация — это скрещивание особей, принадлежащих к разным видам, часто приводящее к существенному снижению жизнеспособности, частичной или полной стерильности.

Стерильность ─ отсутствие способности к оплодотворению, т. е. бесплодие.

Межвидовые скрещивания используют для обогащения генетической основы устойчивости сортов.

Например, при скрещивании самого крупного представителя дикого барана Архар и овцы породы прекос, получается баран породы архаромеринос.

Такая порода имеет улучшенные признаки мясо-шерстного направления продуктивности.

Так межродовая гибридизация позволяет передать новому сорту более широкую экологическую пластичность, устойчивость к неблагоприятным факторам среды, и другие ценные свойства.

Приведем примеры межвидовой гибридизации

Тигон ─ гибрид тигра и львицы

Гролар ─ гибрид белого и бурого медведя

Лошак ─ гибрид жеребца и ослицы

Леопон ─ гибрид леопарда и львицы

Однако, как мы уже сказали организмы, которые появились в результате межвидовой гибридизации, частично или полностью стерильны.

Это происходит потому что число хромосом и их форма, у особей отличаются.

Поэтому при мейозе хромосомы не сходятся гомологичными парами и не конъюгируют между собой.

Вспомним уже изученные определения.

Конъюгация — процесс точного и тесного сближения гомологичных хромосом.

Кроссинговер − процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.


Таким образом, в результате межвидовой гибридизации происходят нарушения при кроссинговере и межвидовые гибриды становятся бесплодными.

При помощи методов межвидовой гибридизации был выведен гибрид кобылицы с ослом, который называют мул.


Как и все гибриды межвидовой гибридизации мулы бесплодны, однако они очень сильны, выносливы и долго живучи.

Тритикале обладает повышенной морозостойкостью (больше чем у озимой пшеницы), устойчивостью против грибковых и вирусных болезней, пониженной требовательностью к плодородию почвы.

Содержание белка в зерне тритикале выше, чем у пшеницы на один полтора процента и на три четыре процента, чем у ржи.


Сахарный тростник, земляной орех, земляника, банан, ананас, груша, слива, являются естественными полиплоидами.


Наряду с высокой продуктивностью полиплоиды характеризуются повышенной концентрацией белка, витаминов, углеводов, имеют более мощное строение и оказываются гораздо устойчивее к неблагоприятным условиям.

Ещё один важный способ получения новых сортов искусственный мутагенез.

Он осуществляется путём применения ионизирующих излучений и химических мутагенов, которые значительно увеличивают число мутаций.

Таким образом, учёные пытаются получить организмы с новыми полезными свойствами.

Процесс получения необходимых человеку веществ с помощью живых клеток называют – биотехнологией.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. Пивоварение было одним из первых применений биотехнологии.

В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей. В 1940 году удалось выделить и очистить первый антибиотик – пенициллин.


Так же благодаря биотехнологии, решается проблема обеспечения населения нашей планеты продуктами питания. При помощи увеличения синтеза пищевого белка микроорганизмами.

Микроорганизмы примерно в 10-100 тысяч раз быстрее синтезируют белок, чем животные. Например, 400-килограммовая корова производит в день 400 граммов белка, а 400 килограммов бактерий — 40 тысяч тонн белка.

Читайте также: